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             USTATISTICS

       By 
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                           Abstract 

  An estimator of the correlation dimension is proposed based on Ustatistics, 
and compared with the weighted least squares estimator proposed by Kawaguchi 
and Yanagawa (2001). The proposed estimator is easier and faster to compute and 
has weaker mathematical assumption than the weighted least squares estimator. 
Moreover, it is shown by simulation that the proposed estimator provides more 
stable estimates than the weighted least squares estimator when the round-off error 
of the computer is taken into account.
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1. Introduction 

    We consider trajectory {Xt}t=1,2,...,N generated by chaotic dynamical system 

Xt = F(Xt-1 , Xt-2, ... , Xt—d)(1) 

for some unknown nonlinear map F and integer d. We assume that initial vector 
(X1, X2, ... , Xd) is distributed uniformly in a specified interval. Putting Yt = (Xt, Xt_1i 
.. , Xt—(d-1)) and 

          (N11N            C'N(r)=E /cm — Yj II r), 
                                 i<j 

where I denotes a indicator function and II ' II is a norm, Grassberger and Procaccia 
(abridged by G-P) (1983a,b) called C(r) := limN ,0 CN(r) the correlation integral and 
introduced the correlation dimension as 

log C(r)  
                        p = lim r--+O log r 

if the limit exists. The correlation dimension was introduced as a measure for repre
senting the fractal dimension of the attractor of {Yt}. Estimating the dimension of an 
attractor of chaotic dynamical systems can provide useful, even vital information for 
understanding the dynamical systems (see for example, Abraham et al. 1989). 
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    The G-P proposed a procedure for estimating the correlation dimension. It essen
tially consists of plotting log CN(r) against log r and looking for a portion over which the 
plot is approximately linear, the slope over that portion is the estimator of dimension 
p. Typically such a graph for a finite length trajectory looks like Figure 1. The graph 
shows that for large r the graph flattens, at moderate r the graph is quite linear and for 
small r the graph jumps irregularly. The irregularity is a result of having only a finite 
amount of data. The linear part of data is often called the scaling region.

Figure 1: log-log plot

    The idea of G-P was mathematically realized by Cutler(1990) who proposed a least 
squares estimator of p over the scaling region taking into account the intercept and by 
setting 

r = ro, r1, ... , rM(2) 

where rn, = rocbm (m = 0, 1, ... , M) for some r0, 0 < < 1 and M = max{m ; CN(rm) 
0}. 
   It is well known (see, for example, Judd, 1992) that the estimator depends sensi

tively on the selection of the scaling region. In order to avoid this problem for ordinary 
least squares, Takens (1984) introduced maximumlikelihood approach. Smith(1992) 
developed statistical theory by assuming that interpoint distances which are less than r 
are independent conditioned on distances which are less than e for some e, and proposed 
an estimator which is essentially equal to Takens' estimator. Confidence intervals for the 
correlation dimension p was also proposed in Smith(1992). Judd(1992) improved the es
timator and confidence interval of Smith(1992) in the same framework as Smith (1992), 
but with different mathematical manifestation. Kawaguchi and Yanagawa(2001) sug
gested to use a weighted least square estimator in the formulation of Cutler(1990). The 
independence of Xt (t = 1, 2, ... , N) was assumed there to obtain the weight. The esti
mator was compared with Cutler's and Smith's estimator . It was shown by simulation 
that the impact of scaling region on the proposed estimator is smaller than the others. 
Kawaguchi and Yanagawa(2001) showed numerically that interval by Smith(1992) and
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Judd(1992) failed to take into account the variability due to initial condition when data 
are generated by known dynamical systems. 

   The purpose of this paper is to suggest an alternative estimator. The estimator 
is constructed by using the ordinary method of least squares, but the data are selected 
by means of Ustatistics. The selection enables us to treat the data as homogeneous 
and frees us from the assumption of independence. As the weighted least squares esti
mator, the proposed estimator is sensitive to the initial condition caused by round-off 
error. Thus we introduce a precision interval to compare the estimates. It is shown 
by simulation that the proposed estimator provides similar estimates as the weighted 
least squares estimator, and narrower precision intervals than those of the weighted least 
squares estimator. Moreover, it is easier and faster in computation than the weighted 
least squares estimator. In Section 2, the estimator is developed. In Section 3, the 
sensitivity of proposed estimator is shown by simulation and the precision interval is 
introduced. The estimator is compared with the weighted least squares estimator.

2. A new estimator based on Ustatistics 

   We propose to replace M given in (2) with M* =  max{m ; CN2(rm) 0}, where 

              -1 N 

       CN2(rm)=3I(IIY—YjII< rm, IIYk  Yj II<rm).(3) 
i�j,i#k,j#k 

   Let it = [M*/2], i2 = [M*/2] + 1, ... , iL = M*. The corresponding model is 

log CN(rm) = q+plogr,n, + em, (m = i1,i2,...,iL)(4) 

where em's are error random variables, satisfying E[em] = 0 and V[era] = o.2. By 
minimizing 

iL 

Q = E (vm  q  pum)2 
m=i1 

over all possible choices of q and p, where um = log rm, v,n = log CN(rm), and rm = 
r0r, then the estimator of p is explicitly given by 

E-i1 (um  ')(vr  v)(5) 
          p = (_ 

                                   EmiL=ii(Um -li)2 

where u = L-1 Em=i1urn,v= L-1 >m=i1 vm, and L = M*  [M*/2] + 1. It is clear 
thatpis unbiased under model (4).

3. Numerical study 

3.1. Simulation in floating point arithmetic 

   We show by simulation that the estimator proposed is sensitive due to initial con

dition caused by round-off error when data are generated by known dynamical systems, 
using the following dynamics.
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 (Dy1) Xt = 1  1.4Xt 1 + 0.3Xt_2 (Henon map) 

(Dy2) Xt = 0.01Xt_1 + 4Xt_4 exp(-Xt 4) 

(Dy3) Xt = 0.5Xt_1 + (-0.5 + 2 exp(-Xt 1))Xt_7 

   Note that the embedding dimension of (Dyl), (Dy2) and (Dy3) are d= 2, 4, and 
7, respectively. 

    To study the impact of round-off errors at order 10-1, 10-2, ..., and 10-9, we 
introduce domains Do, D1, ..., and D9 as follows; First decide D° for (Dyl), (Dy2) and 
(Dy3), respectively by 

Do=quadrilateral ABCD, where A=(1.33,1.4), B=(1.32,0.443), C=(1.245,0.466), 
D=(1.06,1.666), 

                4 times 

D°=[0, 2] x • • • x [0, 2], 

    and 
                  7 times 

D°=[-1,1] x • • • x [-1,1]. 

    Note that the quadrilateral ABCD is known as Henon's domain of convergence 
(Henon, 1976). Next, select one point randomly, say (X4°),XZ°),...,X(°)) from Do, 
then fix it and construct D1 as follows 

D1 = [Xi°)  0.5 x 10-1, Xi°) + 0.5 x 10-1] x • • • 
x [Xd°)  0.5 x 10-1, Xd + 0.5 x 10-1]. 

Di shows the interval [Xi°)  0.5 x 10-1, Xi°) +0.5 x 10-1] of 1st decimal place in d 1 
                                                               dimensional space. Similarly, the interval [Xi°)  0.5 x 10-i, XP) + 0.5 x 10-j] of j-th 

decimal place in d 1 dimensional space is defined by 

Di=[X1°)0.5x10-', XP) +0.5x10-']x••
                 x [Xd°)  0.5 x 10-j, Xd + 0.5 x 10-4 

   The simulation is conducted as follows; Select an initial value from each of Dj , 
j = 0, 1, ... , 9, randomly; generate the data of size No +N from dynamics (Dy1), (Dy2) 
and (Dy3), respectively; abandon the first No data and compute the estimate by using 
the remaining data of size N. This process is repeated by K times using the initial 
values that are selected randomly from Di (j = 0, 1, ... , 9). Constants No, N, and K 
are set as No = 1000, N = 5000, and K = 100, respectively. 

   Figure 2, 3, and 4 exhibit the result of computation in IEEE single precision arith
metic for (Dyl), (Dy2) and (Dy3), respectively. Since the initial values are selected 
randomly, it is reasonable to anticipate the fluctuations of the estimates. But at D8 
and D9 the fluctuation of estimates is degenerated, showing that they are beyond the 
single precision. Table 1, 2, and 3 give the minimum, average and maximum values of
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estimates at  Do, D1, ..., and D7. It is remarkable to see that those minimum values 
at Do, D1, ..., and D7 are essentially equal in the tables; and that maximum values at 
Do, D1, ..., and D7 are also essentially equal. 

   To study further, we conducted the similar simulation in IEEE double precision 
using the initial values which are selected randomly from D12. Table 4 summarizes 
the results. Interestingly, the table again shows that the range of estimates due to the 
fluctuation at the twelfth decimal order is essentially equal to that the zeroth decimal 
order. This shows a typical phenomena of the sensitive dependence of chaotic dynam
ical systems on initial values; that is, we can not free from the dependency even the 
computation is carried out with high precision. If this is the case, the estimate itself is 
not trustworthy. We propose to evaluate the estimate with an interval, which we call 
the precision interval. Fortunately, the Table 1, 2, and 3, and 4 show that the minimum 
(maximum) at Do is almost equal the minimum (maximum) at D7 or D12, thus we may 
construct such interval by taking initial values from Do. The interval depends on K. We 
used K = 100 in the simulation. The precision interval with K = 100 is called PI(100) 
in short.

Figure 2: The histgrams for (Dyl)

Do D1 D2 D3 D4 D5D6 D7  
 max 1.243 1.251 1.255 1.267 1.235 1.255 1.259 1.252 

  ave 1.198 1.189 1.187 1.187 1.185 1.185 1.188 1.191 
min 1.137 1.130 1.098 1.125 1.114 1.116 1.126 1.144  

Table 1: Minimum, average, and maximum values of estimates for (Dyl)

3.2. Comparison to the weighted least squares estimator 

   Simulation is conducted to compare the proposed estimator with the weighted least 
squares estimator proposed by Kawaguchi and Yanagawa (2001). We recall that the
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Figure 3: The histgrams for (Dy2)

Table 2: Minimum, average, and maximum values of estimates for (Dy2)

Figure 4: The histgrams for (Dy3)

Table 3: Minimum, average, and maximum values of estimates for (Dy3)
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Table 4: Minimum, average, and maximum values of estimates in double precision

weighted least squares estimator was given as follows. For  it = [M/2], i2 = [M/2]+1,... , 
iL = M, 

                 _L.~m=i.1wm(Um  Uw)(vm  vw)(6)          pwii
t-.)2 

                                                                                        , 

                               EmL=i1 wm (um —  

where wm = If/ [log CN(rm)]}-1, 

              NCN2(rm)1 =1     V[l
ogCN(rm)] = 63 (C

N(rm))2—1+2CN(rm) 

CN2(rm) is given in (3), au, = w-1 Em=i1 wmum, 'au, = w-1 EmiL=i1 wmvm, and w = 

Ei rl, 
  m=i1 Wm. 

   The same size of data i.e. N = 5000, were generated from (Dyl), (Dy2), and 
(Dy3), by selecting initial values randomly from Do. This process was repeated 100 
times. Table 5 summarized the maximum, average, minimum values of 100 estimates 
obtained respectively by proposed method and weighted least squres method.

Table 5: Average and PI(100) of proposed estimator (5) and the weighted least squares esti
mator (6)

   The table shows that averages of the proposed estimates and that of the weighted 

least squares estimates are essentially equal; maximum values of the proposed estimates 

are smaller than that of the weighted least squares estimates; and that minimum values 

of the proposed estimates is larger than that of the weighted least squares estimates, that 

is, the differences between maximum and minimum values of the proposed estimator are 

smaller than that of the weighted least squares estimator. The table also shows that the 

difference increases as the increase of the embedding dimension.
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