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Abstract

In this paper, we prove the consistency of the correlation dimension estimator
proposed by Kawaguchi(2002) for a deterministic chaotic system.
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1. Introduction

We consider trajectory {X;}:=1,2,..,~ generated by dynamical system
Xt = F(Xt—lth—27"')Xt—d)! (1’1)

where F : R? — R is unknown nonlinear function, d is unknown positive integer called
embedding dimension. This system may be represented as

Y: = F(Yt—l),

where F(x) = *(F(x),z1,...,Ta—1) for x = *(z1,23,...,7q4) and Y; = Y( Xz, Xi—1,

vy Xt_ay1). Assuming Y, € Q for closed @ C R? and also assuming the ergodicity of

{Y:.}, we formulate the system as (2, F, u, F), where F is the completion of the Borel

o-field with respect to u, and p is an invariant measure, i.e. u(F~*A4) = u(A) for A € F.
Putting

co)= [ /ﬂ 1= yell < )duty)duty),

where I denotes an indicator function and || - || is a norm, Grassberger and Procaccia
(1983a,b) defined the correlation dimension as

=0 logr
if the limit exists. The correlation dimension was introduced as a measure for repre-
senting the fractal dimension of the attractor of {Y,}. Estimating the dimension of an
attractor of chaotic dynamical systems can provide useful, even vital information for
understanding the dynamical systems (see for example, Abraham et al. 1989).
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If p is finite, it may be normalized to total mass 1 and may be interpreted as the
limiting probability distribution of {Y,}. Thus, it is possible to formalize concepts such
as the consistency of an estimator even though it is deterministic. The references on
randomness of dynamical systems include Denker and Keller (1986), Jensen (1993), and
Serinko (1994).

Our goal of this paper is to show the consistency of the estimator of the correlation
dimension proposed by Kawaguchi (2002) which is represented in Section 2.

Serinko (1994) provided a consistent estimator of the correlation dimension as fol-
lows. Putting

-1 N
Cnlr,Y) = (];’) S I(IY: - Y5l < 7)

i<j
and 1-;."”") = pZmNtl=i g o 1,2,...,[mnN] where some 0 < ry5 < 1 and my =
3 (1 + l%fgr—s") for any 0 < s < 1 and {ry} that tends to 0 as N — oo, the estima-
tor is given by
s [mn] () [mn]
N = Y (uy —D)ogCn (™), Y) [ 3 (u; - )7, (1.2)
=1 Jj=1

where u; = log rg-M”) and @ = [my]™? ZE’;Q’} uj.

Serinko (1994) showed, under some conditions on dynamical system, which include
the uniform mixing condition known as the weak Bernoulli property, that there exists a
sequence of reals {by}3P—, (see below) that tends to 0 as N goes to infinity, such that
for any other sequence of real {ry}%_, that tends to 0 no faster than {bx}, and € > 0,
then

A}i—er“ (]171((?) -v| > e) =0.

Note that Serinko (1994) also gavery asry = N ~ %@+ for some €0 > 01in the corollary.
From a practical point of view, Serinko’s estimator does not have an obvious advantage
over the usual least-squares estimator, since the my depend on unknown parameter &g,
and has no clear practical value. Our estimator has the same form as Serinko’s estimator
except for my. Thus, we take the same approach as Serinko (1994) for the proof of the
consistency.

This paper is organized as follows. We introduce the estimator and give the theorem
in Section 2. In Section 3, the consistency of the estimator is proved.

2. The estimator and theorem

We recall the estimator of correlation dimension proposed by Kawaguchi (2002).
Let

N -1 N
)= (3) 3 HYe- Yol < ¥e- Yal <)
i#j, 1%k, j#k
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M .
For some given 0 < s < 1, and ro > 1, putting 7"§MN) = rosMN_[_z&]H, U=
0,1,...,Ly = [¥2]) where
My = max{m € Zso; Cn2(Tm,Yn) #0, for rm =7105™}, (2.1)
the estimator of v is given by
LN M LN
oy = (u; — @) log Cn(ri™,Y) [ Y (u; — )%, (2.2)
=0 =0

where uj; = logrg.M”) and & = (Ly +1)7! Z;‘:”O uj.
The consistency of this estimator is given in next theorem.

THEOREM 2.1. Under the assumptions that are given in the following section, it
follows that for any € > 0,

lim p(|oy —v|>e€) =0.
N—ooo

3. Proof of theorem 2.1

At first, we decompose the estimator as follows.

LEMMA 3.1. (Serinko, 1994)
vy =v+dy +en,

where

L~
dv = —S—l— Z (logC(r§MN)) - VlogrgM”)) (uj — @),
Ly

ev = g (logOn (™™, ¥) ~ log C(r{™™))) (w; ~ @), and

j=0
Ly

Suu = »_(u; — )°.
~

Next, we prove that dy tends to 0 as N — co in probability. We assume the
following assumption.

ASSUMPTION 3.2. For anyr >0 and e > 0,
lim p(Cna(r,Y)>e) =1
N—oo
LEMMA 3.3. Under Assumption 3.2, for My in (2.1),

p (Jim, M = 00) =1,
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PRrOOF. For any integers m and Ny, let
A(m, No) ={w € Q; Cna(r, Y) > ¢,
for all N > Ny, 1=0,1,...,m, and € > 0 where 1 = ros’}.
Then, A(m,Ny) C {My > m for N > Ny}, and therefore

u(I}gIleNZm) > #(ﬁ A(m>No)>

No=1
= Jim u(A(m, No)).
N(] —o0

From Assumption 3.2, the proof is completed.
LEMMA 3.4. Under Assumption 8.2, for any e > 0,
Jim_p(ldy] > €) = 0.
PROOF. First, from the definition of the correlation dimension,

logC(r) —vilogr
logr

-0, (r—0).

Thus, there exists a positive real A(r) — 0 as 7 — 0 such that for sufficiently small
r>0,

|log C(r) — vlogr| < A(r)|logr|.
Next, it follows by the Cauchy-Schwarz inequality that

LS (M) 2 | < 212
ldv| < 5o Z{logC(rj ) —vlogr; } Z(uj—u)

1| & M)y (Mn) 12
< N Z{A(rj )logr; }

7=0

Ln
1 (M) (Mn)\?
< T P OSI?EJISN A(r;7N) x Z {logrj } .

7=0
Serinko(1994) gave
w= %LN(LN +1)(Ly + 2)(log s)*.
Thus, from Lemma 3.3 and the definition of Ly,

VSuu = Op(My ).

On the other hand, from Lemma 3.3

Ly R \
5* (g0} = 0,00,

7=0

Su
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and
o (Iéi_r)nooA(rgMN)) = 0) =1
Therefore,
Ly 2
and

o (vl =1) =1

The convergence with probability 1 implies the convergence in probability, therefore the
proof is completed.

Next, we prove that e tends to 0 as N — oo in probability. In order to state
the next theorem, we give some notations and assumptions. Let @ = {41, Aa,...,Am}
and 8 = {B1,B>,...,Bn} be finite measurable partitions of . From these one may
construct the following partitions:

l.av={ANB; A€a, Be g}
2. Fla={F14; A€a}
3. a} =FaqVvF"lgyv...vFHtgq v F(-%a (rseN, st.r<s),

where F(¥) is k times convolution of F.
Let F$ denote the o-algebra generated by af (r,s € N, s.t. r < s), and F§° denote
the smallest o-algebra which contains all of the F? (r,s € N, s.t. 7 < s).

DEFINITION 3.5. (Generator)
o is generator <= Fg° = F

DEFINITION 3.6. (Weak Bernoulli)
A measurable partition a is said to be weak Bernoulli for dynamical system if

Be=sup Y > |u(ANB)—-p(A)u(B)

rs€EN A€ag BEQ:I:'”‘
goes to zero as k — co. The fB¢’s are called the mixing coefficients.
We assume the following assumptions for the dynamical system (Q,F, u, F).

AsSSUMPTION 3.7. (Q, F, u, F) has the measurable partition o which is weak Bernoulli
and generator.

AssUMPTION 3.8. (Q,F, i, F) is such that the mizing coefficients satisfy
677 = O(k~1+9)

for some § >0 and0<e < 1.
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Let 10 (r) = [|lu(B.(Y;)) — u(B,(Y{ )3, where B.(y) = {x;|lx - y|| < r} and
Yg-l) = E[Y;lei"], j=1,2,---. Let 79 = sup, n@(r).
AssuMmPTION3.9. (Q, F, u,F) is such that
0z = o(1=(1+7)
for some vy > 0 and v/(1 +7) > €.
Let () = I(I1Y: = Y,ll <) = 1Y = Y| < r)|f for 4,5 = 1,2, - and
k=i - j|, and 9" = sup, ()( )-

ASSUMPTION 3.10. (Q,F,u,F) is such that for any sequence of reals {c,}2, sat-
isfying im,_, . ¢, = o0 and ¢, = o(nz), one has

k=0
1
Let by = (#7) ®*+°0, where some g9 > 0.

THEOREM 3.11. (Serinko, 1994)
If (Q, F, u,F) satisfies Assumption 3.7 through 3.10, then whenever v ezists,

] b
hm rn=0 and limsup = < oo
—o0 N—oco TN

imply

i

Cn(rn,Y) — C(TN)’ )
>e) =0.
(l C(rn)

ASSUMPTION 3.12. For some gg > 0 and some § < d+€ , there exists Ng € N such
that for any N > Ny,

dlog N
2}log s|
LEMMA 3.13. Under Assumption 8.12, let ry = rosM¥ | then
lim rvn =0 and limsup b—N < o0 a.e..
N—=oco TN

Proor. For the former part of lemma, we obtain immediately from Lemma, 3.3.
Setting 7'y = N Za+<0) AT , Serinko(1994) proved
b
lim sup i < 00,
Nooo T'N

Thus, the last part of lemma is proved if we prove rny > r'y a.e. for any N > Np. From
Assumption 3.12, we have

N rosM~y
log— = log———
TN N T@eqy

= logro+ Mylogs+ log N

1
2(d + €o)

1 1
1 4+ ——) zlogN >0.
> ogro+( +d+ )2 ogN >
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Therefore, the proof is completed.

LEMMA 3.14. Under the condition of Theorem 8.11 and Assumption 3.12, for any
>0,

Aim_pu(len| >€) =0.

ProorF. It follows by the Cauchy-Schwarz inequality that

Ly S [In
el < g \)Z{logcw(ri-M”’,Y)—logc(r§M">>} \Jz(uj_a)z

uu j=0 =0
1 (MN) _ (MN)
m\/LN + 10311}2.}5” 1log Cn(r;"",Y) —log C(r; )\

IA

{ Tli(log $)2Ly(Ly + 2)}—5

(Mn) _ (Mn) l
x max jlogCN(rJ ,Y) — log C(r{M™))

Moreover,

1
1 _i
p({ﬁ(log $)2Ly(Ln + 2)} x Joax }log CN('I‘;MN),Y) — log C(’”;-MN))‘ > 5)

< ({11—2(logs)2LN(LN +2)}_5 > 1)

(Mn) _ (M)
+p (OSI??L(N ’log Cn(r;"",Y) —log C(r; )| > 5) .

From Lemma 3.3,

1
: 1 2 2 -
1\}1_13100;1 ({E(logs) Ln(Ly + 2)} > 1) =0.
For rn satisfied condition of Theorem 3.11,

logC—N(—TN—’)Y—)I > E)

1 (log Crr(rn, ¥) — log C(ra)| > &) = p ( i

_ Cn(rn,Y) Cn(rn,Y)
= u (log—m)— >e) + <10g—T(;-N—)—— < —e)

(280 ) o (S0 )
(S0 Clew) , oy (<l DHC) )

This tends to 0 as NV — oo from Theorem 3.11. Therefore, from Lemma 3.13,

N-ooo

: (Mn) N7y _ (Mn) l -
lim p(osnjlg)lcw ilogCN(rj ,Y) —log C(r;""") >€> 0.

Hence, the proof is completed.
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PROOF OF THEOREM 2.1.
From Lemma 3.1, for any £ > 0,

ullon — vl > €) < plldwl > £/2) + pllen| > /2).
Hence from Lemma 3.4 and Lemma 3.14,
]\}gnoop,(lllN -yl >e)=0.

The proof of Theorem 2.1 is completed.
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