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DIAGNOSTIC METHODS IN THE APT MODEL 
   FOR ORDERED CATEGORICAL DATA

                  By 

Toshimitsu HAMASAKI* and Masashi  GoTot

                            Abstract 

  We describe diagnostic methods for assessing the influence of a single outlier or 
individual case on the estimates of the asymmetric power transformation (APT) 
model for ordered categorical response. The APT model includes a wide range of 
the probability curves of the response including both of symmetric and asymmetric 
curves. We also discuss methods for assessing the influence of covariate selection. 
Furthermore, we mention methods for assessing the appropriateness of combing 
the categories of the response. Two examples are used to illustrate the proposed 
method.

Key Words and Phrases: Cumulative logit model; Complementary log-log transformation 

model; Influential case; Likelihood distance; Covariate Selection; Category combining.

1. Introduction 

    A situation frequently encountered in data analysis of medical research studies 
is to relate more than one variable or covariate to an ordered categorical response. 
For example, in a clinical trial for the treatment of allergic rhinitis caused by moun
tain cedar pollen, the response variable 'sneezing' is observed on a four-point scale 

(no/mild/moderate/serve symptoms) when a subject receives any treatments, and then 
the relationship between the response and treatments is investigated, allowing for the ef
fects of several covariates such as baseline severity, age, or gender (Lunn, Walkefield and 
Racine-Poon, 2001). In this situation, a common method of analysis is to invoke the con
cept of an unobserved response corresponding to the ordered categorical one and then to 
assume that a liner combination of the variables determines the probability of response 
through a specific link function (McCullagh, 1980; Cox and Snell, 1987; McCullagh and 
Nelder, 1989). Thus, models for ordered categorical responses are often specified in the 
term of cumulative probabilities rather than individual category responses. Cumulative 
logit, probit and complementary log-log models are well-known as standard models. 

   The cumulative logit and probit models assume the symmetric probability curve 
of a response. In practice, however, real data does not often satisfy this assumption. 
To extended scope of the standard models to asymmetric probability curves and to 
improve the fit in the noncentral probability regions, more flexible or dataadaptive 
methods have been proposed by introducing families of the response curves indexed 
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by one or more shape parameters (Stukel, 1988; Taylor, 1988). Prentice (1974, 1976), 
Pregibon (1980) and Stukel (1988) consider families with two shape parameters. For 
fitting a binary response, Prentice (1974, 1976) modeled the expected probability curve 
with the distribution function of a log-gamma distribution. The family of the log-gamma 
distribution contains the logistic, normal, extreme minimum and maximum, exponential, 
Laplace, and reflected exponential distribution as special cases, so that this model can 
handle many nonstandard situations. Goto and Inoue (1987) extended the Prentice 
model to more general situations where a response is given in ordered multicategories. 
Pregibon (1980) defined a family of link functions, including the logit link as a special 
case, to examine the adequacy of hypothesized link functions for fitting binary response 
in the context of a generalized linear model. 

   Mosteller and Tukey (1977), Aranda-Ordaz (1981), Guerrero and Johnson (1982), 
Morgan (1983, 1992) and Whittemore (1983) presented oneparameter families for fit
ting a binary response within the framework of simple analogies of Box and Cox power
transformation model for fitting a continuous response when working with a binary 
response. Aranda-Ordaz (1981) introduced two separate oneparameter models for sym
metric and asymmetric departures respectively, from the logit model. The symmet
ric powertransformation (SPT) model contains the logit model, and the asymmetric 
powertransformation (APT) model includes the logit and complementary log-log trans
formation models. Goto, Inoue and Tsuchiya (1986) discussed the extensions of the 
APT model to responses with ordered multicategories. Guerrero and Johnson (1982) 
suggested a one parameter Box and Cox powertransformation to the odds, which con
tains logit transformation. Morgan (1985) presented a oneparameter cubit logit model 
to model the symmetric departures from the logistic curve. The Morgan model is a 
first-order approximation to the SPT model. Copenhaver and Mielke (1977) modeled 
the expected probability curve with the distribution function of a twoparameter omega 
distribution. The omegadistribution includes logistic and uniform distributions as spe
cial cases. A similar approach was employed by Van Montford and Otten (1976). Their 
model uses the distribution function of a lambdadistribution. The advantage of these 
flexible models is the potential improvement in the fit to the data. Also, these models 
may be used to examine symmetric or asymmetric deviation from the logit or probit 
model. 

   The maximum likelihood estimate of the shape parameter in the flexible models 
can be obtained by using an iteratively reweighted least square algorithm. As well as in 
the Box and Cox power transformation model, however, it is well-known that outliers 
or influential cases have unacceptable effect on the maximum likelihood estimates when 
they exist and the estimation of the shape parameter may be influenced by the cases. It 
is surely important to find if the evidence for the estimated shape parameter is spread 
evenly throughout the data or rests within only a few cases. This problem requires 
special diagnostic methods because the cases that influence a shape parameter may not 
be distinguished in the subsequence analysis. 

   In this paper, we develop diagnostic methods for assessing the influence of a single 
outlier or individual case on the estimates of the APT model. There are two reasons 
why we discuss the APT model here. One is that the APT model includes a wide range 
of the probability curves of the response including both of symmetric and asymmetric 
curves. The other is that the APT model has less restriction in the parameter estimation 
compared with similar flexible models. We also discuss methods for assessing the influ
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ence of covariate selection and combing the categories of the response on the parameters. 
The methods developed in this paper can be easily extended to the other models. This 

paper is structured as follows: in Section 2 we briefly establish the definition and the 
parameter estimation of the APT model. In Section 3 we develop the diagnostic method 
for the shape parameter on deletion of individual cases. We also consider the diagnostic 
method for the other parameters on deletion of individual cases. In section 4, we discuss 
further diagnostic methods for assessing the influence of covariate selection and combing 
the categories of the response on the parameters. We show two examples to illustrate 
the proposed methods. In Section 5 we provide our concluding comments. 

2. The APT Model 

2.1. Preliminary 

   Let  Yi (i = 1, ..., n) denote the response classified into one of k (k > 2) ordered 
categories, and let Yi be observed with r covariates. As described above, one of the 
most effective approaches to construct a model for the ordered categorical response is 
to invoke the concept of an unobserved respons Zi. The actual recorded response Yi is 
envisaged as a crude manifestation of the unobserved variables in such a way that the 
relationship is monotone, namely 

0s_1<Zi<0sgY=s(2.1) 

where Os is a cutoff parameter on the underlying distribution of ordered categories, and 
0 = (01, ..., ok_l)T is a (k — 1) x 1 vector of the cutoff parameters. Incidentally, es is 

given by 

—oo=00 <01 <02 <••• <Ok _1 <Ok =+oo. 

We assume that the dependence of the unobserved response on the covariates may be 
specified by means of a linear model. Then, we have 

                         Zi = xT$+Ei 

where /3 = (3o, 31, 132) •••„Qr)T is an (r+1) x 1 vector of unknown (regression) parameters, 
xi = (1, xi1) xi2, •••, Xir)T is an (r + 1) x 1 vector of covariates and ei is a random 
error with a cumulative distribution function F. Then, the probability Pr(Zi < zi) is 
F(zi — xT$). The relationship (2.1) between the unobserved variable and the response 
gives the implied model for Yi in the form 

pis = Pr(Yi < s) = Pr(Zi < Os) = F(03 — xT,Q) 

or in linearized form 

F1(pis) = Os — xT/3. 

If F(zi) = exp zi/(1+ exp zi), implying that ei has the logistic distribution, then this 
scheme produces the cumulative logit model. The cumulative probit model arises if has 
the normal distribution. For further details of the standard ordered categorical models, 
see McCullagh (1980), Agresti (1984, 1999), McCullagh and Nelder (1989) and Johnson 
and Albert (1999).
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2.2. Definition 

    We now suppose that the response probability pis satisfies the relationship 

                                            T TA(pis) = Os  xiQ 

through a transformation function TA(pis) with one shape parameter A. The APT model 
is an analogy of the Box and Cox powertransformation model not direct to pis, but to a 
corrected odds 1/(1  pis) (= pis/(1  pis) + 1). The transformation of the probability 
TA(pis) for the APT model is defined by 

TA(pis) =log(g 1)0~(2.2) 
                          log (log qis) , A = 0 

where qis = 1/(1  pis) (ArandaOrdaz, 1981; Goto et al., 1986). Then, TA(pis) coincides 
with a logit transformation for A = 1 and with a complementary log-log transformation 
if A = 0. For this model, by the inversetransformation of (2.2), we have 

pis = F(es  xTQ) = 1  {1 + Aexp(Bs  xT$)}-1/a , A 0 0, 1  exp {  exp (Os  ;TO)} , A = 0. 

Fig.1 provides a diagram showing how the response probabilities for the APT model 
vary the shape of distribution. Fig.2 provides the behaviors of skewness and kurtosis 
of the response varying with A(> 0) from the APT model. From the two figures, it 
is clear that the probability curve from the APT model is not symmetric except for 
A = 1, and that it becomes more logtailed distribution as A increases. Then, the APT 
model includes a wide range of the probability curves of the response including both 
of symmetric and asymmetric curves. This feature is very useful to assess symmetric 
and asymmetric departures from the logit and complementary log-log transformation 
models. Also, though the APT has a very similar form with the STP and Guerrero and 
Johnson models (Guerrero and Johnson, 1982), the APT model has less restriction in 
the parameter estimation compared with the models (Goto et al., 1986). Therefore, in 
practice, the APT model may be one of most powerful tools to analyzing the ordered 
categorical response. 

2.3. Strategy for Parameter Estimation 

   The estimates of the parameters A, 0 and 0 for the APT model can be obtained by 
using the maximum likelihood method. Suppose that observations {(xi, Yi), i = 1, ..., n} 
are given for n individuals. Also, let ns be the number of individuals having Yi in the 
interval [0s_1i 0s], and Ns be a random variable whose observation is ns (s = 1, ..., k  
1), where n1 + • • • + nk-1 = n. Then, the joint occurrence probability of an event 
{n1, ..., nk_1 } has a multinominal distribution given by 

k-1 

Pr(N1 = n1 i ..., Nk-1 = nk-1) a H Pr( Ys = sl xi) 
s-1 

and the probability is given by
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 Pr(Yi = sI xi) = Pis — Pi,s-1 

where pis and pi,s_i are the response probabilities of the i-th individual that Yi is less 
than or equal to category s and s — 1 respectively. Therefore, the loglikelihood for A, ,l3 
and 9 based on n observations is given by

Figure 1: Diagram showing how the response probabilities for the APT model vary with 
A(> 0) when 1 < x < 4, /30 = 0 and /31 = 2. Response categories are represented as four 
continuous interval of the Z-axis

Figure 2: The behaviors of skewness and kurtosis of the distribution for the response



6T. HAMASAKI and M.  GOTo

log L(A, (3, 9) = E log {9 (xi, yi : A„(3, 9)} (2.3) 
i=1 

where 

                   /~ 
              F(9 xT/3),yi = 1, 
9(xi, yi : A,0, 9) = F(9 xT/3)  F(0y,_i  xT/3),2 < yi < k — 1, 

                1 — F(0 y,_,  x7 73),yi = k. 

The maximum likelihood estimates of the parameters A, /3 and 9 can be obtained by 
maximizing the loglikelihood (2.3) over the parameters. In general, it is well-known 
that the estimates of A, /3 or 9 can be highly correlated, so that the marginal variance 
of the estimated /3 or 9 can be hugely inflated by not knowing A when A, /3 and 9 are 
estimated simultaneously. To avoid this, the estimates of the parameters are found in 
the two stages. First, for fixed A, the loglikelihood (2.3) is maximized with respect to 
/3 and 9. Then, loglikelihood (2.3) for fixed A is the loglikelihood for an iteratively 
reweighted least square problem with an ordered categorical response. Therefore, if we 
denote the maximum likelihood estimates of /3 and 9 for the fixed A by /(A) and 9(A), 
then substitution of 13(A) and 9(A) into the loglikelihood (2.3) yields the loglikelihood 
respect with respect to A, 

                    Elog{g(xi,yi log L(A) =   : A, /3(A), e(A)) } • (2.4) 
i=1 

Secondly, the loglikelihood (2.4) is maximized with respect to A to obtain the maximum 
likelihood estimates A of A. Consequently, we have the maximum likelihood estimates 
A, 13(A) and 9(A). Thus, ,Q(A)+/Q and 9(A)-*9ifAaaasn-+oo. 

    As a regression model for ordered categorical data is overparameterized if there are 
responses with k categories and k  1 unknown cutoff parameters 91, ..., 9k_1, any set 
of k probabilities can be obtained but not in a unique way (Jansen , 1991; Johnson and 
Albert, 1999; Lunn et al., 2001). In other way, if we add a constant to every cutoff value 
and subtract the same constant from the intercept in the regression function, the values 
of 9s  xT/3 used to define the category probabilities are unchanged. To make the model 
identifiable, there are two approaches. The first approach is to introduce a reference 

point on the latent scale. Usually this is done by fixing one of the cutoff parameter at 
zero, or alternatively fixing xT/3 at some arbitrary value. The second approach is to 
specify a prior distribution on the vector of category cutoff points 91, ..., 9k_1 (Johnson 
and Albert, 1999). 

    In this paper, we compute the parameter estimates by using the first approach, and 
actually fix xTi3 by centerized xi to the mean with 00 = 0. In addition, the choice of 
starting values is important in an iteratively reweighted least square algorithm . Then, 
letting /30 = wo, oo)T and 90= (02, , 92-1)T by starting values of /3= (/1i ..., /3r)T 
and 9 = (9k, ..., 9k_1)T respectively, we use 0° = • • • = /3° = 0 and 

9°= log {(flt +0.5 n Ent+0.5 (s = 1, ..., k  1) . 
t=1t=1
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3. Diagnostics for Assessing the Influence of an Individual Case on the 
    Parameters 

3.1. Influence of an Individual Case on the Shape Parameter 

   Here we develop two diagnostic methods for assessing the influence of an individual 
case on the estimates of the shape parameter A in the APT model. One is the change in 
A on deletion of the i-th individual case and the other is the likelihood distance which 
is the changes in loglikelihood on deletion of the i-th individual case. Both the two 
diagnostics require the calculation of n maximum likelihood estimates of A or likelihood 
when a single influential case is considered. Such a computation may be prohibitively 
expensive in moderate to large data sets. To reduce this amount of computation, we 
develop the one-step estimates of A. 

   First we develop the diagnostic for A on deletion of the i-th individual case. Let 
log  L[i] (A) and A[ ] denote the loglikelihood and the maximum likelihood estimate of 
A when the i-th case is deleted from the fit, respectively. Thus, we can approximate 
log L[ ] (A) by the second-order Taylor series expansion of log L[2] (A) about A. Then we 
write                                                                

                                  (A—A)2log/.1](A) log L[] (A)log L[i] (A) + (A — A) log Lii1 (A) + ---------------------2(3.1) 

where log Lli1(A) and log Lii1(A) are the first and second order partial derivatives of the 
loglikelihood (2.4) with respect to A when the i-th case is deleted from the fit. If A is 
sufficiently close to A , the remainder terms will be small relative to the other terms and 
then ignored. In fact, it is well-known that A -4 A as n -* oo. If log Lfi](A)I� 0, the 
casedeletion loglikelihood (3.1) can be maximized in which the estimate is given as 

                 = A — {1ogL1(A)}'   log Lii1(A) 

where A is the one-step estimate of A [ ] . 
   Next, we develop the likelihood distance, that is the diagnostic for the changes in 

loglikelihood on deletion of the i-th individual case. Let log L(A) denote the maximized 
loglikelihood at A when all cases are used for the fit, and let log ON) be the maximized 
loglikelihood at A[i] when the i-th case is deleted from the fit. Thus, the likelihood 
distance between log L(A) and log L(A[i]) is given as 

LDi (A) = 2 { log L(A) — log L(A(i]) } . (3.2) 
Then, the second-order Taylor series expansion of log L(A[ ]) about A yields the approx
imation 

                                     z~~ 
       log L(A[]) — log L(A)(41 — A) log Li(A) +(A[i] — A)logL(a)  

                                         2 where log L' (A) and log L" (A) are the first and second order partial derivatives of the 
loglikelihood (2.4) with respect to A. Thus, if we assume log L' (A) = 0 and use A 1 as 
an approximation of A[ ], the likelihood distance (3.2) can be written as
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LDi (A) = (A i) — A)2 {_logL"(A)} 
                                               which can be compared to the percentiles of a chisquare distribution with one degree 

of freedom. From these results, by using the index plots of A[i) and LDi (A) versus 
case number, it is possible visually to assess the influence of an individual case on the 
estimate of the shape parameter A and likelihood in the APT model. 

3.2. Influence of an Individual Case on the Regression and Cutoff Param
      eters 

    Similarly as in the previous section, we develop two diagnostics for assessing the 
influence of an individual case on the estimates of the regression parameter ,Q and cutoff 

parameters 9 for fixed the shape parameter A = Ao in the APT model. 
   First we develop the diagnostic for changes in 0 and 0 on deletion of the i-th 

individual case. If we rewrite the estimates -y = (/3(A0), 9(Ao))T for A = A0, we denote 
the casedeletion loglikelihood log L[i] (ryl A = Ao) and maximum likelihood estimate 
'Y[i) = (SNP() e[i) (Ao))T of '5' = AA0), 9(A0))T when the i-th case is deleted from 
the fit, respectively. Thus, we can approximate log L[i) (-y1 A = Ao) by the second-order 
Taylor series expansion of log L[i] (-y1 A = Ao) about ry. Then we write 

log L[i] ('YI A = A0) ti log Lk] ('YI A = Ao)+ 

        (y — '5,)T log Lfi) 01— ~o) +(7 — 'Y)T log L[i)('?'I A = Ao)('Y— '') (3.3)                    A
2 

where log L~ (ryI A = A0) and log Lri) (ryl A = Ao) are the (r + k — 1) x 1 gradient vector 
and the (r + k — 1) x (r + k — 1) Hessian matrix with elements of the first and second 
order partial derivatives of the loglikelihood (2.4) with respect to 0 and 0 when the i-th 
case is deleted from the fit. If log Lg) (ry I A = A0) $ 0, we have a one-step estimates of 
the casedeletion estimates 

                                                        —1                — {log L~Z) ('YI A = A0) } log L~ (`yl A _ Ao) 
where 7[i) = (13[i) (A0), e[i) (Ao))T. 

Next, we develop the diagnostic for the changes in loglikelihood on deletion of the 
th individual case. Let log L(-Y1 A = Ao) denote the maximized loglikelihood at %y when 
all cases are used for the fit, and let log LO[i] I A = Ao) be the maximized loglikelihood at 
'Y[i) = (/3[i) (Ao), ON (Ao))T when the i-th case is deleted from the fit. Thus, the likelihood 
distance between log L01 A = A0) and log L(=y[i) I A = A0) is given as 

LDi('Y) = 2 {log L01 A = A0) — log L(ry[i) A = A0)} . (3.4) 
If the profile of the case deletion loglikelihood (3.3) is assumed to be elliptic with 
respect to /3 and 0 as it is the quadric function of ,Q and 9, the second-order Taylor series 
expansion of logL(ry[i]I A = A0) about ,Q and 0 yields the approximation 

                log L( I A = Ao) — log L01 A = Ao) 

       (=y[i) — 7)T log L'01 A = A0) + ('Y[i)—)T log L"(yl= ~o) („5,[i] — '')  

                                     2
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where log L' (ryI A =  )'o) and log L'101A = Ao) are the 2 x 1 gradient vector and the 2 x 2 
Hessian matrix with elements of the first and second order partial derivatives of the 
loglikelihood (2.4) with respect to 0 and 0. Thus, if we assume log L'01 A = A0) = 0 
and use '5'[i _ A[i] (A0), Of (Ao))T as an approximation of 7[i) = ($[i] (Ao), e[i] (Ao))T, the 
likelihood distance (3.4) can be written as 

LDi (y) = (-51i] —'y)T {— log L"( = Ao)} ('Y*i) —'1) 

which can be compared to the percentiles of a chisquare distribution with (r + k — 1) 
degree of freedom. The index plots of (~~i] (Ao), 8~ii (Ao)) and LDi (=y) versus case number 
may provide useful information on the influence of an individual case on the estimates 
,Q and 6, and likelihood in the APT model. 

3.3. Examples 

    In this section, to illustrate the diagnostics developed in the previous section, we 
analyze two data. The first example is the nodal involvement data in cancer patient 
taken from Brown (1980). The second is the arthritis pain data from Koch and Edwards 
(1988). Our goals here are (i) to see the type of dataanalytic information that can come 
from the diagnostics, and (ii) to see how well the diagnostics detect influential cases. 

Example 1 Nodal Involvement Data in Cancer: The first data, taken from Brown (1980), 
is the 53 patients receiving surgical treatment for cancer of the prostate. A critical 
question in determining treatment for patients is whether the cancer has spread to the 
neighboring lymph nodes and whether this can be predicted from variables observed 
before surgery, in particular X-ray reading (xi), stage of tumor assessed by palpation 
(x2), grade of tumor as determined by biopsy (x3), age of patient at diagnosis (x4) and 
level of serum aid phosphatase (x5). A nodal involvement, determined at surgery, is a 
binary response. Several authors have analyzed this example and the several approaches 
have been proposed (Cox and Snell, 1989; Goto, Isomura and Hamasaki, 2002). Here 
we follow the approach discussed by Cox and Snell (1989). The model discussed here 
includes the five variables x1, x2, x3, log x5 and x6 = x2 x x3. 

    Table 1 provides the diagnostics results for the APT model. The maximum like
lihood estimate of the shape parameter is 2.622. This optimal value suggests that the 
asymmetric model with the distribution having a more long tail, rather than the logistic 
distribution, is suitable for describing the data. 

    Fig.3 provides the index plot of casedeletion likelihood distance LD[111(A). This 

plot shows that the LD[ii (A) has an extreme value when Case 26 is deleted, where Case 
26 is the patient with the values of x1 = 0, x2 = 0, x3 = 0, log x5 = 4.407, x6 = 0 and 
y = 1 (improved). Of the 17 patients with the values of xi = 0, x2 = 0, x3 = 0 and 
x6 = 0, only this case is the patient with "improved". The rest of cases are the patients 
with "not improved". This suggests that Case 26 has a substantial influence on A. Fig.4 
provides the index plot of casedeletion estimate ari1 . This plots shows that the one step 
casedeletion estimate A[i]has an extreme value when Case 24 is deleted, in addition to 
the deletion of Case 26, where Case 24 is the patient with the values of x1 = 0, x2 = 0, 
x3 = 0, log x5 = 4.407, x6 = 1 and y = 0 (not improved). Though the coefficient for 
level of serum aid phosphatase suggests that the patient should be improved if level of
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Table 1: Nodal involvement data in cancer. Diagnostics for the APT model  
        All DataDeletedDeleted 

                         Case 26Cases 24,26 
 A = 2.622 A[261 _ -0.278 A[24,261 =-0.285  

ML 19.598 15.03815.014 
AIC 51.19742.07542.027 
MR 20.8%15.4%13.7%  
Paramter Estimate Std.Err. Estimate Std.Err. Estimate Std.Err. 

013.769 1.567 2.223 0.751 2.076 0.712 
/324.634 2.225 2.891 0.621 2.707 0.612 
/335.785 2.786 2.946 0.797 2.758 0.789 
/35-6.830 3.398 -3.415 1.016 -3.216 1.007 
063.895 2.035 1.853 0.856 1.857 0.970 
912.182 0.939 0.064 0.264 0.019 0.257 
ML: Maximum likelihood 
MR: Misclassification rate

serum aid phosphatase is a positive high value, this patients with the highest value of 
level of serum aid phosphatase, is not improved. This suggests that both Cases 24 and 
26 have the substantial influences on A. 

   Without Case 26, the maximum likelihood estimate of the shape parameter is 
0.278, which is closer to zero compared with that for all data. This optimal value 
suggests that the complementary log-log model is reasonable to describe the data. For 
this optimal value, the misclassification rate is reduced from 20.8% to 15.4%. Otherwise, 
without both Cases 24 and 26, the maximum likelihood estimate of the shape parameter 
is 0.285, which is very close to the value when without only Case 26, and still suggests 
the appropriateness of the complementary log-log model for this data. For this optimal 
value, the misclassification rate is reduced to 13.7%, which is slightly smaller than the

Figure 3: Nodal involvement data in cancer. Index plot of vasedeletion likelihood 
distance LD*. (A) versus case number
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value when without only Case 26. 
   Fig.5 provides the index plot of casedeletion estimates /3i [i] (A),  ,Q2[i]  (A), I33[i] (A), 

/34[i}(A),/3(A) and ö*[i.)(A). This plot clearly shows that all of one step casedeletion 
estimates have extreme values when either Case 24 or 26 is deleted. This suggests that 
both Cases 24 and 26 have substantial influences on the estimates, which is the same 
conclusion as seen in Fig.4. Without Case 26 or both Cases 24 and 26, the estimates 
are greatly changed compared with those for all data. 

Example 2 Arthritis Pain Data: The second data, taken from Koch and Edwards (1988), 
the 84 patients receiving an active or placebo treatment for arthritis pain. A critical ques
tion is whether the active treatment for the patients is better than placebo treatment. 
The response is observed on the three ordered categories having "marked improved (3)", 
"some improved (2)" and "none (1)", with the two variables treatment (x1) and gender 
(x2) . Table 2 provides the diagnostics results for the APT model. The maximum likeli
hood estimate of the shape parameter is 1.013, which is very close to one. This optimal 
value suggests that the distribution of the response is symmetric and the cumulative 
logit model is suitable for describing the data. 
   Fig.6 provides the index plot of casedeletion likelihood distance LDri1(A). This 

plot shows that the LDri1(A) has an extreme value when Case 62 is deleted, where Case 
62 is the patients with the values of xl = 0 (placebo), x2 = 1 (Male), and y = 3 
(Marked Improved) . Of 11 male patients receiving placebo treatments, only this case is 
the patient with "marked improved". The rest of cases are the patients with "None". 
Fig.7 provides the index plot of casedeletion estimate A . This plots also shows that 
the one step casedeletion estimate A it has an extreme value when Case 62 is deleted. 
These two plots suggest that Case 62 has a substantial influence on A. 

   Without Case 62, the maximum likelihood estimate of the shape parameter is — 
0.179, which is close to zero. This optimal value suggests that the probability curve 
of the response is greatly changed from symmetric curve to asymmetric curve and the 
complementary log-log model is reasonable to describe the data. However, for this

Figure 4: Nodal involvement data in cancer. Index plot of casedeletion estimate Ari] 
versus case number
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optimal value, the misclassification rate is increased from 38.1% to 54.2%. 

   Fig. 8 provides the index plot of casedeletion estimates '31[i] (A) ,/3[j] (A), ei[i] (A) 

and 92[i](A).This plot clearly shows that all of one step casedeletion estimates have 
extreme values when Case 62 is deleted. This suggests that Case 62 has a substantial 
influence on the estimates, which is the same conclusion as seen in Fig. 6 or Fig.7. 
Without Case 62, the estimates are greatly changed compared with those for all data.

Figure 5: Nodal jnvolvement data in cancer. Index plot of casedeletion estimates 
N[i] (A), /32[i) (A), 1`33[i] (A), i3s[i1(A), /3s[i] (A) and 91 [il (A) versus case number
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Table 2: Arthritis pain data. Diagnostics for the APT model 
           All DataDeleted 

                               Case 62 

             A = 1.013 A1621 =-0.179  
 ML —75.015—70.694 

 AIC 158.029149.388 
 MR38.1%54.2%  

  Paramter Estimate Std.Err. Estimate Std.Err. 

 011.326 0.070 0.721 0.381 
021.805 0.019 1.098 0.322 
910.015 0.242 —0.511 0.168 

 920.874 0.261 0.039 0.142  
  ML: Maximum likelihood 

  MR: Misclassification rate

4. Further Diagnostic Procedures 

4.1. Influence of Covariate Selection on the Cutoff Parameters 

   We here discuss the diagnostics method for assessing the effect of the covariate 
selection on the estimates of the cutoff parameter 6. The effect of covariate selection on 
can be assessed by the likelihood ratio test of the null hypothesis Ho : ,3 = 0 against 
the alternative hypothesis H1 : ,6 0 0 for the fixed A = Ao. If we write the maximum 
likelihood estimates of 9 under the hypotheses Ho and H1 by 9 and 9 respectively, the 
statistics is given as 

            LDmodel = 2 {log LH° (A, 0, 9)  log LH1(A, 0, e)} (4.1) 
where log L(A, 0, 9) and log L(A, /3, 9) are the maximum loglikelihoods under the hy

potheses Ho and H1, respectively. The statistics (4.1) has the chisquare distribution

Figure 6: Arthritis pain data. Index plot of vasedeletion likelihood distance LDrz1 (A) 
versus case number
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with r degrees of freedom.

Figure 7: Arthritis pain data. Index plot of casedeletion estimate A 
it versus case 

number

Figure 8: Arthritis pain data. Index plot of casedeletion estimates ,Qi [i] (A), f 2[i] (A), 
6:[i) (A) and 62[i] (A) versus case number
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4.2. Appropriateness of Combing Categories 

    In analysis of ordered categorical response, we may often reduce the ordered cat
egories without violating the order. For example, in a clinical trial of the treatment of 
migraine, the response variable is the severity of migraine observed on a four-point scale 
(none/mild/moderate/severe migraine), allowing for the baseline severity, a subject with 
a none or mild migraine after any treatments is defined as "responder" and then the 
other with a mild or severe migraine is as  "non-responder". Combining categories would 
often lead to clear interpretation of results. In practice, however, it is surely important 
to assess whether or not combing category is more suitable for describing the data, or 
how much a loss of information impact on model identification. Therefore, we discuss 
the method for assessing the appropriateness of combing categories, within a framework 
of model selection. Then, in this paper, we use the AIC (Akaike, 1972) as a criterion for 
model selection. 

   Now, we consider the situation in which the category s is combined with the cate
gory s — 1. In this situation, the number of the cutoff parameters is reduced from k — 1 
to k — 2 and then the number of individuals observed in the interval [Os_2, Os] becomes 
ns_1 + ns. Therefore, AIC statistics is given as 

AIC = —2 log Lin* ax+2(r+k-2) 

where log Lm* ax is the maximum value of the loglikelihood maximized over the parame
ters under the recategorization. By successively combining two adjacent categories, we 
can choose the category combination with the minimum value of AIC. 

4.3. Example 

   In this section, to illustrate the method for assessing the appropriateness of comb
ing categories developed in the previous section, we use the arthritis pain data again 
Tables 3 and 4 provide the results of coming categories for all data and Case 62 deleted, 
respectively. For all data, the minimum of the APT model is the value of 98.335 in 
which two categories "Marked" and "Some + None". For this recategorization, the 
maximum likelihood estimate of the shape parameter is 1.450. This optimal value sug
gests the asymmetric curves of the response. For this optimal value under the new 
recategorization, the misclassification rate is reduced to 27.4%. Without Case 62, the 
minimum of the APT model is the value of 91.653 in which two categories "Marked" 
and "Some + None". This recategorization is consistent with that for all data. For 
this recategorization, the maximum likelihood estimate of the shape parameter is — 
0.183, which is close to zero. This optimal value suggests the asymmetric curves of the 
response and the complementary log-log transformation model is suitable for this new re
categorization. The conclusions from these results are that the subjects with "Marked" 
would be the responders and then asymmetric models are suitable for describing the 
data. 

5. Conclusions 

    In this paper, we develop diagnostic methods for assessing the influence of a single 
outlier or individual case on the estimates of the APT model. In particular, we provide 
the two simultaneous diagnostics, the changes in the shape parameter and the likelihood
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Table 3: Arthritis pain data. Coming categories, All data 

            (1+2), 31, (2+3) 
            A = 1.450 A1621 = 0.066  

ML46.16748.972 
AIC98.335103.944 
MR27.4%39.3%  
 Paramter Estimate Std.Err. Estimate Std.Err.  

 Ql1.111 0.702 1.028 0.369 
022.206 0.651 1.296 0.363 
911.216 0.328 -0.401 0.176  

 ML: Maximum likelihood 
 MR: Misclassification rate

Table 4: Arthritis pain data. Coming categories, Case 62 deleted 

              (1+2), 31, (2+3) 
               A =-0.183A1621 =-0.303  
  ML42.82745.631 

  AIC91.65397.262 
 MR31.3%38.6%  
    Paramter Estimate Std.Err. Estimate Std.Err. 

,Ql0.639 0.374 0.949 0.381 
/321.064 0.313 1.180 0.358 
010.027 0.139 -0.546 0.161  

   ML: Maximum likelihood 
    MR: Misclassification rate

distance on deletion of the i-th individual case. We also describe methods for assessing 
the influence of covariate selection on the parameters. Furthermore, we discuss the 
method for combing categories of responses within the framework of model selection. 
Finally, we illustrated and examined the proposed diagnostics by the two examples. The 
findings are as follows: 

  • The diagnostics based on the one-step estimates of the shape parameter in the APT 

    model on deletion of the i-th individual case would provide useful information on 
    the influential case. Especially, the index plot of the one-step estimates may be 
    a useful tool for identifying a possible influential case or outlier. The methods 

    developed in this paper can be also available for other flexible model. 

  • The proposed method would lead to a reasonable recategorization even when 
    there is no strong knowledge of the process of generating the data and combing 

    the categories. Also, the method would assess whether or not combing category is 
    more suitable for describing the data, or how much a loss of information impact 

    on model identification. 

  • The APT model would provide the improvement in the fit to the data. Also the 
    APT model is used to examine symmetric or asymmetric deviation from the logit
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     model. 

   For our purpose in this paper, index plots of casedeletion estimates A(i) and N[i] 
or 8i]are assessed separately. However, it is well-known that the estimates  A andQor 

 6 are highly correlated. Therefore, in practice, paying attention to this fact, we should 
assess the graphical information from the index plots carefully. 
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