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DIMENSION ESTIMATOR FROM A CHAOTIC 

              SYSTEM

       By 

Atsushi KAWAGUCHI*

                                Abstract 

       In this paper, we prove the consistency of the correlation dimension estimator 

    proposed by Kawaguchi(2002) for a deterministic chaotic system. 
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1. Introduction 

    We consider trajectory {Xt}t=1,2,...,N generated by dynamical system 

Xt = F(Xt—i,Xt-2, ... ,Xt—d),(1.1) 

where F : Rd R is unknown nonlinear function, d is unknown positive integer called 
embedding dimension. This system may be represented as 

                           Yt = F(Yt_1), 

where F(x) = t (F(x) , x1,... , xd—i) for x = t (xi, x2, ... , xd) and Yt = t (Xt , Xt— 1 
, Xt_d+1). Assuming Yt E S2 for closed fi C Rd and also assuming the ergodicity of 

{Yt}, we formulate the system as (Il, .F, p, F), where .F is the completion of the Borel 
a-field with respect to it, and p is an invariant measure, i.e. p(F—'A) = p(A) for A E 

       C(r) = f fI(IIY1 — Y211<r)dit(Y1)41(Y2), 
                            2xc2 

where I denotes an indicator function and 11 • 11 is a norm, Grassberger and Procaccia 

(1983a,b) defined the correlation dimension as 

log C(r)  
v = lim l

og r 

if the limit exists. The correlation dimension was introduced as a measure for repre
senting the fractal dimension of the attractor of {Yt}. Estimating the dimension of an 
attractor of chaotic dynamical systems can provide useful, even vital information for 
understanding the dynamical systems (see for example, Abraham et al. 1989) . 
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 If  it is finite, it may be normalized to total mass 1 and may be interpreted as the 
limiting probability distribution of {Yt}. Thus, it is possible to formalize concepts such 
as the consistency of an estimator even though it is deterministic. The references on 
randomness of dynamical systems include Denker and Keller (1986), Jensen (1993), and 
Serinko (1994) . 

    Our goal of this paper is to show the consistency of the estimator of the correlation 
dimension proposed by Kawaguchi (2002) which is represented in Section 2. 

    Serinko (1994) provided a consistent estimator of the correlation dimension as fol
lows. Putting 

                                   —1 N 
CN(r,Y) =2 I(IIYi —YII < r) 

                                     i<j 

and r(1") = rmN+1—j, j = 1, 2, ... , [mN] where some 0 <ro< 1 and mN = 

a (1 + iiogN)for any 0 < s < 1 and {rN} that tends to 0 as N—*oo, the estima 
tor is given by 

[mN][mN] 
v(s) = E (uj — u) log CNHmN),Y)E (uj — u)2, (1.2) 

    j=1j=1 

where uj = logr?MN) and u = [mN]-1 >i = l uj. 
    Serinko (1994) showed, under some conditions on dynamical system, which include 
the uniform mixing condition known as the weak Bernoulli property, that there exists a 
sequence of reals {bN}7v()                   __1 (see below) that tends to 0 as N goes to infinity, such that 
for any other sequence of real {rN}~,_1 that tends to 0 no faster than {bN}, and E > 0, 
then 

                 Nlm µ(IvN)—vI >E) =0. 
Note that Serinko (1994) also gave rN as rN = N 2(d--------+Eo) for some Eo > 0 in the corollary. 
From a practical point of view, Serinko's estimator does not have an obvious advantage 
over the usual leastsquares estimator, since the mN depend on unknown parameter Eo, 
and has no clear practical value. Our estimator has the same form as Serinko's estimator 
except for mN. Thus, we take the same approach as Serinko (1994) for the proof of the 
consistency. 
   This paper is organized as follows. We introduce the estimator and give the theorem 
in Section 2. In Section 3, the consistency of the estimator is proved. 

2. The estimator and theorem 

   We recall the estimator of correlation dimension proposed by Kawaguchi (2002) . 
Let 

           1 N     CN2(r,Y) = (3)I(IIYi-Yjli <r,IIYi-YkJI <r). 
i�j,i�k,j#k
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For some given 0 < s < 1, and rip > 1, putting r(i N) = ro sMN — 2 +j , (."1 = 
 0,1,  ...  ,  LN  =  {  -])  where 

           MN = max{m E Z>o; CN2(rm,YN) # 0, for r,,,, = rosm},(2.1) 

the estimator of v is given by 

LNLN 
vN =(uj—~c)logCN(r?MN),Y) E(uj— u)2,(2.2) 

j=oj=o 

where uj = logrrN) and u _ (LN + 1)-1 ENo Ui 

    The consistency of this estimator is given in next theorem. 

    THEOREM 2.1. Under the assumptions that are given in the following section, it 

follows that for any E > 0, 

                        firn p(IvN—vI > E) = 0. 

3. Proof of theorem 2.1 

    At first, we decompose the estimator as follows. 

LEMMA 3.1. (Serinko, 1994) 

vN=v+dN+eN, 

where 

                       LN 
      dN = 1  E (1ogc(rM) — vlogr(uj —Ouu 

                          9=0 

                       LN 

      eN =1E (iog CN(rM, Y) — log C(r~MN))) (uj — u), and 
                  Suu j =0 

LN 

Suu = E(uj —11)2. 
j=0 

    Next, we prove that dN tends to 0 as N --+ co in probability. We assume the 

following assumption. 

    ASSUMPTION 3.2. For any r > 0 and E > 0, 

                   Nooµ(CN2 (r, Y) > E) = 1. 

    LEMMA 3.3. Under Assumption 3.2, for MN in (2.1), 

lim MN=00) = 1. 
                                               N-->oo
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    PROOF. For any integers m and  No, let 

A(rn, No) ={w E Sl; CN2 (rt, Y) > e, 
                    for all N > No, 1= 0,1, ... ,m, and 6 > 0 where r1 = rosl 1. 

Then, A(m, No) C {MN > m for N > No}, and therefore 

                                 (limMN >m)>µn A(m, No) 
No=1 

                            = lim µ(A(m, No)). No-400 

From Assumption 3.2, the proof is completed. 

    LEMMA 3.4. Under Assumption 3.2, for any e > 0, 

                         N—>ooµ(IdNI > e) = 0. 

    PROOF. First, from the definition of the correlation dimension, 

log C(r) — v log r 0
'(r0).             log r 

Thus, there exists a positive real A(r) - 0 as r 0 such that for sufficiently small 
r>0, 

I log C(r) — v log rI < A(r) I log rI. 
   Next, it follows by the CauchySchwarz inequality that 

   LN2 
      IdNI <1C(r) — vlogrM(u3 —21)2 {iog } 

     ,=01;=0 
                           LN 

<1----1E {AHmN))logrrN)}2 
                 Suu j _o 

                                                LN 
<1----x max A(r~MN)) x E {logrM}2. 

                  VSuu0<j<LN , 

Serinko(1994) gave 

Suu =2 LN (LN + 1) (LN + 2) (log s) 2. 
Thus, from Lemma 3.3 and the definition of LN, 

Suu = Op(MN2). 

On the other hand, from Lemma 3.3 

       LN2 

                  {logr~MN)}= Op(MNr), 
                      \;=0
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and 

 µ (liln A(r(MN)) = 0) = 1.                            N-+ co 7 

Therefore, 

                        LN
A(rM)x {iogrM}2                                                     = 0 = 1       N->ooSuu 0<j<LN1 j-0 

and 

µ (lim I dN I = 0) = 1.                                                N--^oo 

The convergence with probability 1 implies the convergence in probability, therefore the 

proof is completed. 

   Next, we prove that eN tends to 0 as N -+ oo in probability. In order to state 

the next theorem, we give some notations and assumptions. Let a = {A1, A2, ... , An,,} 
and /3 = {B1, B2, ... , Bn } be finite measurable partitions of ft From these one may 
construct the following partitions: 

1. aV)3={AnB; AEa, BE,Q} 

  2. F-la = {F-1A; A E a} 

  3. aT = F(-')a V F(-r-1>a V • • • V F(-s+1)a V F(-S)a (r, s E N, s.t. r < s), 

where F(k) is k times convolution of F. 
    Let Yrs denote the o--algebra generated by aT (r, s E N, s.t. r < s), and .F6 denote 

the smallest o--algebra which contains all of the .F7 (r, s E N, s.t. r < s). 

DEFINITION 3.5. (Generator) 

                       a is generator .. = F 

   DEFINITION 3.6. (Weak Bernoulli) 
   A measurable partition a is said to be weak Bernoulli for dynamical system if 

13k = sup E E I µ(A n B) — µ(A)µ(B)I 
r,sEN AEoa BEa*+k+k 

goes to zero as k -+ co. The 13k's are called the mixing coefficients. 

   We assume the following assumptions for the dynamical system (Sl, F, p, F) . 

   ASSUMPTION 3.7. (Cl, F, µ, F) has the measurable partition a which is weak Bernoulli 
and generator. 

   ASSUMPTION 3.8. (Si, F, p, F) is such that the mixing coefficients satisfy 

a R
k = Q(k—(1+E)) 

for some 5>0 and 0<E<1.
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   Let  n(1)(r) = IIA(Br(Yi)) — µ(Br(Y.S1)))II2, where Br(y) _ {x; IIx — YII <— r} and 
YY) = E[Yj 1 ajj+c], j = 1, 2, .... Let -(l) = supr rl(/) (r). 

ASSUMPTION 3.9. (52, .F, µ, F) is such that 

77(02 = 0(l—(1+-r)) 

for some -y > 0 and -y/(1 + 'y) > e. 

   Let 1pk') (r) = III(IIYi — Yi II < r) — I(IIYT) — Y II <0113 for i, j = 1, 2, • • • and 
k = I i — j I , and 'b(k1) = sup, 0(:)(r). 

    ASSUMPTION 3.10. (S), .T, µ, F) is such that for any sequence of reals {cn}°O-0 sat 
fy9 isanlim.~~c,~ = cooo and cn = o(n2), onehas 

n-1 

                                  

_ j_kCn) 2 = o(n). 
                                     k=0 

    Let bN =(1)2(Y----------+Eo) , where some 60 > 0. 

           N 

   THEOREM 3.11. (Serinko, 1994) 
    If (0, .F, µ, F) satisfies Assumption 3.7 through 3.10, then whenever v exists, 

                                 b 
                    N~ooN = 0 and lim supN lim r< o0 N->oo TN 

imply 
                      CN(rN, Y) — C(rN)  

         NmµC(rN)>e=0. 
    ASSUMPTION 3.12. For some 60 > 0 and some 8 < d+eo , there exists No E N such 

that for any N > No, 
S log N  M

N > 211og sIa.e.. 

    LEMMA 3.13. Under Assumption 3.12, let rN = rosMN, then 

               rllrrlrN = 0 and lim supbN                                       p— < oo a.e.. N->oo TN 

    PROOF. For the former part of lemma, we obtain immediately from Lemma 3.3. 
Setting r'N = N2(d+eo), Serinko(1994) proved 

                          lim supbN < 00, 
N-* co                                                     ' 

Thus, the last part of lemma is proved if we prove rN > r'N a.e. for any N > N0. From 
Assumption 3.12, we have 

          loglogrN = torosMN 
riNN2(d+Eo) 

                   = log ro + MNlog s +----------1log N 
                               2(d + Eo) 

                 > log r0 + (_8+d+------eo2log N > 0.
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Therefore, the proof is completed. 

    LEMMA 3.14. Under the condition of Theorem 3.11 and Assumption  3.12, for any 
>0, 

                    Nlmµ(IeNI > E) = 0. 
    PROOF. It follows by the CauchySchwarz inequality that 

                                                           2 NlLN 

    IeNI <S uuE {log CN (rM, Y) — logC(r~MN))}E(uj —U)2     1j=0J j-0 
1-------- \L

N + 1 max log CN(r~MN),Y) — logC(r~MN))I 
    Vouu,0<j<LN+ 

          {1(log-212 {(logs)2LN(LN + 2) 
x max !log CN(r.(jMN)Y) — logC(r.(iMN))I 0<j<LN 

Moreover, 

µ112(log s)2LN(LN + 2)x0max llogCN(r~MN),Y) — log CHAIN)) > 

   µ2       ({(logs)2LN(LN + 2)  > 1 
                    +µ max log CN(r.YMN),Y) — log C(r.VMN))I > . 0<j<LN 

From Lemma 3.3, 

           lµ12 ({(logs)2LN(LN + 2)> 1= 0. 
For rN satisfied condition of Theorem 3.11, 

p, (flog CN (rN, Y) — log C(rN)i> E) = µ (log C (r'Y) >E)                               C(rN) 

                                 µlogCrr'Y) >e+µ(logC~rN'Y) < —E       CoN)C(rN) 

      (Civ(rNY)>ee)+CN(rN,Y) < e—E      C(rN)C(rN)  

      (Cr(rY)C(rN) > ee—1)+µ (_CNfrNY) + C(rN) >1—e—E      ()( N)). 
This tends to 0 as N -+ oo from Theorem 3.11. Therefore, from Lemma 3.13, 

         lim µ max (logCNHMN),Y) — logCHMN)) > = 0. 
N-400 0<j<LN 

Hence, the proof is completed.



34A. KAWAGUCHI

    PROOF OF THEOREM 2.1. 
   From Lemma 3.1, for any  s > 0, 

 µ(I  vlv — VI > 6) < ANN' > E/2) + i (IeNI > /2). 

Hence from Lemma 3.4 and Lemma 3.14, 

                    limp(IvN — vI > e) = 0. 

The proof of Theorem 2.1 is completed.
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