
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

INSTANCE BASED TABLE INTEGRATION ALGORITHM FOR
MULTILINGUAL TABLES ON THE WEB

Ikeda, Daisuke
Computing and Communications Center, Kyushu University

https://doi.org/10.5109/13520

出版情報：Bulletin of informatics and cybernetics. 35 (1/2), pp.41-55, 2003-12. 統計科学研究会
バージョン：
権利関係：

Bulletin of Informatics and Cybernetics, Vol. 35, No. 1~2, 2003

 INSTANCE BASED TABLE INTEGRATION
ALGORITHM FOR MULTILINGUAL TABLES ON

 THE WEB

 By

Daisuke IKEDA*

 Abstract

 In this paper, we define the table integration problem which is, given two tables,
to determine the correct mapping between fields of the tables. A table is a set of
instances of a record which consists of fields. A field is a pair of an attribute name
and a sequence of attribute values of the same type. We present an algorithm
for the problem which uses only instance values of tables instead of schema and
attribute names. Given tables, the algorithm calculates two numerical features
for each field using character codes and then finds correspondence between fields
among tables. The novelty of the algorithm is that it uses the character code chart
for the language in which the contents of the tables are written. This enables
a field to be represented by only two types of features. The algorithm requires
neither an attribute value contained in all input tables nor attribute names. So,
the algorithm is suitable for tables obtained from Web data, as long as they are
written in the same language. Applying the algorithm for real Web data written
in many languages, we demonstrate that the algorithm yields the accurate results
and is robust for errors. The languages are Chinese, English, Germany, Japanese,
and Korean.

Key Words and Phrases: Database integration, Information extraction from the Web, Proba

bilistic distribution, Multilingual data, Character code.

1. Introduction

 An important feature of the Web is its diversity. There are a lot of types, purposes,
and qualities of Web pages and they are written in many different kinds of languages.
The diversity causes difficulties when we try to find, compare, and utilize wide variety
of informations on the Web.

 In the chaotic World Wide Web, however, many sites provide a series of infor
mations of the same type. For example, search facilities, which are provided at many
Web sites, return a list search results. An online news outlet publishes article pages
on the Web with the same style and structure. Many efforts have been paid to ex
tract contents from such sites semi or fullautomatically in the literatures such as
Ashish and Knoblock (1997), Kushmerick et al. (1997), Lerman et al. (2001), Yamada
et al.(2001), Yamada et al. (2002). A wrapper is a procedure which extracts the con
tents and generates tables from Web pages. We call such a table a wrapper table.
* Computing and Communications Center, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581,

 Japan. Tel: +8192642-2296, Email: daisuke@cc.kyushuu.ac.jp

42D. IKEDA

 Once a wrapper table is created, the next problem is to aggregate wrapper tables
even though they are created from different sources. We can use integrated tables as a
single database. Imagine that we have an integrated table of cars of various makers and
that you want to buy a sedan. All you need is just to search the table.

 In this paper, we define the table integration problem and present an algorithm for
the problem. The algorithm is very simple and utilizes only basic techniques, but ample
enough to integrate diverse tables on the Web written in many languages.

1.1. Related Works

 A table can be seen as a simple database. The database integration problem has
been paid many attention in the field of database over the years. However, there' are
several essential difference between databases and wrapper tables. A database is well
structured and a schema is explicitly given. Therefore, most integration algorithms are
based on or require schema such as those developed in Cohen (1998), Doan et al. (2001),
Madhavan et al. (2001), Miller (2000). On the other hand , a wrapper table does not
have explicit schema. The original sources of the tables are markuped in HTML and
do not have schema or attribute names. Therefore, methods developed in the database
field are not applicable to this situation.

 Many query based integration systems have been proposed in the field of database
such as Genesereth et al. (1997), Levy et al. (1996), Miller (2000) as well. Such a sys
tem receives a query, decomposes it into subqueries for individual database, and joins
results. Therefore, a schema of each database must be given to the system. Knoblock
et al. (1998) focused on usual Web sites instead of relational database, but the schema
of a site must be described by a user. The main problem to integrate results is to
determine whether two instances from different database are the same entity or not.
Similarity measures are proposed in Cohen (1998), Monge and Elkan (1996) based on
the edit distance, vector space model, etc.

 The recent upsurge of semistructured data poses the necessity of database inte
gration in the new context. It is the integration of databases on the Web. The purpose
seems to be similar to this paper, but the target and setting of their integration is
completely different. In Chidlovskii (2002) and Popa et al. (2002), the main target is
XML collections. A user can view HTML files whose original structured are destroyed
even if their original sources are wellstructure XML files (or relational database) . In
Yoshida et al. (2001), the target is a usual HTML file but the proposed algorithm re
quires for input files to contain attribute names and for the contents to be formatted
in table tags. However, there are many pages which looks like a list or table without
table tags and does not have attributes names. If pages have attribute names, notations
might be different from other sources.

1.2. Instance Based Algorithms

 We need an instance based integration algorithm because wrapper tables do not
have any schema and attribute names. However, very few effort have been paid for
instance based integration algorithms in the field of database. The algorithm in Doan
et al.(2001) uses attribute values to train a learning algorithm which learns the corre
spondence of schemata. SEMINT developed in Li Clifton (2000) uses partly numerical
features of attribute values. Numerical features are calculated by the number of up

Instance based table integration algorithm43

per/lower case letters, digit, punctuation, and so on. The algorithm concludes that two
fields contains the same type of data if their attribute values look like similar.

 Ideally, for an instance based algorithm, it would be the best way to find semantics
of each field first and then to match fields using semantics instead of numerical features.
For example, an algorithm judges the field containing "Daisuke Ikeda" to be the field
for the persons names and the field containing "daisukeOcc.kyushuu.ac.jp" to be one
of their mail addresses. It seems, however, to be difficult especially in multilingual
situations. Therefore, like SEMINT, it is reasonable for instance based algorithms to
treat attribute values as just strings even if some of them are digit, and utilize numerical
features of strings. One superiority of such numerical features is the independence from
the domain of target databases.

 In the fields of clustering and machine learning, there are many algorithms based
on numerical features. Numerical features are used to learn classes of fields (Lerman and
Minton (2000)) and cluster documents (Ma et al. (2003)). Lerman and Minton (2000)
introduced the syntactic token hierarchy, whose root has three children "PUNCT," "AL
PHANUM," and "HTML." And, for example "ALPHANUM" have two children, "AL
PHA" which is the class for usual letter and "NUMBER" which is the class of digits.
Kushmerick (1999) formulate the wrapper verification problem which is, given two wrap
per tables, to decide whether they contains data of the same type. If not, the algorithm
concludes that the source site changed the format. To solve the problem, Kushmerick
adopted nine features, such as digit/letter density, upper/lower-case density, punctu
ation density, length, and so on. As an an application of the algorithm, the wrapper
maintenance problem is discussed. A Web site often changes its page style, so we need to
find correspondence of fields between before and after the change. Ma et al. (2003) also
calculate a vector for each input document using the features, such as isUpperCaseLine

(all alphabetics are upper case), isFirstUpperCaseLine (each word starts with upper
case), startsWithDigit, and so on. They cluster documents with vector representation
in a domain independent manner. These algorithms using numerical features are in
fact domain independent but obviously heavily depend on languages. In described algo
rithms, only two types of letters, upper and lower case letters, are considered. However,
in Japanese for example, we have two types of letters, Hiragana and Katakana, and one
type of Chinese characters instead of upper and lower cases.

1.3. Our Contribution

 In this paper, we define the table integration problem. The problem is, given
tables, to find a mapping of fields among them. Then, we present an instance based
table integration algorithm to solve the problem. We represent a field of a table as
a vector in two dimensional space, which we call the feature space. The novelty of
the representation is its low dimensionality. This gives a unified view of heterogeneous
tables.

 SEMINT used a feature space to represent a field by a vector in 20 statistical
characteristics of a database. Only 5 of them are instance based. They are minimum,
maximum, average, coefficient of variance, standard deviation for nonblanks for sizes'
of all attribute values in a field. Using these characteristics, a field is converted to a
vector in 20 dimensional space. Then, the algorithm clusters vectors in the space with

1 A size is in byte.

44 D. IKEDA

respect to their Euclidean distance.
 Like SEMINT, the proposed algorithm also calculates a feature vector of a field.

But, in calculation, we make use of the character code chart2 of the language used in
input tables instead of sizes of attribute values. Any attribute value is treated as a string
even if it is a digit and represented by the sum of all code numbers of it. "daisuke" is,
for example in the ASCII (American Standard Code for Information Interchange) code,
represented by 64, 61, 69, 73, 75, 6B, and 65 in hexadecimal. This representation is very
natural. In fact, the programming language C does not distinguish a char (character)
and an int (integer). Therefore, any languages are acceptable for input tables if the
wrapper tables are written in the same language (character code chart) at a time.

 A character code chart is a gold mine of information. The characters of the same
type occupy a successive area. The areas for different types are completely distinct. In
the ASCII code, the digits occupy the area from 31 to 39, upper case letters from 41 to
5A, and lower case letters from 61 to 7A. Hiragana letters occupy from 3040 to 309F in
Unicode3 and Katakana from 30A0 to 30FF. Therefore, character codes are expressive
for characteristics of fields. Thus, our representation of field even in a low dimensionality
works well to integrate wrapper tables.

 If we have large amount of instances, we can find appropriate mapping using meth
ods based on probabilistic distributions of instances' occurrences. However, we can not
assume enough instances. Moreover, there is no instance which appears in both input
tables in many cases. Therefore, we use character code charts instead of the probabilistic
distributions.
 We evaluate the effectiveness and limit of the presented algorithm by experiments
on 10 tables. 9 of them are wrapper tables created from real data on the Web. The
other table is created from an XML collection. They are written in 5 languages, Chinese,
English, Germany, Japanese, and Korean.

 For most datasets, the presented algorithm achieves 100% accuracy if enough in
stances are given. In our experiments, less than 50 instances are enough. Experiments
show that the accuracy value is not affected by the contents language. Some experiments
show that a limit of the algorithm. That is, the algorithm fails to match fields whose
attribute values are semantically different but look similar. For example, in the list of
tennis players, we have two such fields "Name" which is the field for tennis player names
and "Coach" which contains also person's (coach for a player) names.

 This paper is organized as follows: First of all, we define notations and the key
representation of fields in Section 2.. Then, we present the main algorithm in Section 3..
In Section 4., we show experiments using wrapper table created from practical data
written in Chinese, English, German, Japanese, and Korean.

2. Table Integration Problem

 A table consists of instances of a record. A record instance contains different types
of data, each of which is called a field. A field is a pair of an attribute name and a
sequence4 of attribute values of the same type. For a field f , we denote the number of
all attribute values in f by (f I. For a table and any two fields f 1 and f2, I fi i = 1121.
 Table 1 is a sample of table. Each column contains data of the same type, and

2 More precisely
, a character code chart is a character encoding scheme. 3

http://www.unicode.org/
4 That is, multiple values with the same value are allowed.

Instance based table integration algorithm45

 Table 1: Sample Table
Name Phone Email

 D. Ikeda 2298 daisukeOcc.kyushuu.ac.jp
S. Hirokawa 2301 hirokawaOcc.kyushuu.ac.jp
Y. Yamada 2296 yshiro©cc.kyushuu.ac.jp

a column corresponds to a field. In this table, each field has an attribute name such
as "Name," "Phone," and "Email." Our algorithm does not require attribute names.
Attribute names in Table 1 are only for expository purpose.

 In out algorithm, an attribute value is treated as a string even if it consists of only
digits. For an attribute value e, let denotes the length of e5 and [e]i the i character of e,
where 1 < i < let.

 Without loss of generality, we can assume that the number of input tables are
restricted to be two. If three or more tables are given, first we apply an integration
algorithm to any two of them, then the iteratively application to an integrated table
and another input table leads to the integration of all input tables.

 For a table T, F(T) denotes the set of all fields in T. We do not require any
restriction on F(T1) and F(T2). We do no assume that tables such that F(T1) C F(T2)
or that F(T1) and F(T2) are comparable might be input tables. We assume that for any
field in T1, there exists at most one correspondent field in T2.

 Now, we define the table integration problem formally as follows:

 DEFINITION 2.1 TABLE INTEGRATION. The table integration problem is, given two
tables T1 and T2, to find the correspondence (fi, f2) between fi E F(T1) and 12 E F(T2),
where fi and 12 are fields containing data of the same type.

3. Algorithm

 Our algorithm receives two tables T1, T2 and a character code chart CO as an input,
where C(•) is a function from characters to integers. The algorithm first transforms all
fields into vectors in 2 or 3 dimensional space using the code chart C(•). The space is
called the feature space. Then, it calculates distances for all pairs of fields among the
tables and finds iteratively nearest pairs of fields with respect to the Euclid distance
between them.

3.1. Field Representation

 The algorithm utilizes a function fieldval() which returns the vector in the feature
space for a given field. This function is the key representation of the proposed algorithm.
fieldval() treats an attribute value e of a field as a string and calculates the sum of
character codes CO for all characters in e. We call this sum the feature value for an
attribute value. Now, we extend the domain of C from a character to a string. For a
string x, C(x) is defined to EZsl1 [x]i. Then the feature value for an attribute value e is
C(e).
5 This notation is the same as the number of all attribute values of a field f . However, the difference

 is clear from the context.

46D. IKEDA

function fieldval(f: filed, C: code chart): vector
begin

 for e in all instances of f
 do

ye := 2iel1 C([e]i)
 end
 a := average value of all ve's

 s := standard deviation of all ve's
 return (a, s)

end

Figure 1: Pseudo code to calculate the vector of a field

 The vector v for a field is v = (x, y), where x and y are the average and standard
deviation value of all feature values in the field.

 This representation exhibits characteristics of an attribute value's appearance. For
an attribute value e, ve contains informations about both lengths and character types
used in e, but omits the order of characters. Therefore, the substring information is
ignored. Table 2 shows vectors for sample instances in Table 1. Note that special

Table 2: Attribute values and their feature values by the ASCII code chart
Name CO Phone CO EmailCO

D. Ikeda 624 2298 213 daisuke@cc.kyushuu.ac.jp 2399
S. Hirokawa 980 2301 198 hirokawa@cc.kyushuu.ac.jp 2511
Y. Yamada 850 2296 211 yshiro@cc.kyushuu.ac.jp 2811

characters, such as a space and punctuation, are used as-is. For example, "D. Ikeda" is
translated as C(D)+C(.)+C(u)+C(I)+• • •+C(a) = 68+46+32+73+ • •+97 = 6246.
Note that a feature value only depends on one attribute value, it is not necessary for an
integration algorithm to see all attribute values in a field. In this sense, a vector in this
2D feature space is locally definable.

 All attribute values in a field of Table 1 are basically different from each other. In
general, however, there are fields containing some fixed optional values. For example,
a sex is either male or female and a job title is selected from some fixed number of
candidates. The standard deviation for such a field is expected to be low. It seems
to be difficult distinguish such a field from another field which contains wide variety of
attribute values but its standard deviation happens to be low.

 Here, we introduce another numerical feature for experimentally purpose. Let m
be the number of different attribute values in a field f. Then, the vector v for a field f is
v = (x, y, z), where x and y are the same as the 2D case, and z = If I /rn. We use I f l /m
instead of m as-is because the difference of m between fields are important especially
when m is too small. Note that this new feature is not defined for an attribute value.
So, a vector in this new feature space is not locally definable.
6 A code number is in decimal.

Instance based table integration algorithm47

3.2. Mapping by Distance

 The main part of the proposed algorithm is to calculate distances between vectors

in the feature space and map close two vectors among two input tables as correspondent

fields. The pseudo code for the algorithm is illustrated in Fig. 2.

procedure Tablelntegrate(Ti, T2: tables, C: code chart)
begin

 foreach fi E F(Ti)
 do

vi := fieldval(f1, C)
 foreach f2 E F(T2)

 do
v2 := fieldval(f2i C)

 d := distance between v1 and V2
h(vl, v2) := d

 end
 end

l := sorted list of all pairs (vi, v2)
 by d(= h(vi, v2)) in increasing order

 for (vi, v2) E 1
 report (fi., f2) are correspondent

 delete (PC , p2) E l if pl = v1 or p2 = v2
 end

end

Figure 2: Pseudo code of the algorithm

 For each field fi of T1, the algorithm calculate the Euclidean distance between fi
and 12 for any 12 of T2, and then selects iteratively a pair (fi, 12) providing the smallest
distance among all pairs of fields.

 As the similarity of vectors, the cosine value of the vectors. If the vecoters are
nomalized, we can see that the cosine value are equivalent to the Euclidian distance.
But, by the preliminari experiments, normalization of vectors decrease accuracy values
for matching fields. Thus, we do not adopt nomalization.

 Let N be the maximum number of attribute values for a field, n be the maximum
length of an attribute value, and m = max{1F(T1)I, IF(T2)l}. Then, fieldval() runs
in 0(nN) time. It takes 0(m2) time to calculate distances for all pairs and (m2 log m)
time to sort all distances. Therefore, the algorithm totally runs in 0(nN + m2 log m)
time.

4. Experiments

 We implement the algorithm described in the previous section in Python and apply

it to tables written in various languages. Table 3 lists all datasets with brief descriptions,

where the fourth and fifth columns show the number of instances and fields in dataset,

respectively.

48 D. IKEDA

 Table 3: Datasets used for experiments
ID DescriptionLanguage # instances # fields

 1 Search results from 4 major search engines. English 4721 3

2 Search results Yahoo! Korea.Korean 671 4
3 Search results Yahoo! China.Chinese 1773 3

 4 XML database of academics in Kyushu univ. Japanese 497 6

5 Yellow Pages.Japanese 1000 3
6 Yahoo! Auction Korea.Korean 2908 4
7 List of tennis players., German 227 13

 For the implemented program, tables written in any language are applicable if they

are encoded in UTF-87.

4.1. Search Engines

 Dataset 1 are collected from 4 major search engines, AltaVista8, Excite9, Lycoslo,
and Yahoo! 11. A page produced by a search engine contains multiple instances. An
instance consists of titles of Web pages, URLs, and short descriptions for the pages.
Therefore, the result of search result looks like a table containing 3 fields. From each
of 4 search engines, we gather about 1,000 search results (about 100 pages), and totally
4721 record instances are obtained.

 We collected 410 category names in advance from Yahoo! and the pages linked
from the top page. We use these names as query words. When we gathered search
results, we randomly chose keywords from the category names.

 For any combination of 4 search engines, we made a series of experiments as the
number of instances are increasing. We evaluate the experiments by accuracy, that is,
the number of matched field to the number all fields. The total number of fields is 18
since there are 6 combinations and each dataset has 3 fields. Table 4 shows all accuracy

Table 4: Accuracy for integration tables among any two search engines in Dataset 1

 size accuracy size accuracy

 10 16/18 60 18/18
 20 14/18 70 18/18
 30 16/18 80 18/18
 40 18/18 90 16/18
 50 18/18 100 18/18

values, where "size" denotes the the number of files. Basically, a file in this dataset

contains 10 found pages, so 10 in the size column means that 100 instances are included
for both search engines of a combination.

7 This is an character encoding scheme of Unicode .
8 http://www .altavista.com/
9 http://www .excite.com/

10 http://www .lycos.com/
11 http://www .yahoo.com/

Instance based table integration algorithm49

 The algorithm fails to match fields when the size is small and it almost succeed
for larger sizes. However, when the size is 90, the algorithm fails to match between
URL and title fields. Apparently, the difference between URLs and page titles is easy
for us because most URLs of found pages begin with "http://." The algorithm folds all
character codes of a string into one value when it calculates a feature value. This means
that the algorithm ignores any properties of substrings appearance and their appearance
orders. Nevertheless, the algorithm works very well for many data sizes.

 This dataset does not show any difference between 2 and 3 dimensional feature
spaces.
 For Dataset 1, we integrate wrapper tables created from different sites. We need

to see source files and define the correct mapping in advance. However, it is impossible
to construct such correct mapping for multilingual inputs. So, in the sequel, we use two
tables whose instances are randomly selected from the same table. In this case, it is
easy to check the correctness.

 Dataset 2 and 3 are also search result pages gathered from Yahoo! Korea12 and
China13, respectively. Both datasets have the same 3 fields of Dataset 1. Dataset 2 has
another field14

 Table 5 shows accuracy values as the number of instances are increasing, where
"size" is the number of files. Basically, each file contains 20 instances. Each size, we

Table 5: Accuracy for integration tables of Dataset 2

 size accuracy size accuracy
 1 11/20 6 20/20

 2 14/20 7 20/20
 3 18/20 8 20/20
 4 20/20 9 20/20
 5 20/20 10 20/20

 size accuracy size accuracy
 1 8/20 6 20/20

 2 12/20 7 20/20
 3 20/20 8 20/20
 4 20/20 9 20/20
 5 18/20 10 20/20

do experiments iteratively 5 times15. Now, accuracy is defined to be m/(N x 5), where
m is the number of matched fields during all 5 times iterations and N is the number of
fields in the dataset.

 The above table of Table 5 is the result when the algorithm uses 2 dimensional
feature space and the bellow one for 3 dimensional case.

 For both feature spaces, the algorithm increases accuracy values and achieves 100%.
For this dataset, the new added feature slow the converge speed.

 For Dataset 3, the algorithm shows 100% accuracy if the input file size is greater

12 http://kr .search.yahoo.com/
13 http://cn .search.yahoo.com/
14 But, the author does not know what the field is. 15 In the sequel, we make experiments in a similar manner for other datasets.

50D. IKEDA

than 3 if in the 2D feature space (see the above table of Table 6) and 2 in the 3D feature
space (see the below of Table 6).

Table 6: Accuracy for integration tables of Dataset 3

 size accuracy size accuracy

 1 12/15 6 15/15
 2 13/15 7 15/15
 3 15/15 8 15/15
 4 15/15 9 15/15
 5 15/15 10 15/15

 size accuracy size accuracy

 1 12/15 6 15/15
 2 15/15 7 15/15
 3 15/15 8 15/15
 4 15/15 9 15/15
 5 15/15 10 15/15

 Table 7 shows all points for fields in two tables randomly extracted from Dataset 3

when the file is 10.

Table 7: Points and distances for Dataset 3
 FieldPoint

 URL = (2618.95, 948.87)
 Summary = (582382.92, 222902.47)

 Title = (207781.26, 114893.04)
 URL = (2595.70, 1018.10)

 Summary = (585820.57, 266668.74)
 Title = (225597.73, 104127.19)

4.2. XML Database of Academics

 Dataset 4 consists of 497 XML files, each of which is a record instance of an aca
demic in Kyushu University. A record contains "ID" which is a unique number, email
address, phone, URL, job title, academic degree, and so on. Basically, contents are writ
ten in Japanese. An ID number is automatically generated and a job title is selected
from options, so data in these two fields are clean. On the other hand, other fields are
basically filled by hand. There are some blank fields, irregular data, and multiple values.

 Important differences from Dataset 1 are that contents are basically written in

Japanese and selective fields exist such as the job title. Table 8 shows accuracy values
as the number of instances are changing, where "size" is the number of instances.

 As the number of instances are increasing, the accuracy are increasing and converges
to the perfect when the number of instances is 50.

 In Dataset 4, several outliers of feature values are found. They are included in
the fields of email address and phone number. Although almost all attribute values
in these fields are written in the ASCII code, few of them are written in double-byte

Instance based table integration algorithm51

Table 8: Accuracy for integration tables with the same number of fields extracted from
Dataset 4

 size accuracy size accuracy
 10 20/30 60 30/30

 20 26/30 70 30/30
 30 28/30 80 30/30
 40 28/30 90 30/30
 50 30/30 100 30/30

characters, like "d a i s u k e 16." The feature value, for example, for "daisuke" is
100 + 97 + 105 + 115 + 117 + 107 + 101 = 74217, while one for "d a i s u k e " is
65348+65345+65353+65363+65365+65355+65349 = 457478 in Unicode. The values
for such outliers are very huge. Thus, both the average and the standard deviation
heavily affected by these outliers. In the above experiments, we use data cleaned by
hand. We need some algorithm that eliminates automatically such outliers.

 We compare accuracy values between 2 and 3 dimensional feature spaces (see Ta
ble 9). The convergence size is a bit smaller than 2D case. But, on the whole, the

Table 9: Experiments using 3 dimensional feature space on Dataset 4

 size accuracy size accuracy

 10 26/30 60 30/30
 20 26/30 70 30/30
 30 28/30 80 30/30
 40 30/30 90 30/30
 50 30/30 100 30/30

dimensionality does not affect accuracy values.

4.3. Yellow Pages

 Dataset 5 are HTML files each of which contains 20 instances. A record instance
has the company name in Japanese, its phone number, and its address in Japanese. We

gather randomly 50 files from Yahoo! PHONEBOOK18 and totally this dataset has
1,000 instances. The accuracy converges to 100% after the number of instances is just
20 and after that the algorithm keeps the accuracy value as 100%.

4.4. Auction Lists

 Dataset 6 are HTML files gathered from the auction site of Yahoo! Korea19. An

instance consists of 4 fields20.

18 For all alphabets and digits in the ASCII code , we have correspondent double-byte characters in
 Japanese major character code charts.

17 A code number is in decimal .
i8 http://phonebook .yahoo.co.jp/
19 http://kr .list.auctions.yahoo.com/
20 The author does not read Korean Hangeul sentences , but maybe, they are "Title," "Price," `Bids,"

 and "Time Left" like http://list.auctions.shopping.yahoo.com/.

52D. IKEDA

Table 10 shows the result for this dataset. This table shows that the accuracy values

Table 10: Accuracy for integration tables extracted from Dataset 6 in 2D (above) and
3D (bellow) feature spaces

 # acc. # acc. # acc. # acc.
 1 14/20 6 20/20 11 20/20 16 20/20

 2 18/20 7 20/20 12 20/20 17 20/20
 3 19/20 8 20/20 13 20/20 18 20/20
 4 19/20 9 16/20 14 20/20 19 20/20
 5 19/20 10 20/20 15 20/20 20 20/20

acc. # acc. # acc. # acc.
 1 14/20 6 20/20 11 20/20 16 20/20

 2 19/20 7 20/20 12 20/20 17 20/20
 3 20/20 8 20/20 13 20/20 18 20/20
 4 20/20 9 20/20 14 20/20 19 20/20
 5 20/20 10 20/20 15 20/20 20 20/20

in the 3 dimensional feature space converges into 100% faster than those in 2 dimensional
feature space and the 3D feature space shows high accuracy values for many sizes .

4.5. List of Tennis Players

 Dataset 7 are HTML files21 each of which contains data of a tennis player . This
datasets consists of 13 fields. Figure 3 shows the result for this dataset for the 2 and 3

dimensional spaces. We can not see clear disparity between two spaces .
 Accuracy values are relatively low in both dimensions compared to other datasets .

This is because there are fields whose attribute values look similar , such as, "the date
of birth" and "professional since" both including year, and "Name" and "Coach" both
of which are names for a person. Their meanings are different but they look similar .

5. Conclusion

 We proposed a simple representation based on a character code chart for a field of
the table. This representation enables to see fields in a unified view even they are from
heterogeneous sites. Once we translate fields into the proposed representation, we can
use any clustering algorithms to find correspondence among fields. A field is represented
as a vector in just 2 or 3 dimensional space. This few dimensionality contrasts to the
representation in 20 dimensional space in Li Clifton (2000).

 For some datasets, 2 dimensional space achieves good accuracy, for other datasets,
3 dimensional space is better. But, on the whole, results of both spaces are similar. In
other words, newly added feature, I fl/m, does not improve accuracy.

 We developed an algorithm that, given tables, finds correspondence fields among
them. The algorithm simply maps two vectors if they are the nearest. In spite of
the simplicity, the algorithm exhibits multilingual capability, domain independence, and
high accuracy for tables on the Web due to the representation based on a code chart.
21 http://www.tenniscenter.de/atp _loader.php?content=profile

Instance based table integration algorithm53

Figure 3: Accuracy for integration tables extracted from Dataset 7

For most cases, less than 50 instances are enough for the algorithm to achieve 100%
accuracy.
 Tables used in experiments have simple and flat structures. The simplicity does
not decrease the difficulties to integrate tables because they do not have any schema
and attribute names, and contents are written in many languages. Instead of schema
and attribute names, presented algorithm utilized only attribute values. This shows
that it is applicable for tables on the Web, especially those created by wrapper (semi
)automatically.
 Obviously, there are tables which are not available for the presented algorithm. In
fact, the algorithm failed to find the correct mapping for some tables. There are two
types of such failures including potential ones: One is the case that seems to be impossi
ble for instance based algorithms. Consider two fields, one contains phone numbers and
the other do fax numbers. For us human beings, it is impossible to distinguish them
without attribute names.

 The other one is the case that would be improved by adding other features, that
is increasing the dimensionality, or using other methods. Especially, we can expect that
to find common substrings in a field would drastically improve the accuracy since our
representation ignores the order of characters in a string. For a string s and its shuffled
strings, they are transformed into the same integer. Thus, the proposed algorithm can
not distinguish these strings. However, we must be cautious to add ad-hoc functions to
the algorithm because to find common substrings or patterns is one of the main target
of the Web mining and requires high computational costs. Instead, it is an interesting
and important future work to find another numerical future that preserves (partially)

54 D. IKEDA

information of the characters' order.

 In the current implementation, the algorithm always maps fields even if two tables

have nothing to do with each other. Therefore, another important future work is to find

a good threshold for distances to refute some correspondence of fields if they do not

contain the same data.

 References

Ashish, N. and Knoblock, C. A. (1997). Wrapper Generation for Semistructured In
 ternet Sources, SIGMOD Record, Vol. 26, No. 4, pp. 8-15.

Chidlovskii, B. (2002). Schema Extraction from XML Collections, In Proceedings of
 the second ACM/IEEE-CS joint conference on Digital libraries, pp. 291-292.

Cohen, W. W. (1998). Integration of Heterogeneous Databases without Common Do
 mains Using Queries Based on Textual Similarity, In Proceedings of the 1998 ACM

 SIGMOD International Conference on Management of Data, pp. 201-212.
Doan, A., Domingos, P. and Halevy, A. Y. (2001). Reconciling Schemas of Disparate

 Data Sources: A Machine Learning Approach, In Proceedings of the 2001 ACM
 SIGMOD International Conference on Management of Data, pp. 509-520.

Genesereth, M. R., Keller, A. M. and Duschka, O. (1997). Infomaster: An Informa
 tion Integration System, In Proceedings of the 1997 ACM SIGMOD International

 Conference on Management of Data, pp. 539-542.
Knoblock, C. A., Minton, S., Ambit, J., et al. (1998). Modeling Web Sources for In

 formation Integration, In Proceedings of the 15th National Conference on Artificial
 Intelligence, pp. 211-218.

Kushmerick, N., Weld, D. S. and Doorenbos, R. B. (1997). Wrapper Induction for In
 formation Extraction, In Proceedings of the 15th Intenational Joint Conference on
 Artificial Intelligence, pp. 729-737.

Kushmerick, N. (1999). Regression Testing for Wrapper Maintenance, In Proceedings
 of the 16th National Conference on Artificial Intelligence (AAAI-99), pp. 74-79.

Lerman, K., Knoblock, C. A. and Minton, S. (2001). Automatic Data Extraction from
 Lists and Tables in Web Sources, Adaptive Text Extraction and Mining Workshop.

Lerman, K. and Minton, S. (2000). Learning the Common Structure of Data, In
 Proceedings of the 17th National Conference on Artificial Intelligence (AAAI2000),

 pp. 26-30.
Levy, A., Rajaraman, A. and Ordille, J. (1996). Querying Heterogeneous Information

 Sources Using Source Descriptions, In Proceedings of the 22nd International Con
 ference on Very Large Data Bases (VLDB), pp. 251-262.

Li, W. -S. and Clifton, C. W. (2000). SEMINT: A Tool for Identifying Attribute Cor
 respondences in Heterogeneous Databases Using Neural Networks, Data and Knowl

 edge Engineering, Vol. 33, No. 1, pp. 49-84.

Ma, L., Shepherd, J. and Nguyen, A. (2003). Document Classification via Structure
 Synopses, In Proceedings of the 14th Australasian Database Conference, pp. 59-65.

Madhavan, J., Bernstein, P. and Rahm, E. (2001). Generic Schema Matching with Cu

Instance based table integration algorithm55

 pid, In Proceedings of the 27th International Conference on Very Large Data Bases
 (VLDB), pp. 49-58.

Miller, R. J., Haas, L. M. and Hernandez, M. A. (2000). Schema Mapping as Query
 Discovery, In Proceedings of the 26th International Conference on Very Large Data

 Bases (VLDB), pp. 77-88.

Monge, A. E. and Elkan, C. P. (1996). The Field Matching Problem: Algorithms and
 Applications In Proceedings of the Second International Conference on Knowledge

 Discovery and Data Mining, pp. 267-270.

Popa, L., Velegrakis, Y., Miller, R. J., Hernandez, M. A. and Fagin, R. (2002). Trans
 lating Web Data, In Proceedings of the 28th International Conference on Very Large
 Data Bases (VLDB), pp. 598-609.

Yamada, Y., Ikeda, D. and Hirokawa, S. (2001). SCOOP: A Record Extractor without
 Knowledge on Input, In Proceedings of the Fourth International Conference on

 Discovery Science, Lecture Notes in Artificial Intelligence, Vol. 2226, pp. 428-487.

Yamada, Y., Ikeda, D. and Hirokawa, S. (2002). Automatic Wrapper Generation for
 Multilingual Web Resources, In Proceedings of the 5th International Conference on
 Discovery Science, Lecture Notes in Computer Science, Vol. 2534, pp. 332-339.

Yoshida, M., Torisawa, K. and Tsujii, J. (2001). A Method to Integrate Tables of the
 World Wide Web, In Proceedings of the 1st International Workshop on Web Docu

 ment Analysis (WDA 2001), pp. 31-34.

Yoshida, M. (2002). Extracting Attributes and Their Values from Web Pages, In
 Proceedings of the ACL-02 Student Research Workshop, pp. 72-77.

Received November 19, 2003
Revised March 10, 2004

