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FOR PARAMETERS IN NONLINEAR MODELS 

    OF REPEATED MEASUREMENTS

                  By 

Takeshi NAGAHISA* and Hiroto HYAKUTAKEt

                            Abstract 

  It is interesting to compare populations whose samples are obtained by repeated 

measurements. In this paper, we wish to construct simultaneous confidence inter

vals for specified parameters in nonlinear models for repeated measurements. The 

confidence intervals are derived approximately by the first order linearization. A 

numerical example is also given.
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1. Introduction 

    Let yir = (yir,i, • • • , yir,p)' be a p dimensional observation from the i-th population 
(i = 1, • • , k, r = 1, • • • , n) . The element yir, j is measured at a point t j for the r-th 
individual from the i-th population; yir is called the repeated measurement data. For 
each element yir, j , we assume 

yir,j = .f (tj i f3ir) + Eir,j ,(1.1) 

where f is a known (nonlinear) function, Eir, j is the error, and Sir = (I3ir,i , • • , ,13ir,q )' is 
unknown parameter (q < p). For example, such data arise in pharmacokinetics, growth 
processes, and so on; see Davidian and Giltinan (1995) or Vonesh and Chinchilli (1997). 
Let Pt, /3ir) = (.f (ti; Oir)) ... , .f (tp; Oir))', then 

yir = .f (t; I3ir) + sir,(1.2) 

where eir = (Eir,i, • . , Eir,p)'• Let /ir = d(qi, bir), where oi is a vector of fixed effects 
and bir is a vector of random effects. We assume that d(4)i, bir) = dii+bir, that Eir'S are 
independent and have the multinormal distribution with mean 0 and covariance matrix 
o-olp, that is N(0, aoIp), and that bir's are independent and have N(0, D). The error 
Eir and the random effect bir are independent. Then we wish to construct simultaneous 

confidence intervals for a'(1) for any a(; 0),where 4 = (4, • • , ok)' 
    For analysis of nonlinear repeated measurements, recently, Pinheiro and Bates 

(1999) reviewed statistical analysis (estimation algorithm and analysis of variance) and 
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Ogliari and Andrade (2001) consider models in randomized block design. The purpose 
of this paper is to construct confidence intervals of linear combinations of parameters to 
know the difference of treatment effects. In Section 2, estimators of the parameters are 

given by the first order linearization and the approximation for  Scheffe type confidence 
intervals of the specified parameters are constructed. In order to derive the approxi
mated maximum likelihood estimaters, we develop the estimation methods by Vonesh 
and Carter (1992), see e.g. Chapter 6 of Davidian and Giltinan (1995). A numerical 
example by using the CO2 uptake rate data discussed in Potvin, Lechowicz, and Tardif 

(1990) is given in Section 3.

2. Estimation 

    In this section, we give the estimators of the parameters and their distributions 
approximated by the first order linearization. Scheffe type simultaneous confidence 
intervals on a' c¢ are also given. 

2.1. Linearization 

    By the first order Taylor expansion at bir = 0, the model f (t; f3ir) with Sir = 
~i + bir in (1.2) is approximated by 

f (t; Sir) "' f (t; 0i) + Zir(t, *ii)bir,(2.1) 

where Zir(t, i) =  (t; d)i). Next, by expansion of f (t; cki) in (2.1) at Oi = ~b, we 

have 

f (t; qi) "; gi(t, O, ) + Xi(t, cki*)eki,(2.2) 

where Xi (t, cPi*) = (t, Oi*) and g Oi*) = f (t; 0i*) — Xi (t, cki* )Y'i* . If Zir(t, 0i) 

is approximated by Zir(t, cki*), then the model (1.2) is approximated by 

yir gi(t, Oi*) + Xi(t, 0i*)(ki + Zir(t, c5i*)bir + eir,(2.3) 

which is the linearization of (1.2). Let yi = (yi1, • . • , yin)', then 

yi •; gi(t, `Yi*) + + Zi(t, `I'i*)bi + ei,(2.4) 

where bi = (bi1, ... , binY, ei = (eii, ... , einy, i(t, *) = 1„ ®gi(t, ~i), Xi(t, `f') _ 
In ® Xi(t i*), in is an n x 1 vector of one's, and 

Zii (t, Oi*) 0 ... 0 
                        0Zi2(t, (1)i*) ... 0 

Zi(t, Oi*) =. 

                     00 • • • Zin , Oi* ) 

Denote the block diagonal matrix like Zi (t, (/)i*) as Diag(Zii (t, Oi* ), • • • , Zin (t, Oi*) ) 
hereafter.
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2.2. Confidence Intervals 

   First of all, we give estimators of unknown parameters, modifying the method 
developed by of Vonish and Carter (1992). By the linearization (2.4),  yi is distributed 
as N(gi(t, `Yi*)+Xi vi (0-0, D, t, 4Yi*)), approximately, where Vi(oo, D, t, (Pi*) _ 
Zi(t, ~i) DZi(t, Oi*)' +crgI , and D = Diag(D, • • • , D). If cro and D were known, then 
the approximated log likelihood is given by 

L(4), b) = const. +{y  g(t, ck*)  Xck  Zb}'{y  g(t, q5*)  Xg5  Zb} + b'~^-16, 

0 where X = Diag(X1(t, 41*), • • • , Xk (t, (Pk*)), Z = Diag(Zi (t, `f'1), ... , Zk(t, Ok*)), 
 = Diag(D, ... , D), 9(t, 4)*) = W14,01.)/ ... , 9k(t, cbk*))', and c* = (45i*, • • • , (14*)' 

Hence the maximum likelihood estimators (MLE) of = (44, • • . , c/4)' and b = (WI, • • • , bk)' 
are given by 

                  = (X'V1X)1X'V-1[y  g4,0 .)](2.5) 

and 

b = ['1'-1 + Z(t)~Z(t)]-1 [y  9(t, 4)*)  X ],(2.6) 

0 respectively, where V = Diag(V1(0-o, D, t, 0.), • • , Vk (ao) D, t, O*)). Applying the ma
trix identity 

      O 

              [W-1+ 4Z(t,&)FZ(t,q5)]_1  = WZ(t,*)V-1 

                          0 see page 78 of Davidian and Giltinan (1995), (2.6) can be written more simply as 

                 = 'YZ(t, 4*)V —1 [y  9(t, 4*) — XQ]. (2.7) 

   The algorithm for the estimation is follows: 

 (i) Compute the ordinary least squares estimatei)= (Xi(t,0i*)'Xi(t, 
(yi  gi(t, d)i*)) for the initial values of 4)i. 
(ii) Let b(o)= (ZoZo)-14(Y  go  X0~(o))and 

2 1(o)(o),(o) (o) =a
°nkp  nkq (yX°4)Zob )1(Y  X°4)—Zob ), 

where Z0 = Z(t,(o)), 90 = 9(t,cp(o)), and X0 = X(t,4)(o))• 
(iii) Vonesh and Carter (1992) gave an estimator of D, but their estimtor is not always 
positive definite. So, we propose the estimator
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      1 E  E b~~)bi—~o>(Zzrl(t,Y'(0))'Zir1 (t,3(0)))-1(if  iq > "6-(3)nkk 
= i=1 r=1 i=1 1b(o)b(o)tqc >(Zir, (t,3i(o))'Zirl(t,3co)))-1 (if £q <4),nkk 

     i=1 r=1i=1 

where tq is the minimum root of the equation 

1b~~)b~°)—eE(7'ir1 (t,Zo))'Zir, (t,ibz~)))-11= 0,  nk          i
=1 r=1 i=1 

r1 E {1, • • , n}, and c is a small number so that D is positive definite. The choise of c 
is discussed later. 
(iv) Based on (2.5), the MLE of 4) is derived by iteration 

3(1) = (X(c1)'V(l1)-1X(t1))1X(l1')V(t-1)-1 [y  g(t, 4)(1-1))), (2.8) 

where X(/-1) = X (t, 3(1-1)) and v(1-1) = V (&0, D, t , -.(1-1)). By (2.7) and (2.8), 

             = `yZ(t, 3)'V (&o, D, t, (-P)-1[y — g(t , 3) — X (t, 3)3)• 

We choose the value of 0* in (i) by looking at data as described in Vonesh and Carter 
(1992). On the estimation of D in (iii), if we extend Vonesh and Carater (1992) straight
forward, (Qq  c)/k in D is £q/k, that is c = 0 in our estimator. 

   By linearization, the distribution of 4) is approximated by 

N(0, {X (t, 4*)'V (oo, D, t, 4*)-1X (t, 4*)}-1)(2.9) 

Hence (4  4))'X (t, O )'V (uo, D, t, 4*) -1 X (t, 4*) (3  4)) has the chisquare distribution 
with qk degrees of freedom (X2k), approximately. If we are interested in the comparison 
of specified paremeters q5ii,, ith elements of (pi (i = 1, • • • , k), then the coresponding 
marginal distribution is also normal. Let = (q5ii', • • • , Oki')' and = (41i', • • • , Clki,)17 
then (  )'E'( has XI, approximately, where E0 is the covariance matrix of the 
corresponding elements of {X (t, O*)'V (o-o, D, t, 4 *)-1X (t, 4*)}-1 in (2.9). Hence the 
approximated 100(1  a)% simultaneous confidence intervals are given by 

E a' f /(a)a'Eoa,(2.10) 

where xi(a) is the upper 100(1  a)% point of xi and a ( 0) is any k dimensional 
vector. For practical application, we use the estimators 3 , &o, D instead of 4).,0-0,D.
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3. Simulation and Numerical Example 

   In this section, we give a numerical example by using data from Potvin, Lechowicz, 
and Tardif (1990), or see Pinheiro and Bates (1999). The data measured the uptake 
rate  (µmol/m2l) of CO2 of different types of plants, Echinochloa crusgalli, at some 
concentrations of ambient CO2. The number of plants are 6 from Quebec and 6 from 
Mississsippi, and 3 plants of Quebec and 3 plants of Mississsippi are chilled and re
maining plants are nonchilled. The uptake experiment is two-way layout, type of plant 
(Quebec or Mississippi) and treatment (chilled or nonchilled). We use the notations "QN" for Quebec and nonchilled, "QC" for Quebec and chilled, "MN" for Mississippi 
and nonchilled, and "MC" for Mississippi and chilled. In this experiment, Potvin, Le
chowicz, and Tardif (1990) assume the model 

                yir,j=Nirl {1 — exp[—eQir2(ti _/3ir3)]} + Eir,j,(3.1) 

where /3ir1 is the asymptotic uptake rate parameter, $ir2 is the uptake growth rate 
parameter, and /3zr3 is the maximum ambient CO2 concentration at which no uptake 
is verified for the ith plant. These parameters are written by (3irl „13ir2, /3ir3) _ (Oil + 
bin , Qi2 + bir2, 0i3 + bir3) as assumed in Section 1. The concentrations of ambient CO2 
level (ti) are 95, 175, 250, 350, 500, 675, 1000 (p///), that is p = 7. Pinheiro and Bates 
(1999) gave estimated random effects under 011 = • • • = 441, /12 = = 042, 013 = 
• • • = 043. They suggest that the asymptotic uptake rate parameter and the maximum 
ambient CO2 concentration are significant and that the uptake growth rate parameter 
is not significant by plotting the estimated random effects. They also suggests that 
type of plant and treatment have a stronger influence on the asymptotic uptake rate 
parameter than on the maximum ambient CO2 concentration by using the anova method 
in S-PLUS. But they do not compare the influence on the parameters by type and 
treatment. Our interest is to compare the asymptotic uptake rate parameters. We 
use 4) = (30, log(0.01), 50)' for numerical computation, the value is recommemded in 
Pinheiro and Bates (1999).

3.1. Simulation 

   We examine the effect of the choice of c in the proposed estimator D by simulation. 
In the simulation, we consider similar situation to CO2 uptake rate experiment, hence 
we choose the model (3.1), k = 4, and the observed points are the same as above. The 
parameters are as follows:

Y'11 = 42 012 = —4.5 013 = 50 
021 = 39022 = —4.7 023 = 50 
031 = 31032 = —4.6 033 = 48 
041 = 18442 = —4.6 043 = 16,

cro=1,and

     1 —0.02 1 

D =—0.020.004 0.16 
     1 0.16 12
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The sample sizes  (ri) from each population is 12. Under these situation , 200 estimates 
(17) are computed and the average D of 200 1D are also computed. We examine the 

 -i 

values of tr(D1D  I) for some values of c. The results are in Table 1.

        Table 1. Effect by Choice of c 

   c 0.0001 0.001 0.01 0.05 0.10  

tr(DD-i)  3 -1.26 -1.31 -1.28 -1.30 -1.54

From this Table, there is not much difference by choice of c. We use c = 0 .01 for the 
numerical example in the next subsection. We also examine the accuracy of approxima

tion for the distribution of (Q  (¢)'X (t, Q)'V (Qo, D, t, Q)-i X (t, ip) ()  0). Under the 
same situation as above, 2000 statistics are computed, then the upper 5% point is 22.8, 
which is close to x12 (0.05) = 21.03. In this simulation, if we use the straightforward 
extension of Vonish and Carter (1992), computation of the estimates does not work 
well sometimes. In the next numerical example, it would be possible to compute the 
statistics, but we use the proposed procedure.

3.2. Numerical Example 

   We give a numerical example for constructing the simultaneous confidence intervals 
of the asymptotic uptake rate parameters Oil's in the model (3.1) for the CO2 uptake 
rate data from Potvin, Lechowicz, and Tardif (1990) . The estimates computed by the 
method proposed in Section 2 are

i 1 (QN) 2 (QC) 3 (MN) 4 (MC) 
ri)ii 41.8 38.9 31.3 17.8  
Ci;i2 -4.5 -4.7 -4.6 -4.6 
ci3 52.9 50.4 47.9 15.5

Qo = 1.81, and 

                             6.08 -0.204 -1.21 
                  15 = -0.204 0.056 2.2 . 

                       -1 .21 2.2 96.5 

The 95% simultaneous confidence intervals for some values of a are in Table 2 . For 
example, the difference between QN and QC can be seen by a = (1, -1, 0, 0)', the 
difference between Quebec and Mississipi can be seen by a = (1, 1, -1, -1)', and so on.
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Table 2. Simultaneous Confidence Intervals 

       a' Confidence Interval 
 (1,1,0,0) [-8.74, 14.54] 

(0,0,1,-1) [1.83, 25.13] 
(1,0,-1,0) [-1.19, 22.07] 
(0,1,0,-1) [9.35, 32.74] 
(1,1,1,-1) [-0.12, 32.80]  
(1,1,-1,-1) [14.98, 47.98]

From this Table, we see that the difference of O11 + ~21 and 031 + 041 (Quebec and 
Mississippi) is significant, but O11 + 031 and 021 + 041 (nonchilled and chilled) is not 
significant. Hence it would be seen that the asymptotic uptake rate is effected by the 
type rather than the treatment.
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