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                           Abstract 

  This paper studies an optimal stopping problem over a finitehorizon Markov 

chain on a finite-state space. First of all, we derive a recursive formula for the total 

number of all stopping rules in m-state n-stage stopping problem. Next we show 

an optimal stopping rule and give a characterization of optimal value functions.
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1. Introduction 

   It is wel known that a general theory of optimal stopping has been established by 
Snell (1952), Chow, Robbins and Siegmund (1971), Shiryaev (1978) and others. The 
main topic was a class of infinitehorizon problems. Recently a finitehorizon problem 
has been well applied to mathematical finance, in particular to fair pricing of American 
option, e.g. Shiryaev (1999). 

   On the other hand, the theory of optimal stopping is closely related to dynamic 
programming, e.g. Bellman (1957) and to Markov decision process, e.g. Howard (1960). 
A construction of optimal stopping rule for finite horizon problem is performed through 
backward induction. This is a basic idea of dynamic programming/Markov decision 
process. 

   In this paper we consider a class of optimal stopping problems over a finite horizon 
Markov chain on finite state space. We direct our attention to the total number of 
stopping times, optimality and characterizaion. Our approach separates the underlying 
process (Markov chain) and sequence of gain functions. This separation is due to the 
fact that the underlying process is a Markov chain. The value process over the Markov 
chain constitutes a minimal supermartingale.

2. Stopping Times 

   Let two integers m > 1 and n _> 1 be given in this paper. We consider an n-stage 
Markov chain on state space with m states. Let {Xt}o be a Markov chain on a finite 
state space S = {s1, 82, ... , sm, } with a transition law p = {p(+)} : 

P(Xt+i = si l Xt = si) = p(s3 1 si)•
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We assume that the Markov chain starts at a preassigned state  so E S ; Xo = so. 
                      i times 

   Let Si := S x S x   • x S be the direct product of i state spaces S. We take 
SZ := Sn+1 and N := {O,1, ... , n}. A mapping T : CZ --> N is called a stopping time if 
for any t E N the set IT = t} is determined by random variables {X0, X1, ... , Xt}.The 
stopping time is called an m-state n-stage stopping time. Let T := To := Ton(m) be 
the set of all m-state n-stage stopping times. The first question is how many stopping 
times there are for m-state n-stage Markov chain. 

   Let fm(n) (n) be the the total number of m-state n-stage stopping times. Then we 
have the following recursive formula : 

    THEOREM 2.1. 

      fm(n) = 1+ E(fm(n  1)  1)m-k mCk m > 1, n > 2 (2.1) 
k=0 

  fm(1) = 2m > 1.(2.2) 

    PROOF. We consider an m-state n-stage stopping time T, which does not stop 
immediately at starting point (on stage 0). Let si1, si • • • sik be the states, at which T 
stops on stage 1, that is, 

{wiT(w) = 1} 
= {SOSi1x2 . . . Xn, SOSi2X2 .. •o Xn, • • • , SSikX2 • • • xn, xi ES, 2 � i C n }. 

For each s E S, we define 

µ(X1X2 • • • xn) = T(sx1x2 ... Xn). 

Then µ is a stopping rule of m-state (n  1)-stage stopping problem. Thus for any 

s E i,7  {sil , Si2, ..., Sik } 

the total number of m-state n-stage stopping rules which start at state s is 

                      (fm(n  1)  

Since the total number of state x1 E S is mCk, it holds that the total number of T, 
which do not stop immediately at start point is 

m 

                    E(fm(n -1)  1)m-k mCk. 
k=0 

Adding one stopping time which stops immediately on stage 0, we have the formula 

(2.1). 
    Let us take n = 1. There exists two stopping rules: one is immidiate stop and the 
other is not. Thus (2.2) is valid.^ 

    THEOREM 2.2. 

fm(n + 1) = 1 + (fm(n))m n > 1, fm(1) = 2. (2.3)
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    PROOF. We prove this by induction of n. From (2.1) and (2.2), substituting n = 2 
we have 

 m 

                  fm(2) =  1+  >  1m-k mCk 
k=0 
                           = 1+2m. 

Thus theorem holds for n = 1. Now, we suppose that it hold for n = k. Then, by 

theorem 2.1, we have 

.fm(k + 2) = 1+ E(fm(k +1) — 1)m—k mCk 
k=0 

m 

                    = 1+ y((fm(k))m)m—k mCk 
k=0 

                   = 1+ (1+ (fm(k))m)m 
                     = 1 + (fm(k + 1))m. 

This last equation shows that it holds for n = k + 1. This completes the proof. ^ 

    The recursive formula generates the following : 

           fm(3) = 1 + (1 + 2m)m 
           fm(4) = 1+(1+(1+2m)m)m 

            fm(n) = 1+(1+(1+(...(1+(1+2m)m)m...)m. 
n-1 elements 

    Table 1 shows a list of explicit numbers for two-state (m = 2) and three-state 
(m = 3) models. 

      n\m23  
    011 

    122 
    259 
       326730 
                 4677 389,017,001 

                      5 458, 330 5.887 ... x 1025 

           Table 1 Total numbers of m-stage n-state stopping times 

3. Optimal Stopping Problem 

    Let {Xt}o be an n-stage Markov chain on m-state space S = {s1i s2, ... , sm} with 
a transition law p = {p(.I.)} and a preassigned initial state x0 E S ; Xo = x0. Let be 
the set of all subsets in fl which are determined by random variables {Xt, X1,... , Xu}. 
Let us take N = {0, 1, ... , n}. A mapping T : 52 —^ N is called a stopping time if 

IT = t} = {x0x1 ... xn I T (x0x1 ... xn) = t } E .~ `dt E N.
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The stopping time T is called { }oadapted. Let To be the set of all such stopping 
times. Any stopping time T E To generates a stopped state (ramdom variable) XT : S2  * 
R1 : 

XT (w) = XT(4,) (w) 
and a stopped reward (ramdom variable) g.r : S2 Rl : 

9T (w) = 9T(W) (XT (w))• 
We remark that the expected value Exo [g.r] is expressed by sum of multiple sums : 

Exo [9T] = E > 9t(xt)p(x1I xo)p(x2I xl) • • p(xtl xt-1)
                          t=0 {T—t} 

    Now we consider the problem of maximizing an expected value of stopped process 

To(x0) Maximize Exo [gT] subject to T E Ton. 

3.1. Optimality 

   Let us define the sequence of functions {vt}o backwardly as follows : 

vn(xn) = 9n(Xn) 
vn1(xn-1) = MaX[9n1(Xn-1), E _1 (vn(Xn))] 

                                                                                                   • Vi (Xi) = Max[g1(xi ), Exi (v2 (X2 ))] 
vo(xo) = Max[9o(x0), Exo (vi (Xi ))] 

where Ex is the one-step expectation operator induced from the Markov transition ma
trix p(•I•) . 

Ex(h(Xt+1)) = E h(y)p(ylx)• 
                                       yEX 

We define T* for Markov chain {Xt }o which starts at state x0 on stage 0 : X0 = so. For 
w = xox1x2x3 ... xn-lxn, let 

T* (w) be the first n such that                                      gn(Xn) = vn (Xn )• 

Then we see that 
T*ETon. 

This is based upon the observation that 

T* (CV) = t 

if and only if 

9o(x0) < vo(X0) 
91(X1) < V1 (Xi) 

9t1(xt-1) < vt1(Xt-1) 
9t(xt) = Vt(Xt)•
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    THEOREM 3.1. 
 Eso  [9T] < vo(SO) VT E To .(3.1) 

    PROOF. We note that 

Eso [gT] = E 9o(so) + E P(x1I so)91(xl) + .. . 
             {T=0}{T=1} 

                 + Ep(x1lso)p(x21x1) •• • P(xn_i I xn2)9n1(xn-1) (3.2) 
{T=n-1 } 

                     + E p(x1Is0)p(x2Ix1) ... p(xnI xn1)9n(xn)• 
{-r=n} 

From the definitions of vn and vn_1, we have 

       the sum of the last two terms 

= E p(xl I s0)p(x2I xl) ... p(xn—1 l xn2)9n1(xn-1) 
{T=n-1} 

         + E p(x1Is0)p(x2Ix1)......p(xnl xn-1) E P(xnI xn1)Vn(xn) 
{T>n-1}xnES 

Ep(x1 I s0)p(x2'xi) ... p(xn-1 lxn2)vn1(xn-1) 
{T=n-1} 

         + E P(x1lsO)p(x2Ix1)......p(xn1xn1)vn1(xn-1) 
{T>n-1} 

= E P(x1IsO)P(x2lx1) . . . p(xn-1I xn2)Vn1(xn-1). 
{T>n-1} 

Substituting this inequality into (3.2), we have 

Eso [9T] 

E 9o(so) + E P(x11s0)91(xl) + .. • 
{r=0}{T=1} 

   +p(xl Iso)p(x2Ix1) ... P(xn-2I xn3)9n-2 (xn-2) 
{T=n-2} 

   + E P(xl I so)P(x21 x1) ...P(xn-1I xn2)vn1(xn-1) 
{T>n-1} 

= E 90(so) + E p(xlls0)91 (Xi ) +... 
{T=O} {T=1} 

   + E p(x1I s0)p(x2I x1) ... p(xn2lxn3)9n2(xn-2) 
{T=n-2} 

   + E p(xl ISO)P(x2Ix1) ... P(xn-2I xn-3) E P(xn-1 I xn2)Vn1(xn_i) (3.3) 
{T>n-2}xn-2ES
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The definition of vn_2 shows that the sum of last two terms in (3.3) is dominated by 

Ep(x1I so)p(x2l xi) ...p(xn-2I xn3)vn2(xn-2). 
{T>n-2} 

This in turn yields 

Eso [9T] < E 9o(so) + > p(xl Iso)91(x1) + .. . 
{T=0}{7=1} 

                 + > p(x1I so)p(x2I x1) ... p(xn-3I xn4)9n3(xn-3) 
{T=n-3} 

                     + E p(x1 I s0)p(x2lx1) ... p(xn-3l xn3)vn2(xn-2). 
{T>n-2} 

Repeating this argument, we have 

Eso [97-]E 9o(so) + > P(X1130)Vi (Xi). 
{T=0}{T>1} 

    Let us assume that {r = 0} = f . Then we have vo(so) = go(so) on f2. This implies 

Eso [9T] 5_ vo(so). 

Otherwise, we have {-r = 0} = 0. Then we get 

Eso [9T] C E *Xi I S0)v1(x1) G vo(so)• 
xi ES 

Thus we have the desired inequality (3.1).^ 

    THEOREM 3.2. 

Eso[9T*] = vo(so)• 

    PROOF. We note that the defintion of T* keeps the equality for all inequalities in 
proof of Theorem 3.1.^ 

3.2. Characterization 

   Let two sequences of functions { ft}o, {ht}o on S be given. Then the process 
{ ft(Xt)}o is said to be supermartingale (resp. martingale, submartingale) if ft(x) > 
(resp. =, C) T ft+1(x) x E X, 0 _< t S n — 1, where 

Tft+i(x) = Ex [ft+1(Xt+1)] = E ft+1(y)p(yl x) 
                                            yEX 

denotes the expected value of tomorrow's reward function ft+i given today's sate Xt = x. 
   The process { f t (Xt) } is said to dominate the process { ht (Xt) } if f t (x) > ht (x) x E 

, 0<t<n. 

   A supermartingale { ft (Xt) } which dominates { ht (Xt) } is said to be minimal if 
every supermartingale which dominates flit (Xt) } dominates { ft (Xt) } .
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   THEOREM 3.3. (Characterization) The value process  {vt(Xt)} is the minimal su
permartingale which dominates the stoppingreward process {gt(Xt)}. 

    PROOF. Let {ut(Xt)} be any supermartingale which dominates the stopping
reward process {gt(Xt)}. Since 

un(xn) > gn(Xn) = vn(xn) Xn E S, 

we have 

un1(xn-1) > Exni(un(Xn)) = Exn1(gn(Xn.))• 

Further the domination impiles that 

un1(xn-1) gn1(xn-1) Xn-1 E S. 

Thus we have 

un1(Xn-1) MaX[gn1(Xn-1), Exni(un(Xn))] = vn1(Xn-1)• 

Repeating these arguments, we have 

ut(Xt) ? vt(Xt) 0 <_ t S n, Xt E S. 

This shows that {vt(Xt)} is minimal, which completes the proof.^ 

   Let 931 be the set of all sequences of functions {ut}o such that {ut(Xt)} is a super
martingale which dominates the stoppingreward process {gt(Xt)}. 

   THEOREM 3.4. If there exists {ut}o E 931 such that any {ht}o E 931 enjoys the 
property that {ht(Xt)} dominates {ut(Xt)}. Then it holds that 

ut(Xt) = vt(Xt) 0 <_ t <_ n, Vxt E S. 

    PROOF. Since {ut}o E 9R, we have from Theorem 3.3 

ut(Xt) > Vt(Xt) 0 <_ t <_ n, VXt E S. 

On the other hand, {Vt}o E 931 enjoys the domination property. This implies that the 
reverse inequality. Thus we have the equality, which completes the proof. ^
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