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     By 

Daisuke IKEDA*

                            Abstract 

  In this paper, we define the table integration problem which is, given two tables, 
to determine the correct mapping between fields of the tables. A table is a set of 
instances of a record which consists of fields. A field is a pair of an attribute name 
and a sequence of attribute values of the same type. We present an algorithm 
for the problem which uses only instance values of tables instead of schema and 
attribute names. Given tables, the algorithm calculates two numerical features 
for each field using character codes and then finds correspondence between fields 
among tables. The novelty of the algorithm is that it uses the character code chart 
for the language in which the contents of the tables are written. This enables 
a field to be represented by only two types of features. The algorithm requires 
neither an attribute value contained in all input tables nor attribute names. So, 
the algorithm is suitable for tables obtained from Web data, as long as they are 
written in the same language. Applying the algorithm for real Web data written 
in many languages, we demonstrate that the algorithm yields the accurate results 
and is robust for errors. The languages are Chinese, English, Germany, Japanese, 
and Korean.

Key Words and Phrases: Database integration, Information extraction from the Web, Proba

bilistic distribution, Multilingual data, Character code.

1. Introduction 

    An important feature of the Web is its diversity. There are a lot of types, purposes, 
and qualities of Web pages and they are written in many different kinds of languages. 
The diversity causes difficulties when we try to find, compare, and utilize wide variety 
of informations on the Web. 

   In the chaotic World Wide Web, however, many sites provide a series of infor
mations of the same type. For example, search facilities, which are provided at many 
Web sites, return a list search results. An online news outlet publishes article pages 
on the Web with the same style and structure. Many efforts have been paid to ex
tract contents from such sites semi or fullautomatically in the literatures such as 
Ashish and Knoblock (1997), Kushmerick et al. (1997), Lerman et al. (2001), Yamada 
et al.(2001), Yamada et al. (2002). A wrapper is a procedure which extracts the con
tents and generates tables from Web pages. We call such a table a wrapper table. 
* Computing and Communications Center, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, 
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    Once a wrapper table is created, the next problem is to aggregate wrapper tables 
even though they are created from different sources. We can use integrated tables as a 
single database. Imagine that we have an integrated table of cars of various makers and 
that you want to buy a sedan. All you need is just to search the table. 

   In this paper, we define the table integration problem and present an algorithm for 
the problem. The algorithm is very simple and utilizes only basic techniques, but ample 
enough to integrate diverse tables on the Web written in many languages.

1.1. Related Works 

    A table can be seen as a simple database. The database integration problem has 
been paid many attention in the field of database over the years. However,  there' are 
several essential difference between databases and wrapper tables. A database is well
structured and a schema is explicitly given. Therefore, most integration algorithms are 
based on or require schema such as those developed in Cohen (1998), Doan et al. (2001), 
Madhavan et al. (2001), Miller (2000). On the other hand , a wrapper table does not 
have explicit schema. The original sources of the tables are markuped in HTML and 
do not have schema or attribute names. Therefore, methods developed in the database 
field are not applicable to this situation. 

    Many query based integration systems have been proposed in the field of database 
such as Genesereth et al. (1997), Levy et al. (1996), Miller (2000) as well. Such a sys
tem receives a query, decomposes it into subqueries for individual database, and joins 
results. Therefore, a schema of each database must be given to the system. Knoblock 
et al. (1998) focused on usual Web sites instead of relational database, but the schema 
of a site must be described by a user. The main problem to integrate results is to 
determine whether two instances from different database are the same entity or not. 
Similarity measures are proposed in Cohen (1998), Monge and Elkan (1996) based on 
the edit distance, vector space model, etc. 

    The recent upsurge of semistructured data poses the necessity of database inte
gration in the new context. It is the integration of databases on the Web. The purpose 
seems to be similar to this paper, but the target and setting of their integration is 
completely different. In Chidlovskii (2002) and Popa et al. (2002), the main target is 
XML collections. A user can view HTML files whose original structured are destroyed 
even if their original sources are wellstructure XML files (or relational database) . In 
Yoshida et al. (2001), the target is a usual HTML file but the proposed algorithm re
quires for input files to contain attribute names and for the contents to be formatted 
in table tags. However, there are many pages which looks like a list or table without 
table tags and does not have attributes names. If pages have attribute names, notations 
might be different from other sources.

1.2. Instance Based Algorithms 

   We need an instance based integration algorithm because wrapper tables do not 
have any schema and attribute names. However, very few effort have been paid for 
instance based integration algorithms in the field of database. The algorithm in Doan 
et al.(2001) uses attribute values to train a learning algorithm which learns the corre
spondence of schemata. SEMINT developed in Li Clifton (2000) uses partly numerical 
features of attribute values. Numerical features are calculated by the number of up
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per/lower case letters, digit, punctuation, and so on. The algorithm concludes that two 
fields contains the same type of data if their attribute values look like similar. 

   Ideally, for an instance based algorithm, it would be the best way to find semantics 
of each field first and then to match fields using semantics instead of numerical features. 
For example, an algorithm judges the field containing "Daisuke Ikeda" to be the field 
for the persons names and the field containing  "daisukeOcc.kyushuu.ac.jp" to be one 
of their mail addresses. It seems, however, to be difficult especially in multilingual 
situations. Therefore, like SEMINT, it is reasonable for instance based algorithms to 
treat attribute values as just strings even if some of them are digit, and utilize numerical 
features of strings. One superiority of such numerical features is the independence from 
the domain of target databases. 

   In the fields of clustering and machine learning, there are many algorithms based 
on numerical features. Numerical features are used to learn classes of fields (Lerman and 
Minton (2000)) and cluster documents (Ma et al. (2003)). Lerman and Minton (2000) 
introduced the syntactic token hierarchy, whose root has three children "PUNCT," "AL
PHANUM," and "HTML." And, for example "ALPHANUM" have two children, "AL
PHA" which is the class for usual letter and "NUMBER" which is the class of digits. 
Kushmerick (1999) formulate the wrapper verification problem which is, given two wrap
per tables, to decide whether they contains data of the same type. If not, the algorithm 
concludes that the source site changed the format. To solve the problem, Kushmerick 
adopted nine features, such as digit/letter density, upper/lower-case density, punctu
ation density, length, and so on. As an an application of the algorithm, the wrapper 
maintenance problem is discussed. A Web site often changes its page style, so we need to 
find correspondence of fields between before and after the change. Ma et al. (2003) also 
calculate a vector for each input document using the features, such as isUpperCaseLine 

(all alphabetics are upper case), isFirstUpperCaseLine (each word starts with upper 
case), startsWithDigit, and so on. They cluster documents with vector representation 
in a domain independent manner. These algorithms using numerical features are in 
fact domain independent but obviously heavily depend on languages. In described algo
rithms, only two types of letters, upper and lower case letters, are considered. However, 
in Japanese for example, we have two types of letters, Hiragana and Katakana, and one 
type of Chinese characters instead of upper and lower cases.

1.3. Our Contribution 

   In this paper, we define the table integration problem. The problem is, given 
tables, to find a mapping of fields among them. Then, we present an instance based 
table integration algorithm to solve the problem. We represent a field of a table as 
a vector in two dimensional space, which we call the feature space. The novelty of 
the representation is its low dimensionality. This gives a unified view of heterogeneous 
tables. 

   SEMINT used a feature space to represent a field by a vector in 20 statistical 
characteristics of a database. Only 5 of them are instance based. They are minimum, 
maximum, average, coefficient of variance, standard deviation for nonblanks for sizes' 
of all attribute values in a field. Using these characteristics, a field is converted to a 
vector in 20 dimensional space. Then, the algorithm clusters vectors in the space with 

1 A size is in byte.
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respect to their Euclidean distance. 
    Like SEMINT, the proposed algorithm also calculates a feature vector of a field. 

But, in calculation, we make use of the character code chart2 of the language used in 
input tables instead of sizes of attribute values. Any attribute value is treated as a string 
even if it is a digit and represented by the sum of all code numbers of it. "daisuke" is, 
for example in the ASCII (American Standard Code for Information Interchange) code, 
represented by 64, 61, 69, 73, 75, 6B, and 65 in hexadecimal. This representation is very 
natural. In fact, the programming language C does not distinguish a char (character) 
and an int (integer). Therefore, any languages are acceptable for input tables if the 
wrapper tables are written in the same language (character code chart) at a time. 

    A character code chart is a gold mine of information. The characters of the same 
type occupy a successive area. The areas for different types are completely distinct. In 
the ASCII code, the digits occupy the area from 31 to 39, upper case letters from 41 to 
5A, and lower case letters from 61 to 7A. Hiragana letters occupy from 3040 to 309F in 
Unicode3 and Katakana from 30A0 to 30FF. Therefore, character codes are expressive 
for characteristics of fields. Thus, our representation of field even in a low dimensionality 
works well to integrate wrapper tables. 

    If we have large amount of instances, we can find appropriate mapping using meth
ods based on probabilistic distributions of instances' occurrences. However, we can not 
assume enough instances. Moreover, there is no instance which appears in both input 
tables in many cases. Therefore, we use character code charts instead of the probabilistic 
distributions. 
   We evaluate the effectiveness and limit of the presented algorithm by experiments 
on 10 tables. 9 of them are wrapper tables created from real data on the Web. The 
other table is created from an XML collection. They are written in 5 languages, Chinese, 
English, Germany, Japanese, and Korean. 

    For most datasets, the presented algorithm achieves 100% accuracy if enough in
stances are given. In our experiments, less than 50 instances are enough. Experiments 
show that the accuracy value is not affected by the contents language. Some experiments 
show that a limit of the algorithm. That is, the algorithm fails to match fields whose 
attribute values are semantically different but look similar. For example, in the list of 
tennis players, we have two such fields "Name" which is the field for tennis player names 
and "Coach" which contains also person's (coach for a player) names. 

   This paper is organized as follows: First of all, we define notations and the key 
representation of fields in Section 2.. Then, we present the main algorithm in Section 3.. 
In Section 4., we show experiments using wrapper table created from practical data 
written in Chinese, English, German, Japanese, and Korean.

2. Table Integration Problem 

   A table consists of instances of a record. A record instance contains different types 
of data, each of which is called a field. A field is a pair of an attribute name and a 
sequence4 of attribute values of the same type. For a field f , we denote the number of 
all attribute values in f by ( f I. For a table and any two fields f 1 and f2, I fi i = 1121. 
   Table 1 is a sample of table. Each column contains data of the same type, and 

2 More precisely
, a character code chart is a character encoding scheme. 3 

http://www.unicode.org/ 
4 That is, multiple values with the same value are allowed.
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         Table 1: Sample Table  
Name Phone Email  

 D.  Ikeda 2298 daisukeOcc.kyushuu.ac.jp 
S. Hirokawa 2301 hirokawaOcc.kyushuu.ac.jp 
Y. Yamada 2296 yshiro©cc.kyushuu.ac.jp

a column corresponds to a field. In this table, each field has an attribute name such 
as "Name," "Phone," and "Email." Our algorithm does not require attribute names. 
Attribute names in Table 1 are only for expository purpose. 

   In out algorithm, an attribute value is treated as a string even if it consists of only 
digits. For an attribute value e, let denotes the length of e5 and [e]i the i character of e, 
where 1 < i < let. 

   Without loss of generality, we can assume that the number of input tables are 
restricted to be two. If three or more tables are given, first we apply an integration 
algorithm to any two of them, then the iteratively application to an integrated table 
and another input table leads to the integration of all input tables. 

   For a table T, F(T) denotes the set of all fields in T. We do not require any 
restriction on F(T1) and F(T2). We do no assume that tables such that F(T1) C F(T2) 
or that F(T1) and F(T2) are comparable might be input tables. We assume that for any 
field in T1, there exists at most one correspondent field in T2. 

    Now, we define the table integration problem formally as follows: 

    DEFINITION 2.1 TABLE INTEGRATION. The table integration problem is, given two 
tables T1 and T2, to find the correspondence (fi, f2) between fi E F(T1) and 12 E F(T2), 
where fi and 12 are fields containing data of the same type.

3. Algorithm 

    Our algorithm receives two tables T1, T2 and a character code chart CO as an input, 
where C(•) is a function from characters to integers. The algorithm first transforms all 
fields into vectors in 2 or 3 dimensional space using the code chart C(•). The space is 
called the feature space. Then, it calculates distances for all pairs of fields among the 
tables and finds iteratively nearest pairs of fields with respect to the Euclid distance 
between them.

3.1. Field Representation 

   The algorithm utilizes a function fieldval() which returns the vector in the feature 
space for a given field. This function is the key representation of the proposed algorithm. 
fieldval() treats an attribute value e of a field as a string and calculates the sum of 
character codes CO for all characters in e. We call this sum the feature value for an 
attribute value. Now, we extend the domain of C from a character to a string. For a 
string x, C(x) is defined to EZsl1 [x]i. Then the feature value for an attribute value e is 
C(e). 
5 This notation is the same as the number of all attribute values of a field f . However, the difference 

 is clear from the context.
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function  fieldval(f: filed, C: code chart): vector 
begin 

 for e in all instances of f 
 do 

ye := 2iel1 C([e]i) 
 end 
  a := average value of all ve's 

  s := standard deviation of all ve's 
 return (a, s) 

end

Figure 1: Pseudo code to calculate the vector of a field

   The vector v for a field is v = (x, y), where x and y are the average and standard 
deviation value of all feature values in the field. 

    This representation exhibits characteristics of an attribute value's appearance. For 
an attribute value e, ve contains informations about both lengths and character types 
used in e, but omits the order of characters. Therefore, the substring information is 
ignored. Table 2 shows vectors for sample instances in Table 1. Note that special

Table 2: Attribute values and their feature values by the ASCII code chart 
Name CO Phone CO EmailCO  

D. Ikeda 624 2298 213 daisuke@cc.kyushuu.ac.jp 2399  
S. Hirokawa 980 2301 198 hirokawa@cc.kyushuu.ac.jp 2511  
Y. Yamada 850 2296 211 yshiro@cc.kyushuu.ac.jp 2811

characters, such as a space and punctuation, are used as-is. For example, "D. Ikeda" is 
translated as C(D)+C(.)+C(u)+C(I)+• • •+C(a) = 68+46+32+73+ • •+97 = 6246. 
Note that a feature value only depends on one attribute value, it is not necessary for an 
integration algorithm to see all attribute values in a field. In this sense, a vector in this 
2D feature space is locally definable. 

   All attribute values in a field of Table 1 are basically different from each other. In 
general, however, there are fields containing some fixed optional values. For example, 
a sex is either male or female and a job title is selected from some fixed number of 
candidates. The standard deviation for such a field is expected to be low. It seems 
to be difficult distinguish such a field from another field which contains wide variety of 
attribute values but its standard deviation happens to be low. 

    Here, we introduce another numerical feature for experimentally purpose. Let m 
be the number of different attribute values in a field f. Then, the vector v for a field f is 
v = (x, y, z), where x and y are the same as the 2D case, and z = If I /rn. We use I f l /m 
instead of m as-is because the difference of m between fields are important especially 
when m is too small. Note that this new feature is not defined for an attribute value. 
So, a vector in this new feature space is not locally definable. 
6 A code number is in decimal.
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3.2. Mapping by Distance 

   The main part of the proposed algorithm is to calculate distances between vectors 

in the feature space and map close two vectors among two input tables as correspondent 

fields. The pseudo code for the algorithm is illustrated in Fig. 2.

procedure  Tablelntegrate(Ti, T2: tables, C: code chart) 
begin 

 foreach fi E F(Ti) 
 do 

vi := fieldval(f1, C) 
   foreach f2 E F(T2) 

                 do 
v2 := fieldval(f2i C) 

     d := distance between v1 and V2 
h(vl, v2) := d 

    end 
  end 

l := sorted list of all pairs (vi, v2) 
   by d(= h(vi, v2)) in increasing order 

 for (vi, v2) E 1 
    report (fi., f2) are correspondent 

   delete (PC , p2) E l if pl = v1 or p2 = v2 
  end 

end

Figure 2: Pseudo code of the algorithm

   For each field fi of T1, the algorithm calculate the Euclidean distance between fi 
and 12 for any 12 of T2, and then selects iteratively a pair (fi, 12) providing the smallest 
distance among all pairs of fields. 

   As the similarity of vectors, the cosine value of the vectors. If the vecoters are 
nomalized, we can see that the cosine value are equivalent to the Euclidian distance. 
But, by the preliminari experiments, normalization of vectors decrease accuracy values 
for matching fields. Thus, we do not adopt nomalization. 

    Let N be the maximum number of attribute values for a field, n be the maximum 
length of an attribute value, and m = max{1F(T1)I, IF(T2)l}. Then, fieldval() runs 
in 0(nN) time. It takes 0(m2) time to calculate distances for all pairs and (m2 log m) 
time to sort all distances. Therefore, the algorithm totally runs in 0(nN + m2 log m) 
time.

4. Experiments 

   We implement the algorithm described in the previous section in Python and apply 

it to tables written in various languages. Table 3 lists all datasets with brief descriptions, 

where the fourth and fifth columns show the number of instances and fields in dataset, 

respectively.



48 D.  IKEDA

              Table 3: Datasets used for experiments  
ID DescriptionLanguage # instances # fields 

 1 Search results from 4 major search engines. English 4721 3 

2 Search results Yahoo! Korea.Korean 671 4 
3 Search results Yahoo! China.Chinese 1773 3 

 4 XML database of academics in Kyushu univ. Japanese 497 6 

5 Yellow Pages.Japanese 1000 3 
6 Yahoo! Auction Korea.Korean 2908 4 
7 List of tennis players., German 227 13

   For the implemented program, tables written in any language are applicable if they 

are encoded in UTF-87.

4.1. Search Engines 

   Dataset 1 are collected from 4 major search engines, AltaVista8, Excite9, Lycoslo, 
and Yahoo! 11. A page produced by a search engine contains multiple instances. An 
instance consists of titles of Web pages, URLs, and short descriptions for the pages. 
Therefore, the result of search result looks like a table containing 3 fields. From each 
of 4 search engines, we gather about 1,000 search results (about 100 pages), and totally 
4721 record instances are obtained. 

   We collected 410 category names in advance from Yahoo! and the pages linked 
from the top page. We use these names as query words. When we gathered search 
results, we randomly chose keywords from the category names. 

   For any combination of 4 search engines, we made a series of experiments as the 
number of instances are increasing. We evaluate the experiments by accuracy, that is, 
the number of matched field to the number all fields. The total number of fields is 18 
since there are 6 combinations and each dataset has 3 fields. Table 4 shows all accuracy

Table 4: Accuracy for integration tables among any two search engines in Dataset 1 

                      size accuracy size accuracy  

               10 16/18 60 18/18 
               20 14/18 70 18/18 
               30 16/18 80 18/18 
               40 18/18 90 16/18 
                50 18/18 100 18/18

values, where "size" denotes the the number of files. Basically, a file in this dataset 

contains 10 found pages, so 10 in the size column means that 100 instances are included 
for both search engines of a combination. 

7 This is an character encoding scheme of Unicode . 
8 http://www .altavista.com/ 
9 http://www .excite.com/ 

10 http://www .lycos.com/ 
11 http://www .yahoo.com/
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   The algorithm fails to match fields when the size is small and it almost succeed 
for larger sizes. However, when the size is 90, the algorithm fails to match between 
URL and title fields. Apparently, the difference between URLs and page titles is easy 
for us because most URLs of found pages begin with "http://." The algorithm folds all 
character codes of a string into one value when it calculates a feature value. This means 
that the algorithm ignores any properties of substrings appearance and their appearance 
orders. Nevertheless, the algorithm works very well for many data sizes. 

   This dataset does not show any difference between 2 and 3 dimensional feature 
spaces. 
   For Dataset 1, we integrate wrapper tables created from different sites. We need 

to see source files and define the correct mapping in advance. However, it is impossible 
to construct such correct mapping for multilingual inputs. So, in the sequel, we use two 
tables whose instances are randomly selected from the same table. In this case, it is 
easy to check the correctness. 

    Dataset 2 and 3 are also search result pages gathered from Yahoo!  Korea12 and 
China13, respectively. Both datasets have the same 3 fields of Dataset 1. Dataset 2 has 
another field14 

    Table 5 shows accuracy values as the number of instances are increasing, where 
"size" is the number of files. Basically, each file contains 20 instances. Each size, we

Table 5:  Accuracy for integration tables of Dataset 2 

        size accuracy size accuracy 
      1 11/20 6 20/20 

      2 14/20 7 20/20 
      3 18/20 8 20/20 
      4 20/20 9 20/20 
      5 20/20 10 20/20  

        size accuracy size accuracy  
      1 8/20 6 20/20 

      2 12/20 7 20/20 
      3 20/20 8 20/20 
      4 20/20 9 20/20 
      5 18/20 10 20/20

do experiments iteratively 5 times15. Now, accuracy is defined to be m/(N x 5), where 
m is the number of matched fields during all 5 times iterations and N is the number of 
fields in the dataset. 

    The above table of Table 5 is the result when the algorithm uses 2 dimensional 
feature space and the bellow one for 3 dimensional case. 

    For both feature spaces, the algorithm increases accuracy values and achieves 100%. 
For this dataset, the new added feature slow the converge speed. 

    For Dataset 3, the algorithm shows 100% accuracy if the input file size is greater 

12 http://kr .search.yahoo.com/ 
13 http://cn .search.yahoo.com/ 
14 But, the author does not know what the field is. 15 In the sequel, we make experiments in a similar manner for other datasets.
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than 3 if in the 2D feature space (see the above table of Table 6) and 2 in the 3D feature 
space (see the below of Table 6).

Table 6:  Accuracy for integration tables of Dataset 3 

       size accuracy size accuracy 

      1 12/15 6 15/15 
      2 13/15 7 15/15 
      3 15/15 8 15/15 
      4 15/15 9 15/15 
      5 15/15 10 15/15  

        size accuracy size accuracy 

      1 12/15 6 15/15 
      2 15/15 7 15/15 
      3 15/15 8 15/15 
      4 15/15 9 15/15 
       5 15/15 10 15/15

   Table 7 shows all points for fields in two tables randomly extracted from Dataset 3 

when the file is 10.

Table 7: Points and distances for Dataset 3 
   FieldPoint  

    URL = (2618.95, 948.87) 
 Summary = (582382.92, 222902.47) 

    Title = (207781.26, 114893.04)  
    URL  = (2595.70, 1018.10) 

 Summary = (585820.57, 266668.74) 
    Title = (225597.73, 104127.19)

4.2. XML Database of Academics 

   Dataset 4 consists of 497 XML files, each of which is a record instance of an aca
demic in Kyushu University. A record contains "ID" which is a unique number, email 
address, phone, URL, job title, academic degree, and so on. Basically, contents are writ
ten in Japanese. An ID number is automatically generated and a job title is selected 
from options, so data in these two fields are clean. On the other hand, other fields are 
basically filled by hand. There are some blank fields, irregular data, and multiple values. 

   Important differences from Dataset 1 are that contents are basically written in 

Japanese and selective fields exist such as the job title. Table 8 shows accuracy values 
as the number of instances are changing, where "size" is the number of instances. 

    As the number of instances are increasing, the accuracy are increasing and converges 
to the perfect when the number of instances is 50. 

    In Dataset 4, several outliers of feature values are found. They are included in 
the fields of email address and phone number. Although almost all attribute values 
in these fields are written in the ASCII code, few of them are written in double-byte
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Table 8: Accuracy for integration tables with the same number of fields extracted from 
Dataset 4 

                       size accuracy size accuracy 
                10 20/30 60 30/30 

                20 26/30 70 30/30 
                30 28/30 80 30/30 
               40 28/30 90 30/30 
                 50 30/30 100 30/30

characters, like  "d  a i s u k e 16." The feature value, for example, for "daisuke" is 
100 + 97 + 105 + 115 + 117 + 107 + 101 = 74217, while one for "d a i s u k e " is 
65348+65345+65353+65363+65365+65355+65349 = 457478 in Unicode. The values 
for such outliers are very huge. Thus, both the average and the standard deviation 
heavily affected by these outliers. In the above experiments, we use data cleaned by 
hand. We need some algorithm that eliminates automatically such outliers. 

    We compare accuracy values between 2 and 3 dimensional feature spaces (see Ta
ble 9). The convergence size is a bit smaller than 2D case. But, on the whole, the

Table 9: Experiments using 3 dimensional feature space on Dataset 4 

               size accuracy size accuracy 

           10 26/30 60 30/30 
           20 26/30 70 30/30 
           30 28/30 80 30/30 
           40 30/30 90 30/30 
           50 30/30 100 30/30

dimensionality does not affect accuracy values.

4.3. Yellow Pages 

   Dataset 5 are HTML files each of which contains 20 instances. A record instance 
has the company name in Japanese, its phone number, and its address in Japanese. We 

gather randomly 50 files from Yahoo! PHONEBOOK18 and totally this dataset has 
1,000 instances. The accuracy converges to 100% after the number of instances is just 
20 and after that the algorithm keeps the accuracy value as 100%.

4.4. Auction Lists 

    Dataset 6 are HTML files gathered from the auction site of Yahoo! Korea19. An 

instance consists of 4 fields20. 

18 For all alphabets and digits in the ASCII code , we have correspondent double-byte characters in 
  Japanese major character code charts. 

17 A code number is in decimal . 
i8 http://phonebook .yahoo.co.jp/ 
19 http://kr .list.auctions.yahoo.com/ 
20 The author does not read Korean Hangeul sentences , but maybe, they are "Title," "Price," `Bids," 

  and "Time Left" like http://list.auctions.shopping.yahoo.com/.
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Table 10 shows the result for this dataset. This table shows that the accuracy values

Table 10: Accuracy for integration tables extracted from Dataset 6 in 2D (above) and 
3D (bellow) feature spaces  

 # acc.  # acc. # acc. # acc. 
          1 14/20 6 20/20 11 20/20 16 20/20 

          2 18/20 7 20/20 12 20/20 17 20/20 
          3 19/20 8 20/20 13 20/20 18 20/20 
          4 19/20 9 16/20 14 20/20 19 20/20 
          5 19/20 10 20/20 15 20/20 20 20/20  

# acc. # acc. # acc. # acc.  
           1 14/20 6 20/20 11 20/20 16 20/20 

           2 19/20 7 20/20 12 20/20 17 20/20 
          3 20/20 8 20/20 13 20/20 18 20/20 
          4 20/20 9 20/20 14 20/20 19 20/20 
          5 20/20 10 20/20 15 20/20 20 20/20

in the 3 dimensional feature space converges into 100% faster than those in 2 dimensional 
feature space and the 3D feature space shows high accuracy values for many sizes .

4.5. List of Tennis Players 

    Dataset 7 are HTML files21 each of which contains data of a tennis player . This 
datasets consists of 13 fields. Figure 3 shows the result for this dataset for the 2 and 3 

dimensional spaces. We can not see clear disparity between two spaces . 
    Accuracy values are relatively low in both dimensions compared to other datasets . 

This is because there are fields whose attribute values look similar , such as, "the date 
of birth" and "professional since" both including year, and "Name" and "Coach" both 
of which are names for a person. Their meanings are different but they look similar .

5. Conclusion 

    We proposed a simple representation based on a character code chart for a field of 
the table. This representation enables to see fields in a unified view even they are from 
heterogeneous sites. Once we translate fields into the proposed representation, we can 
use any clustering algorithms to find correspondence among fields. A field is represented 
as a vector in just 2 or 3 dimensional space. This few dimensionality contrasts to the 
representation in 20 dimensional space in Li Clifton (2000). 

    For some datasets, 2 dimensional space achieves good accuracy, for other datasets, 
3 dimensional space is better. But, on the whole, results of both spaces are similar. In 
other words, newly added feature, I fl/m, does not improve accuracy. 

    We developed an algorithm that, given tables, finds correspondence fields among 
them. The algorithm simply maps two vectors if they are the nearest. In spite of 
the simplicity, the algorithm exhibits multilingual capability, domain independence, and 
high accuracy for tables on the Web due to the representation based on a code chart. 
21 http://www.tenniscenter.de/atp _loader.php?content=profile
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Figure 3: Accuracy for integration tables extracted from Dataset 7

For most cases, less than 50 instances are enough for the algorithm to achieve 100% 
accuracy. 
    Tables used in experiments have simple and flat structures. The simplicity does 
not decrease the difficulties to integrate tables because they do not have any schema 
and attribute names, and contents are written in many languages. Instead of schema 
and attribute names, presented algorithm utilized only attribute values. This shows 
that it is applicable for tables on the Web, especially those created by wrapper (semi
)automatically. 
    Obviously, there are tables which are not available for the presented algorithm. In 
fact, the algorithm failed to find the correct mapping for some tables. There are two 
types of such failures including potential ones: One is the case that seems to be impossi
ble for instance based algorithms. Consider two fields, one contains phone numbers and 
the other do fax numbers. For us human beings, it is impossible to distinguish them 
without attribute names. 

   The other one is the case that would be improved by adding other features, that 
is increasing the dimensionality, or using other methods. Especially, we can expect that 
to find common substrings in a field would drastically improve the accuracy since our 
representation ignores the order of characters in a string. For a string s and its shuffled 
strings, they are transformed into the same integer. Thus, the proposed algorithm can 
not distinguish these strings. However, we must be cautious to add ad-hoc functions to 
the algorithm because to find common substrings or patterns is one of the main target 
of the Web mining and requires high computational costs. Instead, it is an interesting 
and important future work to find another numerical future that preserves (partially)
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information of the characters' order. 

   In the current implementation, the algorithm always maps fields even if two tables 

have nothing to do with each other. Therefore, another important future work is to find 

a good threshold for distances to refute some correspondence of fields if they do not 

contain the same data.
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