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Abstract

A mathematical model of the probabilistic inventory problems with piecewise
cost functions which may not be piecewise smooth is presented and various prop-
erties in this model are studied. Also some sufficient conditions on cost functions
are found to ensure simple treatment on an optimal policy.
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1. Introduction

‘We consider the optimal policy of a probabilistic inventory problem with a piecewise
cost function. The decision criterion is the maximization of expected profit or the
minimization of expected costs which include the ordering, holding, and shortage costs.
A typical example in single period problem is as follows. Let z be the amount on hand
before an order is placed and let ¢(b) be the probability density function of demand B.
Let h and p be the holding and shortage costs per unit per period. Further, let ¢ be
the purchasing cost per unit and let z be the amount on hand in initial period after an
order is received, which means that the initial regular order is z — z. If we assume no
setup cost is occurred, the expected cost for the period is given by

E{C(B,z)} = ¢(z — z) + hE{holding cost} + pE{ shortage cost}.

We define the function H(z) by the equation E{C(B,z)} = ~cz + H(z) and let f;(z)
be the minimal expectation of the total cost. Then we may write

fi(@) = min{~cz + H(z)}.

In one period problem the maximization (Kabak, 1984, Sorai, Arizono and Ohta, 1986)
and the minimization (Kodama and Kitahara, 1983, Kodama, 1986) of the expected
function in inventory models are considered and the special inventory problems are solved
in Kodama (1990a) and Kodama (1991a). Moreover, a mathematical generalization of
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the cost functions in the inventory problem is defined and analyzed in Kodama (1990b),
Kodama (1992) and Kodama (1996).

In multiperiod models we suppose that ¢(b) remains unchanged from period to
period and demands in each period are independent. We should take in the discounted
value of money in this case. That is, if a{< 1) is the discount factor per period and
fn(z) is the discount expected loss for n-period inventory model when an optimal policy
is used at each purchaing opportunity, then

fa(z) = min { —cz+H(z) +a /0  fa(e - b)¢>(b)db}.

Various properties of the optimal policy in multi-stage model are studied in Kodama
(1991b) and Kodama (1993). In recent papers (Kodama, 1998a and Kodama, 1998b),
we have attempted to express the optimal function by closed forms with known cost func-
tions in the multi-stage model. Furthermore, some sufficient conditions on cost functions
are found to ensure simple treatments on an optimal policy and specializations of cost
functions are made and many examples are analyzed. In Kodama and Sakaguchi (2001c)
we studied inventory models with a piecewise cost function that was piecewise smooth
and discussed the properties of the optimal policy. We define functions Fi(z) by the
equations

Fer(s) = H() + o /Omfk_uz—b)qs(b)db, fo()=0, k=1,2---,N

and let
Z, =inf{z | F._,(z) > 0}.

Then the optimal policy in the probabilistic dynamic inventory problem was given as
follows:

If £<Z,, then order (%, — ), otherwise do not order.

In this paper we give a mathematical model of dynamic inventory problems with a
piecewise cost function which may not be piecewise smooth. That is to say, we assume
that the function H(z2) is a piecewise function which may not be piecewise smooth. In
this case the fundamental properties of the functions Fi(z) are given in Theorem 2.6
and we would set

.7_7«,; = inf{z I F(,n—l)+(z) Z O}'

We assume that H;(z) (1 <37 < m+1) has a continuous second derivative and is a convex
function on [R;—1, R;] such that H(z) = H;(z) for z € (R;—1, R;]. It is effective to
decide the sign of F(’n_l) +(&:) in order to get Z,, and we show some sufficient conditions
for this in terms of the discount factor @ and H(R;) in Corollary to Theorem 3.1. Further
we discuss the method to obtain Z,, in some cases expressing the equation to solve by
the known functions H;(z).
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2. A mathematical model

Let ¢, be real numbers with 0 < ¢, 0 < o < 1. Let Ry,...,R,, be a sequence
of real numbers such that R < --- < R,,. Let Hi(z) (1 < i < m + 1) be real
valued-functions defined on [R;_1, R;], where we respectively abbreviate (—oco, R;] to
[Ro, Ri] and [Ry,, o) to [Rm, Rm+1]- Throughout this paper we assume that for all
i with 1 < ¢ < m+ 1, H;(z) has a continuous second derivative on [R;_;, R:], and it
is a convex function on [R;_;, R;] which means by the condition that H}(z) > 0 on
(Ri-1, R;). We also assume that

Hi(R:) = Hiy1(R:) and  Hi(R)) < Hi;y(Ry) forall i 1<i<m (2.1)

. 1 . !
z_lir_noo Hi(z) <0, zll’n;o H,, .1(2)>c (2.2)
Now set
H(z) = Hi(2) for ze (R;_1, Ri). (2.3)

Then H(z) has a derivative at every point in the set R of all real numbers except
z=R; 1<1i<m. Weknow that H’ (R;) and H) (R;) exist, and that the inequality

H'(R) < H{(R.) (2.4)

holds for all i and we see that H! (2) is non-decreasing on (—o0, o0).
Let ¢(b) be the density function of a real random variable B and we assume that
#(b) is a piecewise continuous function with ¢(b) = 0 for b < 0. For a given real number

z and z we define functions fi(z), Fix(z) (k=1,---,N) as follows.
fi(z) = min{ -z + H()}, (25)

fk(.’lf)=1;DZIE{—C.’B+H(Z)+a/(;°°fk_1(z—b)¢(b)db}, k=2737aNa (26)

Fioi(2) = H(z) +a /0 T fealz-D)e0)D, fol) =0, k=1,2-,N.  (27)

By (2.1), (2.2), (2.3) and the fact that H;(2) is a convex function on [R;_;, R;] for
all i (1 <% < m+ 1), there exists Z, such that

& = inf{z | H, () > 0}. (2.8)
Note that if z # R;, then we have H/ (z) = H'(z).

LEMMA 2.1. We have

_ | —cx+ H(z), if z < &y,
hl=) —{ —ca:-l-H(:z:;, ifz Z:Ei-

In particular fi(x) is continuous on R.

PROOF. By the assumption (2.1), we know that H, (2) is a non-decreasing function
on (—oo, o). By (2.8) we see that H(Z;) is the minimum of H(z) on the interval
(=00, 00). It thus follows that

. _ H(Q_Il), ifz <z,
rzngilH(z) - { H(z), ifz >z
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and hence we get the equation in this lemma. O

Now we shall discuss some of the basic properties of the functions fi(z), Fi(z) (k =
1,---,N). At first it will be shown that the function Fj(z) has the similar properties to
the function H(z).

LEMMA 2.2. We have

H(z) ——acz+a{H(;'z':-1)+cE(B)}, if z < F,
Fi(z) = H(z)—acz+a/ l {H(z-b) — H(Z,)}¢(b)db
" ta{H@E)+EB)),  ifz> .

Furthermore Fy(z) is continuous on R.

PROOF. Assume first that z < Z;. Then it is shown that if b > 0, then z — b < Z;
and hence f;(z — b) = —c(z — b) + H(Z;) by Lemma 2.1. We therefore obtain

Fi(z) = H(z)+ a/ooo{—c(z —b)+ H(%)}o(b)db
= H(z) — acz + a{H(Z1) + cE(B)}.
Next suppose that z > Z;. Then z —b < 7, if and only if 2 — Z; < b. Thus we have
Fiz) = H(Z)+a /0 " hi(z - b)o(bydb
= H()+a / T e(e = b) + H(z — b)}é(3)db
0

+a / i° {=clz — b) + H(z1)}$(b)db
= H(z)—-acz+ oz/:_:El {H(z —b) — H(Z1)}¢(b)db + a{H(Z,) + cE(B)},

and we complete the proof because it is clear that Fj(z) is continuous. m]

LEMMA2.3.  Fi(z) has a derivative on [R;_y, Ri] foralli (1 <i<m+1),
given by
H'(z) — ac, if 2<%, and z # R;,
Fi(z) =

Z—T1
H'(z) —ac+ a/ H'(z - b)¢(b)db, ifz> z1 and 2z # R;,
0
where j =1, ..., m. We have
H! (R;) - ac, ifR; <1,
F ) = R;—%;.
1+ (R:) H| (R)-ac+a / H'(R; — b)¢(b)db, if R; > Z,
0
and
H' (R;) - ac, if R; < 1,
Fi_(R)= , Rims . _
H' (R)—ac+a H'(R; — b)¢(b)db, if R; > 3, ,
0

in particular we see Fi_(R;) < F{ (R;) for alli (1 <i < m).
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PROOF. Let Z; be an element in the interval [R,_1, R,). If z < Z;, our lemma is
clear by Lemma 2.2. Therefore we may assume Z; < 2. It also follows from Lemma 2.2
that we may only study a derivative of the function

[ G-y - By

For the sake of it we suppose that z is on the interval [R;_;, R;]. Then we see p < i
and have a sequence

Rp..l <§1$Rp<"'<Rk_1 <Ry <:--<R;_; <z<R,.

Put g(z,b) = {H(z — b) — H(Z;) }$(b) and let
Jr(={(z,b)|1;:,-_1 <z<R;, OSsz—:El}.

Then the function H(z — b) of two real variables z, b are continuous on the set K.
Since z — Ry < b < z— Rg_; if and only if Ry_; < 2z —b < Ry, we see that the
function H'(z — b) of two real variables z, b are continuous on the set K — UL, where
Ly = {(z,b) | b=2— R} (p < k < i—1). If (b) is continuous on [0, z — Z,] and
R;_1 < z < R;, then

d

z—%1 _ 2—%1 dg L z2—% ,
E/o g(z,b)db-/(; a—z(z,b)db+g(z,z—-a:1) —/(; H'(z — b)g(b)db. (2.9)

Similarly we obtain that if z = R;_;, then

Ri~1—% R;_1—-%
D, / o(Ri_1, b)db = / H'(Ri_y — b)$(b)db, (2.10)
0 0

and that if z = R;, then

R;—z; R;-%;
D_ /0 o(Rs, b)db = /0 H'(R; — b)p(b)db. (2.11)

We have assumed that the function ¢(b) is piecewise continuous, so suppose that ¢(b) is
discontinuous at b = a; (1 < j <), where a;,as,...,q; is an increasing sequence with
aj €0, z -]

At first suppose that z € (R;-1, R;). In this case there is a positive number § such
that the following conditions:

1. Wehave R;_; <z-94, z+6 <R;.
2. Ifz2—-6 <w <z then w— Ry #aj for all j, k.
3. fz<w< 2+, then w — R # qj for all j, k.
Let
K5_={(w,b)lz-—6§w§z,OSbSZ—:i'l},

K.s+={(w,b)|z§w§z+6, OSbSZ—il}.
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Considering the fact that the function H’'(z — b)¢(b) of two real variables z, b are
continuous at every point in the set Ks_ which is not on any lines b = z — Ry (p <
k <i—1)and b=a; (1 <j<lI), we are able to calculate a left-hand derivative by the
method on Kj_ used in (2.11). Similarly by the same method on K, used in (2.10),
we may have a right-hand derivative at z, and these are shown to be equal. This implies
that (2.9) holds in this case. There are remained cases where z = R; , or z = R;, and
the equations (2.10) and (2.11) can be shown similarly in these cases.
The inequality

H(R;) < H} (R:)
leads us to the relations
Fi_(R:) < F{ (R)

for all i (1 <7 < m), therefore we complete our proof. O

LEMMA2.4.  Fi(z) has a second continuous derivative on [R;_;, R;] foralli (1<
i <m+1), given

. H"(z), i if 2 <% and 2 # R;,
— z—Z1
F(z) = H"(z) + a/ H"(z - b)¢(b)db, if z >z, and z # R;,
0

where j =1,...,m. We obtain
" (R,) — R;—%;
1+ H}(R)+a / H"(R; - b)¢p(b)db, if R; > %,
0

and
H"(R)), if R; < 7,
FIH—(RI') = " Rim% " . -
HI!(R;) + a H"(R; — b)¢(b)db, if R; >z, .
0
We have Fy'(z) > 0 on (R;—1, R;) for alli.
PROOF. Asthe method we used in Lemma 2.3 we can calculate a second derivative

of Fi(2). It also follows from the inequality H”(z) > 0 on (R;_;, R;) that Fi(z) is a
convex function on [R;_;, R;] and hence our lemma is proved. O

LEMMA 2.5. We have
’ . 7] . !
zl}r_noo Fi(2) <0, zhl& Fl(z) > ¢
PROOF. By (2.2) and Lemma 2.3 we see that

lim Fj(z) = _lilil (H'(2) —ac) < 0.

zZ—r—00
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If0<b<z-%, then z— b > z; and therefore H'(z — b) > 0. It thus follows that

z—Z
. ’ _ . 1 _ (., _
lm Fj(z) = lim (H (2) — ac+a /0 H'(z b)¢(b)db)
_ : 10N : 1
= zllrrgoH (2) ac+a/‘0 zlgx;H (2)é(b)ddb
= Ii’m H(z)(1+a)—ac>c.
This completes the proof. ]

Now we have the following fundamental Theorem .

THEOREM 2.6. Assume that 1 < k < N — 1. Then there is a real number Ty
such that & = inf{z | F(’k_l) +(2) > 0}. We have the following statemens:

1.
so={ ZZIROE s
In particular fi(z) is continuous on R.
2.
H(z) — acz + a{Fi-1(Z1) + cE(B)}, if 2 < T,
Fi(z) = { H(z)—acz+a /0 T (Feca(z = b) — Fur(20)}$(0)db
+ a{Fr-1(Zx) + cE(B)}, if 2> x.

Furthermore Fi(2) is continuous on R.

3. Fi(2) has a derivative on [R;_1, Ri] for alli (1 <i < m+1), given by

H'(2) — ac, if 2z < & and z # R;,
Fy(z) =

z2—Z
H'(z) —ac+ a/ F{_,(z —b)¢(b)ddb, if z> Zy and z # R;,
0

where j =1, ..., m. We have

H! (R;) - ac, if R; < Iy,
FI::+(R1) = 1] Ri=2 y) . =

H! (R;) —ac+ a/; v_1(R; — b)p(b)db, if R; > T
and

H' (R;) — ac, if R; < Zg,

/ ) = R;—%x

Fk_(Rl) HI_(R,,) —ac+ a/ F,;_I(R,' - b)d)(b)db, if R; > Z ,
0

in particular we see F_(R;) < Fy (R;) for alli (1<i<m)



82 M. SAKAGUCHI and M. KoDAMA

4. Fi(2) has a second continuous derivative on [R;—1, R;] for alli (1<i<m + 1),

given
H'"(z), ) if z < Zx and z # R;,
F{(2) = " T . -
H"(z) + « Fi_1(z = b)g(b)db, if z> Zx and z # R;,
0
where j =1,...,m. We obtain

H_’,{(R,), ~ if Ri < Iy,
F,:'_{,_(R,) = " Ri=2 " . =
H!(R) +a FI' (R - b)$(b)db, if Ri > Zx
0

and
FI:,—(Rt) = " Ri=2w 1" . =
H'(R)+a F/_ (R —b)¢(b)db, ifR; >z} .
0

We have F{!(z) >0 on (R;_;, R;) for alli.
5. Fy, (2) is a non-decreasing function on the set R of all real numbers.
6. We have

. 1] s !
z_I}I_nm Fi(2) <0, le)l{.lo Fi(z)>ec
Proor. If k = 1, our theorem follows from Lemma, 2.1 through Lemma 2.5. Since

we set Fo(z) = H(2), the properties of the function Fi(2) is gotten from those of Fp(z2).
That is, we know by (2.6) and (2.7) that

fal®) = min{-cz+Fi(2)}

R() = H@+a | " fale - BB (b)db.

We also see by Lemma 2.1 through Lemma 2.5 that the same assumptions which we
suppose on the function H(z) hold on Fy(z). That is, F}(2) is continuous on (—oo, o)
and has a second derivative on the interval [R;_,, R;] for all i (1 < i < m). And also
Fy(2) is a convex function on [R;_;, R;] for all i and we have

Fi_(R:) < Fi,(R:) fori (1<i<m)
and
. , . y
Sm A <0 lim K >e
Thus we can repeat the proof of lemmata to conclude that our theorem holds in the

case k = 2. We are able to proceed to prove it in the case k£ > 3 and we complete our
proof. D

The following inequalities is valid to decide the sign of FJ(R;) 1<k<N-1,1<
i <m) (cf. Theorem 1 in Kodama and Sakaguchi, 2001b).
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THEOREM 2.7. We have

H'(z) —ac< Fi(z) < H'(2) ~ac+ aF}_,(z), if z2>Z; and z # R;,

HL(R;) — ac < Fy (Ri) < HL(Ri) — ac+ aF(,_1y, (R:), if Ri> %,

H.(R;) —ac < Fy_(R;) S HL(R:) —ac+aF(,_y)_(Ri), f Ri> s,
for1<k<N-1.

PROOF. Suppose that Z; < z and z # R;. It follows from 3 in Theorem 2.6 that
Z—~T)
Fi(z) =H'(2) —ac+ a/ Fy_1(z — b)¢p(b)db.
0

Note that 0 < b < z—Z¢ if and only if Zx < z—b < z. Since Fj,_, (z) is a non-decreasing,
we know that

0< Fi_1(Zx) S Froy(2=b) < Fy_y(2)  for 0<b<z~34,

which implies

z—

o< [T FRaG-tsons [ R0 < R

Consequently we obtain
H'(z) ~ ac < Fi(2) < H'(2) — ac+ aF;_,(2)
and, by 3 in Theorem 2.6, we also have
H. (R) - ac < Fy (Ri) < HY(R;) — ac+ aF;_,y, (Ry),
H' (R;))—ac< F,_(R;) <H'(R;))—ac+ aF(’k_l)_(R,-).

We complete the proof. O

3. Optimal policies

We wish to find the sequence %, ...,Zn to get optimal policies in the system of the
probabilistic dynamic inventory problem. We studied in Kodama and Sakaguchi (2001a),
Kodama and Sakaguchi (2001b) and Kodama and Sakaguchi (2001c) the interval [R,_1,

R,] which contains Z; under the assumption that the function H'(z) is continuous. The
interval may be found if we could seek the conditons F} _,(R,_1) < 0 and F}_,(R,) > 0.
Although functions F(z) may be discontinuous in this paper, we have similar results
considering the right derivatives F/, (z) (1 < i < N —1) and we see them in the following
theorem (cf. Theorem 2 in Kodama and Sakaguchi, 2001c).

THEOREM 3.1. Let R be a real number. Then the following statements hold:
1. If H{ (R) > ac, then Fy (R) >0 forallk 1<k<N-1.
2.If 1<k<N-1 and F(’k_l)+(R) <0, then F; (R)=H\(R)-ac .
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If1<k<N-1, H, (R)< ac and F(Ik—l)+(R) <0, then F (R)<0.
. IfH'.(R) <0, then F} (R)<O0 forallk 1<k<N-1.

ac(l+a+---+a*1)
l1+a+---+af

. If1<k<N-1and H,(R) < , then F} (R)<0.

ac(l+a+---+aF1)
1+a+---+ak

. If1<k<N-1and H,(R) = , then F,(R)<0.

ProoOF. 1. If R < Zi, then this is a direct consequence of 3 in Theorem 2.6. If
R > Zj, then it is also clear by Theorem 2.7.

. In fact, if F{;_;), (R) <0, then R < %, and hence Fi (R) = H\(R) —ac by
3 in Theorem 2.6. If F('k—l) +(R) =0, then Zx < R. It follows from Theorem 2.7
that

H(R) — ac < Fy, (R) < H{ (R) — ac+ aF(;_;), (R).
Substituting F(’k_1)+(R) = 0 we have Fy (R) = H\ (R) — ac.
. This easily follows from 2.

. The statement 3 implies 4 immediately.

. We see that H! (R) < ac. Therefore by 3 we may assume that F], (R) >0 for
alli 0 <i<k—1. Hence it follows that Z;;; < R. By Theorem 2.7 we have

Fliyy+(R) < H{(R)—ac+aF; (R) for all i 0<i<k-1
By these inequalities and our assumption we obtain
Fi.(R)<H, (R(Ql+a+--+a*)—ac(l+a+---+a*) <0.
. We are also able to prove this by the same method of 5 that Fy, (R) <0, because
H.(R(l+a+-+a*)—acl+a+---+a* 1) =0.
We complete our proof. (]

COROLLARY 3.2. Let p be an integer with 1 < p < m. Then we have:
. IfH\(Ry) > ac, then Zx <R, forall k 1<k<N.
. IfH! (R,) <0, then R, <%} forall Kk 1<Ek<N.

ac(l+a+---+a' 1)

’
.IfH+(Rp)< l1+a+---+af

, then R, < Ty forallk 1+1<k<N.
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Proor. These assertions are followed from Theorem 3.1, because Z < R, if and
only if F(’ k—1) +(Rp) >0, and the proof is complete. O

For the purpose of calculating Z, we wish to get conditions that support us how
to choose some functions H;(z) among the functions H;(z),..., Hp41(2) . Since there
exist many complicated cases, we only consider simpler cases.

At first we know that

H' (R) < Hy(Ry) < - < H (Rm).

The corollary shows the following four particular cases:
Case A. If H\ (R;) > ac, then Z; < Ry forallk 1<k <N.
Case B. If H, (R,) <0, then R, < Zr forallk 1<k<N.

Case C. If H| (R,_1) <0 and H) (R,) > ac,then R,_; < Zx < R, forallk1 <k < N.
ac(l+a+---+at™?t)
l1+a+---+a

then R,y <Zr < Ryforallk 1<k<land R, <Zpforallk I+1<k<N.

When m = 1, the optimal policies are studied at the case D; in Kodama (1998a).

Case Dy. ¥ HY, (Rp—1) <0, Fyj_,,(R,) 20 and H'(Rn) <

)

Now we shall consider the probabilistic multi-period inventory model with zero
delivery lag, backlogging of demand and linear purchasing cost [c(y) = cy]. Let —cz +
H(z) denote the expected one-period loss, given z is an amount on hand after an order
is placed and let fi(z) denote the minimum total discount expected loss for period
1,2,...,k where z is the initial stock level. From the principal of optimality, each fi(x)
satisfies the functional equation (2.5) and (2.6). Then the optimal policy in our system
of the probabilistic dynamic inventory problem is the following:

If < %, then order (% —z), otherwise do not order.

Now we study how to get the sequence Z;, Z2, -+, Zy in simple cases. In general
we have the following proposition (cf. Theorem 2.2 in Kodama, 1998a).

PRrRoPOSITION 3.3. We have
T <Z2<-- <IN

PRroOOF. We prove Z, < Zp41 by induction on p. By the definition of z,, H! (2)
is negative for z < Z;, and therefore if 2 < %, then F{, (2) = H\(2) — ac < 0. This
impies Z; < Z2. Now we may assume p > 2. It is shown that F,_,) (2) < 0 for
z < Zp. Therefore if z < Z,_1, then it follows from 3 in Theorem 2.6 that F('p_l) +(2)=
H) (z) —ac<0.

By the inductive hypothesis we obtain Z,_, < Z,. Suppose that Z,_1 < z < Z,.
Then we have by 3 in Theorem 2.6

Fl 1),(2) = Hy(2) —ac+a /O TR (2 - be)db <. (3.1)

HO<b<z—-Zp 1andz-b#Rj,thenZ, ; <z2-b<2<Z,andsoF, ,(z—b)>0
because F,_,(z) is not decreasing and F,_,(Z,—1) > 0. This fact implies

/ TR (2 — beB)db > 0,
1]
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and hence we obtain by (3.1) that H), (z) —ac <0 for Z,_; < z < Ip.
We have showed that F,,(z) = H\(z) —ac < 0 for z < Z,. Accordingly we
conclude that Z, < Zp4+1, and this proposition is proved. a

The following proposition is obtained from 3 in Theorem 2.6.

PROPOSITION 3.4. (Section 5 in Kodama, 1998a) We have for z > Z; with z #
R; (1<i<m)

F,'c(z) = H'(z) —ac+a Lz_ik (H'(z - bk) - ac)¢(bk)dbk

z—Z z2—bp—Fp_1
v [ f (H'(z = b = by-1) = ) §(bi-1)8(b5)dbs -1y
0 0

z—Z, pz—br—ZFx-1 pz—bp—br_1—ZTk—2
0 0 0

(H'(z — bp — bg—1 — br—2) — ac) ¢(bx—2)d(br—1)d(bx)dbi—2dbs_1dby

z2—bp—Zk_1 2=bp—br_1—-~bg—F2
k1 / / /

(H'(z — bk — by — -~ — ba) — ac) ¢(b2)$(b3) - - - $(bx)db2dbs - - - db
—Zx pz—bx—Fx-1 z—br—br—1—-—b2—Z1
k
)
H'(z — by —bg—1 — -+ — b1)d(b1)p(b2) - - - p(bx)dbrdby - - - dby
(0]

Case A. Assume H! (R;) = H;,(Ry) > ac. Then it follows that Z; < R; for all
k(1<Ek<N).

PROPOSITION 3.5. Assume H]_(R:) < 0 and H3, (R;) > ac. Then we have T =
R; for allk (1 <k <N).

PRrOOF. Since H]_(R;) < 0, H'(z) is negative for z < R;. Whence %, > R;, and
we complete our proof by Proposition 3.3 and the condition in Case A. (]

PROPOSITION 3.6. Suppose Hy  (Ry) > ac. If 2, = R; for somep (1<p< N-1),
then Tx = Ry for allk withp+1<k<N.

Proor. This is also clear by Proposition 3.3 and the condition in Case A. ]

Let Zx4+1 < Ri. Then Zi4, is a solution of the equation Fj(z) = 0, precisely it is
the minimal solution of its equation. Because of Fj(z) = H{(z) for z < R;, we may find
%, to solve the equation Hj(z) =0.

For 7; <z < R;,

Fi(2) = H{(2) —ac+a/0 T H (2= b)) (b1)dby.
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Thus we can get Z» to solve the equation Fj(2) = 0. It follows from Proposition 3.4 that
the functions Fj(z) for Zx < z < R; can be written by replacing H’(z) with H{(z), and
we keep on this step.

Case B. Suppose H) (R,) < 0. Then we have R, < Z; forallk 1<k < N.

In this case there is a number Z; that is a solution of the equation H,, ,,(z) =0
by the fact that F(z) = H,,,;(2) for z > R,,. Replacing all the function H’'(2) in the
equation of Proposition 3.4 with H} ,,(2), we are able to write Fy(2) for z > R,, by
using only the function H], ,,(2).

Case C. Assume that H) (R,_1) < 0 and H/ (R,) > ac. Then it follows that

R,y <Zr <R, forallk 1 <k < N. Applying the properties in cases A and B to
this case we know the following statements:

1. fH' (R,) <0, then Zx = R, forall k (1 <k <N).
2. fZ =Ry, forsomep (1<p<N-1),thenZr =R, forallk (p+1<k<N).

3. If Zr41 < Rp, then R, ;1 < Z; < R,. Hence we may find Z; to solve the equation
H(z) = 0. Replacing all the function H'(z) in Proposition 3.4 with H(2), the
functions F}(2) (Rp—1 < z < Rp) can be expressed in terms of the function H,(z).
For the sake of finding Zx+1, it is enough to solve the equations F}(z) =0 (1 <
i < k) successively.

Case D;. Suppose that H)(R,_1) < 0, F(’,_1)+(Rp) >0 and H)(Rn,) <
ac(l+a+---+al™t)
l+a+---+ao

R, <Zforallk I+1<Ek<N.

In this case it is necessary to change the H(z) in order to express F}(z). We write
them explicitly. At first solve the equation H,(z) = 0to get Z1. Next for2<k <I1-1
and 7; < 2 < R, we have by Proposition 3.4

. Then we have R,_1 < Zx < R, forallk 1 <k <1l and

Fi(z) = Hy(z)—oc+ a‘/oz—ik (Hy(z — b) — ac)p(by)dby

Z2—E z2—br—Fr_1
+°‘2/ / (Hy(z — be — be—1) — ac) ¢(bx—1)$(bx)dbi_1dbs

2~Zy pz—br—Fp_1 pz—br—bix_1—Fx_2

H' (Z — by — b1 — bk 2) — ac) ¢(br—2)d(br—1)P(bi)dbi_odby_1db

z—% z2—bp—Fp-1 z—bg—bg_1—---—bz—F2
k-1 /
0

(Ho(z — bk = by—g — - - — by) — ac) $(b3)b(bs) - - - $(bw) dbydlbs - - - dby

z—Fk pz—br—Fx-1 z2—bg—bp_1—-—b2—F
+a / / .../
0
H

(2 —bg —bg_1 — =+ — b1)d(b1)d(b2) - - - P(by)dbydby - - - dby.
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We may continue to find a solution Zx4; of the equation Fi(z) =0, Zx <2< R,
for 2 < k <1 —1. If we could not find any solution, then ZFr+1 = R,.

Next we shall show F}(z) by H}(z), however it is complicated. For the simplicity
we introduce the functions hy(2), hi—1(2), hi—2(2), ..., h2(2), hi1(2) for z > R,, as
follows.

z—b—Z1_ z=bi—bj_y-=bi_sy1—Z1—,
hl_s(Z) - / / o /

(H'(z=b = b1 —bi—s) —ac) d(b—s) - - - d(bi—1)d(br)db;_ - - - dby_, dby

0<s<l-2),
z—X; z—b;—%; 1 z—by—bj_q—--—b2—%;
h = ...
o [
H'(z— by — by — - = b1)(b1)b(b2) - - - (by)dbrdbs - - - dby

Then we obtain

h(z) = -/O‘z“" H'(z — b)) p(b)db — /z_zl &(by)dby
z—Rm 2—Rmyp-t-1
= [ H G- wstan+ 5_) / T e wstan

-

+/ - H'(z —b)¢o (bl)dbl - ac/ &(br)db,

-R, )

z—Rpm, m—1 oz Rotp—t-1
/ Hyoy1(2z = bi)p(bi)db + Z / H .\, (2 —b)p(br)db
0

m+p—-t

. " Hy (- b)) — ac /0 " bibn.

_.Rp
Let 1 <s<1—-1. Weset

n—1
K._, = {(bz—s, bi—st1, .o, b)) |[0<b_pn<2z— sz—j ~ZTi_n, 0<n<s },
j=0
Kl—sp - {(bl—s: bl—s+11 ey bl) ' Z = Rp S Zbl—8+j S Z— Ty,
j:O
Zbl—n—{—j <z2—-Zi-n (0 <n<s-— 1)1 bl—s+n ZO (0 <n S S) }a
j=o
K_, = {(bl—aa bi—st1s -5 1) | 2= R; < zbz—s+j <z—-Ri_,

=0
biosn 20 0<n<s) } +1<i<m),

Kigmin = {(Bioss ooty oo 8) 1Y biosts S 2= Bmy bogyn 200 <n < 9) ).
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Then
Ki_s=K_spUKi_sp11U---UK|_on UK _smy1-
Put
gb) = glbi—s, bi—sy1, ---, b1)
e (H'e—bi— b~ —bi_s) — a0) S )B(broesr) -+ (0)
gt(b) = gi(bi—s, i—st1, .-, br)
(Hi(z—by— by — -+ = bi—s) — @) $(bi—s)P(B1—s+1) - - $(bu),
(p<t<m+1),

where we make a minor change when s =1 — 1. It is shown that

/ / / 9(B)dbi_ydbi—os1 - -dby
K,

m+1

S ooy
t=p Ki—u

m+1

= Z/// 9¢(b)db_dby_gq1 - - - dby
K!—.st

t=p

hi—s(2)

This yields us to express the function Fj(z) as follow

-1
F/(2) = H,,1(z) —oc+ E a1y _i(2).

=0
We need to keep on searching Z;+2, Zi+3, -.., ZN, and so it is necessary to write
F{1(2), F{15(2), ..., Fy_,(2). Unfortunately they demand more calucations than that

of F}(2) if we would search them in the general form.

We have discussed how to find zn. However it is too difficult to deal with this
inventory system even when it is rather easier case. We should develop the thoery to
handle our dynamic inventory problem.
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