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INVENTORY PROBLEMS WITH PIECEWISE 

 COST FUNCTIONS WHICH MAY NOT BE 
        PIECEWISE SMOOTH

                    By 

Michinori  SAKAGUCHI* and Masanori KODAMAI

                           Abstract 

  A mathematical model of the probabilistic inventory problems with piecewise 

cost functions which may not be piecewise smooth is presented and various prop

erties in this model are studied. Also some sufficient conditions on cost functions 

are found to ensure simple treatment on an optimal policy.

Key Words and Phrases: Dynamic inventory problem, Dynamic programming, Piecewise cost 
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1. Introduction 

   We consider the optimal policy of a probabilistic inventory problem with a piecewise 
cost function. The decision criterion is the maximization of expected profit or the 
minimization of expected costs which include the ordering, holding, and shortage costs. 
A typical example in single period problem is as follows. Let x be the amount on hand 
before an order is placed and let ¢(b) be the probability density function of demand B. 
Let h and p be the holding and shortage costs per unit per period. Further, let c be 
the purchasing cost per unit and let z be the amount on hand in initial period after an 
order is received, which means that the initial regular order is z — x. If we assume no 
setup cost is occurred, the expected cost for the period is given by 

       E{C(B, z)} = c(z — x) + hE{holding cost} + pE{ shortage cost}. 

We define the function H(z) by the equation E{C(B, z)} = —cx + H(z) and let fi(x) 
be the minimal expectation of the total cost. Then we may write 

fi(x) = min{—cx + H(z)}. 

In one period problem the maximization (Kabak, 1984, Sorai, Arizono and Ohta, 1986) 
and the minimization (Kodama and Kitahara, 1983, Kodama, 1986) of the expected 
function in inventory models are considered and the special inventory problems are solved 
in Kodama (1990a) and Kodama (1991a). Moreover, a mathematical generalization of 
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the cost functions in the inventory problem is defined and analyzed in Kodama (1990b), 
Kodama (1992) and Kodama  (1996)  . 

   In multiperiod models we suppose that ¢(b) remains unchanged from period to 
period and demands in each period are independent. We should take in the discounted 
value of money in this case. That is, if a(< 1) is the discount factor per period and 
fn(x) is the discount expected loss for nperiod inventory model when an optimal policy 
is used at each purchaing opportunity, then 

                    f00 fn(x) =min— cx + H(z) + afk_1(z—b)~¢(b)db 

Various properties of the optimal policy in multi-stage model are studied in Kodama 
(1991b) and Kodama (1993). In recent papers (Kodama, 1998a and Kodama, 1998b), 
we have attempted to express the optimal function by closed forms with known cost func
tions in the multi-stage model. Furthermore, some sufficient conditions on cost functions 
are found to ensure simple treatments on an optimal policy and specializations of cost 
functions are made and many examples are analyzed. In Kodama and Sakaguchi (2001c) 
we studied inventory models with a piecewise cost function that was piecewise smooth 
and discussed the properties of the optimal policy. We define functions Fk(z) by the 
equations 

                          r00 Fk—i (z) = H(z) + aJfk-1(z — b)0(b)db, fo (•) = 0, k = 1, 2, ..., N 

                       0 and let 

                    = inf {z I Fn_1(z) > 0}. 

Then the optimal policy in the probabilistic dynamic inventory problem was given as 
follows: 

I f x < in, then order (in — x), otherwise do not order. 

   In this paper we give a mathematical model of dynamic inventory problems with a 
piecewise cost function which may not be piecewise smooth. That is to say, we assume 
that the function H(z) is a piecewise function which may not be piecewise smooth. In 
this case the fundamental properties of the functions Fk(z) are given in Theorem 2.6 
and we would set 

                  2n = inf{z F(n_i)+(z) > 0}. 

We assume that Hi (z) (1 < i < m+1) has a continuous second derivative and is a convex 
function on [Ri_1, Ri] such that H(z) = Hi(z) for z E (Rz_1i Rd. It is effective to 
decide the sign of F(n_i)+(Ri) in order to get in and we show some sufficient conditions 
for this in terms of the discount factor a and H(Ri) in Corollary to Theorem 3.1. Further 
we discuss the method to obtain :en in some cases expressing the equation to solve by 
the known functions Hi(z).
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2. A mathematical model 

    Let c, a be real numbers with 0 < c, 0 <  a < 1. Let R1, ... , R,„ be a sequence 
of real numbers such that R1 < • • • < R,,,,. Let Hi(z) (1 < i < m + 1) be real 
valuedfunctions defined on [Ri_1, Ri], where we respectively abbreviate (-oo, R1] to 
[Ro, R1] and [R„6, oo) to [R,,,,, R„i+1]. Throughout this paper we assume that for all 
i with 1 < i < m + 1, Hi(z) has a continuous second derivative on [Ri_1, Ri], and it 
is a convex function on [Ri_i, Ri] which means by the condition that H11(z) > 0 on 

     Ri). We also assume that 

Hi(Ri) = Hi+1(Ri) and H=(Ri) < Ha+1(Ri) for all i 1 < i < m (2.1) 

lim 111(z) < 0,lim H;n+1(z) > c.(2.2) 
                               z-4-00z-.00 

Now set 

               H(z) = Hi(z) for z E (Ri_1, Ri].(2.3) 
Then H(z) has a derivative at every point in the set R of all real numbers except 
z = Ri 1 < i < m . We know that H' (Ri) and H+(Ri) exist, and that the inequality 

H' (Ri) < H+(Ri)(2.4) 

holds for all i and we see that H+(z) is nondecreasing on (-oo, oo). 
   Let ¢(b) be the density function of a real random variable B and we assume that 

5(b) is a piecewise continuous function with 0(b) = 0 for b < 0. For a given real number 
x and z we define functions fk(x), Fk (x) (k = 1, . • • , N) as follows. 

                fi(x) = min{-cx + H(z)},(2.5) 

                                f00    fk(x) = mincx+H(z)+aJfk_1(zb)0(b)db, k=2,3,•••,N, (2.6) 

                                  0 

                                 00 Fk-1(z) = H(z) + a ffk-1(z  b)q5(b)db, fo() = 0, k = 1, 2,..., N. (2.7) 

                      0 

   By (2.1), (2.2), (2.3) and the fact that Hi(z) is a convex function on [Rs_ii Ri] for 
all i (1 < i < m + 1), there exists t1 such that 

                 xl = inf{z ( H+(z) > 0}.(2.8) 

Note that if z Ri, then we have 14(z) = 111(z). 

    LEMMA 2.1. We have 

              fl (x) _                     {-ex + H(21), if x < x1, -cx + H(x) , if x > 21. 

In particular fi(x) is continuous on R. 

    PROOF. By the assumption (2.1), we know that H+(z) is a nondecreasing function 
on (-oo, oo). By (2.8) we see that H(t1) is the minimum of H(z) on the interval 
(-oo, oo). It thus follows that 

               minH(z) =H(xl), if x <21i              z>x H(x), if x > x1
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and hence we get the equation in this lemma. ^ 

    Now we shall discuss some of the basic properties of the functions  fk(x),  (x), Fk (X) (k = 
1, • • • , N). At first it will be shown that the function F1(z) has the similar properties to 
the function H(z). 

    LEMMA 2.2. We have 
          H(z) — acz + a{H(21) + cE(B)}, if z < 21, 

                                    rz—zj   Fi(z) = H(z) — acz + aJ{H(z — b) — H(21)}¢(b)db 
                             0 + a{H(21) + cE(B)},if z > 21. 

Furthermore F1(z) is continuous on R. 

    PROOF. Assume first that z < 21. Then it is shown that if b> 0, then z —b _< 21 
and hence f i (z — b) = —c(z — b) + H(21) by Lemma 2.1. We therefore obtain 

                       f00F1(z) = H(z) + a{—c(z — b) + H(1)}(b)db 
                          = H(z) — acz + a{H(2i) + cE(B)} . 

    Next suppose that z > 21. Then z —b < 21 if and only if z — 21 < b. Thus we have 

             f00F1(z) = H(z) + afi (z — b)¢(b)db 
                fz—~1      = H(z) + a{—c(z — b) + H(z — b)}c(b)db 

              f00+a{—c(z — b) + H(1)}q5(b)db                                            x1 

                                     fz—x1      = H(z) — acz + aJ{H(z — b) — H(2i)}q5(b)db + a{11(21) + cE(B)}, 
                          0 and we complete the proof because it is clear that F1(z) is continuous. ^ 

   LEMMA 2.3. Fi(z) has a derivative on [Ri_1, Ri] for all i (1 < i < m + 1), 
given by 

H'(z)—ac,ifz<21 and z0Ri, 
 Fl(z) =rz-21   Fl(z) — ac + aJH'(z — b)0(b)db, if z > 21 and z 0Ili, 

                            0 where j = 1, ... , m. We have 

      H+Rt)—ac,ifRi<.i, 
   F'i+(Ri) =H+(R

i) — ac + aRi-211H'(Ri — b)0(b)db, if Ri > 21 

                                 0 and 

H' (Ri)—ac,ifRi . <21,  Fi—(Ri) = H'0 
                          0H(Ri) — ac + aRs—xl'(Ri — b)0(b)db, if Ri > 21 

in particular we see F1_(Ri) < Fl+(Ri) for all i (1 < i < m).
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    PROOF. Let  ±-1 be an element in the interval [Rp_1 i Rp]. If z < . i, our lemma is 
clear by Lemma 2.2. Therefore we may assume t1 < z. It also follows from Lemma 2.2 
that we may only study a derivative of the function 

                                 rz-21 
               J0{H(z — b) — H(21)}0(b)db. 

For the sake of it we suppose that z is on the interval [Ri_1, Ri]. Then we see p < i 
and have a sequence 

Rp_i <21 <Rp < ••• <Rk—1 <Rk < ••• <Ri—i <z <Ri. 

   Put g(z,b) = {H(z — b) — H(i)}c5(b) and let 

K= {(z,b) I Ri_i <z<Ri, 0<b<z-21}. 
Then the function H(z — b) of two real variables z, b are continuous on the set K. 
Since z — Rk < b < z — Rk_i if and only if Rk_i < z — b < Rk, we see that the 
function H'(z — b) of two real variables z, b are continuous on the set K — UkLk, where 
Lk = {(z, b) b = z — Rk} (p < k < i — 1). If O(b) is continuous on [0, z — 21] and 
Ri_1 < z < Ri, then 

 z—X1rz-21z-21  d g(z, b)db =J~g(z, b)db + g(z, z — ii) =JH'(z — b)0(b)db. (2.9) 
000 

Similarly we obtain that if z = Ri_1, then 

fR;-1-i1rR;_1-xl        D+g(Ri_i, b)db =JH'(Ri_1 — b)0(b)db, (2.10) 

0 and that if z = Ri, then 

           pRi-21f
oR,-21             Jg(Ri,b)db =H'(Ri — b)0(b)db. (2.11) 

  0 We have assumed that the function qS(b) is piecewise continuous, so suppose that q5(b) is 
discontinuous at b = (1 < j < 1), where a1, a2, ... , al is an increasing sequence with 
ai E [0, z — xi]. 

   At first suppose that z E (Ri_1, Ri). In this case there is a positive number 8 such 
that the following conditions: 

1. We have Ri_i < z — 8, z + 5 < Ri. 

  2. If z-8 <w <z, then w — Rk ai for all j, k. 

  3. If z < w < z + S, then w — Rk aj for all j, k. 

   Let 

Ka_ = {(W,01 z8<w<z, 0<b<z—fti}, 
K5+= {(w,b) 1z<w<z+5, 0<b<z—t-i}.
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Considering the fact that the function H'(z — b)¢(b) of two real variables z, b are 
continuous at every point in the set Ks_ which is not on any lines b = z — Rk (p < 
k < i — 1) and b = ai (1 < j < 1), we are able to calculate a left-hand derivative by the 
method on Ks_ used in (2.11). Similarly by the same method on Ks+ used in (2.10), 
we may have a right-hand derivative at z, and these are shown to be equal. This implies 
that (2.9) holds in this case. There are remained cases where z = Ri_1 or z = Ri, and 
the equations (2.10) and (2.11) can be shown similarly in these cases. 

    The inequality 

11'_(Ri) < H+(Ri) 

leads us to the relations 

                    

.L 1_(Ri) < F1+(Ri) 

for all i (1 < i < m), therefore we complete our proof.0 

    LEMMA 2.4. F1(z) has a second continuous derivative on [Ri_1 i Ri} for all i (1 < 
i < rn + 1), given 

       H"(z),if z <and z#R,, 
    F"(z) =z-21     1H"(z) + aJH"( z — b)0(b)db, if z >~1and z Ri, 

                          0 where j = 1, ... , m. We obtain 

H+(R ),if 
fF1+(R=)H+(R)+ aRi—~1H"(Ri — b)0(b)db, if Ri >xl 

                          and 

H'_' (Ri),if Ri < ±1, 
    F"1 (R=) H(R

1) + aR'—xlII" (Ri — b)~(b)db,ifRi >~1. 

                             0 

                             0 

We have FT'(z) > 0 on (Ri_1, Ri) for all i. 

    PROOF. As the method we used in Lemma 2.3 we can calculate a second derivative 
of Fi(z). It also follows from the inequality H"(z) > 0 on (Ri_1, Ri) that Fi(z) is a 
convex function on [Ri_1, Ri] and hence our lemma is proved. 0 

    LEMMA 2.5. We have 

                lim F' (z) < 0, lim F' (z) > c. 
z—+—ooz-_*oo 

    PROOF. By (2.2) and Lemma 2.3 we see that 

lim Fl(z) = lim (H'(z) — ac) < 0. 
z-i—ooz-~—oo
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If 0 < b < z —  ±1, then z — b> ±1 and therefore H'(z — b) > 0. It thus follows that 

                                                              rZ-2i 
       lim F; (z) = lim (H'(z) — ac + aJH'(z — b)4(b)db) 

                                              0 

                             f~=limH'(z) — ac + alim H'(z)q5(b)db 
                                    = lim H'(z)(1 + a) — ac> c. 

z-+00 

           This completes the proof.0 

   Now we have the following fundamental Theorem . 

    THEOREM 2.6. Assume that 1 < k < N — 1. Then there is a real number xk 

such that xk = inf{z I F(k_1)+(z) > 0}. We have the following statemens: 

   1. 

                 f k (x) _—Cx + Fk1(2k),if x <xk —cx + Fk_1(x),if x > 4. 

    In particular fk(x) (x) is continuous on R. 

   2. 

           H(z) — acz + a{Fk_1(x1) + cE(B)}, if z < xk, 

                       foz-2k Fk(z) =H(z) — acz + a{Fk_1(z — b) — Fk_1(xk)}0(b)db 

                         + a{Fk_1(2k) + CE(B)},if z > 2k. 

    Furthermore Fk(z) is continuous on R. 

  3. Fk(z) has a derivative on [Ri_1, Ri] for all i (1 < i < m + 1), given by 

H'(z)—ac,ifz<2k and z0Rj,     F'(z) = fz—xkH'(z) — ac + aFk_1(z — b)(b)db, if z >4and z 
     where j = 1, ..., m. We have 

H+(Ri) — ac,if Ri < 4, 
  F4+(Ri) =rR;-2k              H+(Ri) — ac + aJF4_1(Ri — b)¢(b)db, if Ri >4k 

                                   0 

     and 

HL (Ri) — ac,if Ri < xk, 
  F4—(Ri) —Ri—xk              H_ (Ri) — ac + a JF4-1(Ri —b)~(b)db, if Ri >-k 

                                   0 

    in particular we see FL_(R2) < Fk+(Ri) for all i (1 < i < m)
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  4.  Fk(z) has a second continuous derivative on [Ra_1i Ri] for all i (1 < i < m + 1), 
     given 

        H"(z),ifz<±k and z$Ri, 
     Fk (z) =z-2k             H"(z) + aJFk1(z — b)¢(b)db, if z >4and z#Ri, 

                            0 

     where j = 1, ... , m. We obtain 

        H+(Ri),if Ri < Xk, 
F'k+(R=) — In(R

i) + aRi-2k                            Fk1(Rz— b)~(b)db, if Ri >xk 

                                0 

     and 

        H(R),if Ri < ak, 
    Fk (Ri) = R;-2k                H" (Ri) + a fF'F' -1(Ri — b)c(b)db, if Ri >~k• 

                                 0 

    We have PT (z) > 0 on (Ri_1, Ri) for all i. 

  5. Fi:+(z) is a nondecreasing function on the set R of all real numbers. 

  6. We have 

lirn F4 (z) < 0, lirn F4 (z) > c. 
z—i—ooz—•oo 

    PROOF. If k = 1, our theorem follows from Lemma 2.1 through Lemma 2.5. Since 
we set Fo(z) = H(z), the properties of the function F1(z) is gotten from those of Fo(z). 
That is, we know by (2.6) and (2.7) that 

f2(x) = min{cx+F1(z)} 
z>z 

                          f00F2(z) = H(z) + af2(z — b)cb(b)db. 
                                   We also see by Lemma 2.1 through Lemma 2.5 that the same assumptions which we 

suppose on the function H(z) hold on F1(z). That is, F1 (z) is continuous on (—oo, oo) 
and has a second derivative on the interval [Ri_1, Ri] for all i (1 < i < m). And also 
F1(z) is a convex function on [Ri_1, Ri] for all i and we have 

Fi_(Ri) < Fl+(Ri) for i (1 < i < m) 

and 

Jim F1(z) < 0, lim F1(z) > c. 
z-~-0oz-+oo 

Thus we can repeat the proof of lemmata to conclude that our theorem holds in the 
case k = 2. We are able to proceed to prove it in the case k > 3 and we complete our 
proof.^ 

   The following inequalities is valid to decide the sign of F4 (Ri) (1 _< k < N —1, 1 < 
i < m) (cf. Theorem 1 in Kodama and Sakaguchi, 2001b).
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    THEOREM 2.7. We have 

 H'(z)  ac < Fk (z) < H'(z)  ac+ aFL_1(z), if z > xk and z Ri, 
H+(Ri)  ac < F1+(Ri) < H+(Ri)  ac + aF(k_i)+(Ri), if Ri Xk, 

          ac < F, _(Ri) < H' (Ri)  ac+ aF(k_1)_(Ri), if Ri > xk, 

for 1 <k<N-1. 

    PROOF. Suppose that 2k < z and z # Ri. It follows from 3 in Theorem 2.6 that 

                                               rz-2k FL(z) =H'(z)  ac+ aJFk _1(z  b)0(b)db. 

                                     0 Note that 0 < b< z xk if and only if k < z  b < z. Since F4_1(z) is a nondecreasing, 
we know that 

0<FL1(tk) <Fk_1(z-b) <Fk_1(z)for 0<b<z-±k, 

which implies 

   0 < Jz-zkz-2k 11_1(z  b)q5(b)db <jFk _1(z)4(b)db< F1_1(z). 
 00 

Consequently we obtain 

H' (z)  ac < FL(z) < H' (z)  ac + aFk_1(z) 

and, by 3 in Theorem 2.6, we also have 

H+(Ri)  ac < 11±(Ri) < H+(Ri)  ac + aF(k_1)+(Ri), 
H' (Ri)  ac < FL (Ri) < H' (Ri)  ac + 

We complete the proof.0

3. Optimal policies 
   We wish to find the sequence xl, . . . , 2N to get optimal policies in the system of the 

probabilistic dynamic inventory problem. We studied in Kodama and Sakaguchi (2001a), 
Kodama and Sakaguchi (2001b) and Kodama and Sakaguchi (2001c) the interval [Rp_1, 
Rp] which contains xk under the assumption that the function H' (z) is continuous. The 
interval may be found if we could seek the conditons Fk_1(Rr_1) < 0 and Fk_1(Rp) > 0. 
Although functions Fl(z) may be discontinuous in this paper, we have similar results 
considering the right derivatives Fi+ (z) (1 _< i < N -1) and we see them in the following 
theorem (cf. Theorem 2 in Kodama and Sakaguchi, 2001c). 

   THEOREM 3.1. Let R be a real number. Then the following statements hold: 

 1. If H+(R) > ac, then F7+(R) > 0 for all k 1 < k < N  1. 

 2. If 1 < k < N  1 and F(k1)+(R) < 0, then Fk+(R) = 14(R)  ac .
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3. If 1  <  k < N — 1, H+(R) < ac and F(k1)+(R) < 0, then Fk+(R) < 0. 

!. If H+(R) < 0, then Fk+(R) < 0 for all k 1 < k < N — 1. 

ac(1 + a + + ak-1) 5. If1<k<N-1 andH+(R)< l
+a+••+ak,then F,~+(R)<0. 

ac(1+a+•••+ak-1) 6. If 1 < k < N — 1 and H4.(R) = 1 + a + • • • + ak, then Fk+(R) < 0 . 

  PROOF. 1. If R < xk, then this is a direct consequence of 3 in Theorem 2.6. If 

  R > xk, then it is also clear by Theorem 2.7. 

2. In fact, if F(k_l)+(R) < 0, then R < xk, and hence Fi:+(R) = H+(R) — ac by 
  3 in Theorem 2.6. If F(k1)+(R) = 0, then xk < R. It follows from Theorem 2.7 

  that 

H+(R) — ac < F4±(R) < H+(R) — ac + aFik_1)+(R). 

 Substituting F(k_l)+(R) = 0 we have Fk+(R) = H+(R) — ac. 

3. This easily follows from 2. 

4. The statement 3 implies 4 immediately. 

5. We see that H+ (R) < ac. Therefore by 3 we may assume that 14(R) (R) > 0 for 
  all i 0 < i < k — 1. Hence it follows that xi±1 < R. By Theorem 2.7 we have 

F(z+1)+(R) < H+.(R) — ac + aFt+(R) for all i 0 < i < k — 1. 

  By these inequalities and our assumption we obtain 

11+(R) <H+(RM+a+•••+ak)—ac(1+a+•••+ak-1) <0. 

6. We are also able to prove this by the same method of 5 that F,:+ (R) < 0 , because 

H+(R)(1+a+•••+ak) —ac (1 +a+•••+ak-1) = 0. 

We complete our proof.0 

 COROLLARY 3.2. Let p be an integer with 1 < p < m. Then we have: 

1. If H+(Rp) > ac , then xk < R.p for all k 1 < k < N. 

2. IfH+(Rr)<0,then Rp<xk for all k 1<k<N. 

            ac(1+ a + • • • + al-1) 3. If H+(Rp) <,then Rr< ticfor all kl+1 < k < N. 
1+a+•••+a— —
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    PROOF. These assertions are followed from Theorem 3.1, because  4 < Rp if and 

only if F(k_1)+(Rp) > 0, and the proof is complete.O 
   For the purpose of calculating 2k we wish to get conditions that support us how 

to choose some functions H2 (z) among the functions H1(z), ... ,11,„±i(z)  . Since there 
exist many complicated cases, we only consider simpler cases. 

   At first we know that 

              H+(Ri) < H+(R2) < • . • < H+(R„1). 

   The corollary shows the following four particular cases: 

Case A.IfH+(R1)> ac, then ±k <R1 for all k 1 <k<N. 
Case B.IfH+(R„b)<0, then R,n<. for 0.11k 1<k<N. 
Case C. If 1-4(Rp_1) < 0 and H+(Rp) > ac, then Rp_1 < 4 < Rp for all k 1 < k < N. 

                                                      ac(1 +a+•••+at-1) Case D1. If H+(Rp_1) < 0, F1 _1)+(Rp) > 0 and H+(R,,,) < 1+ a + • • • + al 
then Rp_1< <Rp for all k 1<k<l and Rm<4 for all k l+1<k<N. 

   When m = 1, the optimal policies are studied at the case DI in Kodama (1998a). 

   Now we shall consider the probabilistic multiperiod inventory model with zero 
delivery lag, backlogging of demand and linear purchasing cost [c(y) = cy]. Let —cx + 
H(z) denote the expected oneperiod loss, given z is an amount on hand after an order 
is placed and let fk(x) denote the minimum total discount expected loss for period 
1, 2, ... , k where x is the initial stock level. From the principal of optimality, each fk(x) 

                                                               satisfies the functional equation (2.5) and (2.6). Then the optimal policy in our system 
of the probabilistic dynamic inventory problem is the following: 

I f x < 4, then order (±k — x), otherwise do not order. 

    Now we study how to get the sequence ±1, x2, • • • , xN in simple cases. In general 
we have the following proposition (cf. Theorem 2.2 in Kodama, 1998a). 

PROPOSITION 3.3. We have 

21 <x2 <.•• <XN. 

    PROOF. We prove 2p < xp+l by induction on p. By the definition of 21, 14(z) 
is negative for z < 21 and therefore if z < 21, then Fl+(z) = H+(z) — ac < 0. This 
impies < x2. Now we may assume p > 2. It is shown that F(p_1)+(z) < 0 for 
z < 4. Therefore if z < ;p_1i then it follows from 3 in Theorem 2.6 that F(p_1)+(z) = 
14(z) — ac < 0. 

   By the inductive hypothesis we obtain 2p_1 < 4. Suppose that 2p_1 < z < ±p. 
Then we have by 3 in Theorem 2.6 

                           fz-zp_1F_1)+(z) =H+(z) — ac + aF2(z — b)¢(b)db < 0. (3.1) 
                                  If0<b<z-4_1 and z—b#R?, then -p_1 <z—b<z<;p, and soF;,_2(z—b)>_0 

because Fp12(z) is not decreasing and FP_2(;_1) > 0. This fact implies 
                                   Z-2p-1 

               J0Fp_2(z — b)0(b)db > 0,
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and hence we obtain by (3.1) that H+(z)  ac < 0 for -p-i < z < 4. 
   We have showed that Fp+(z) = H+(z)  ac < 0 for z < 4. Accordingly we 

conclude that 4 < 4+1, and this proposition is proved.^ 

   The following proposition is obtained from 3 in Theorem 2.6. 

   PROPOSITION 3.4. (Section 5 in Kodama, 1998a) We have for z > with z 
Ri (1<i<m) 

                                  fz-xk       H  FL(z) ='(z)  ac + aJ(H'(z  bk)  ac)cb(bk)dbk 

                           0 +a2rz-2kzbk-Zk-1 
 J(H'(z  bk  bk_i)  ac) 0(bk1)0(bk)dbk-idbk        o0 

                     z-Zkzbk-2k_1         +a3ff fzbkbk_1-xk-2 
    00  

(H'(z  bk  bk_i  bk-2)  ac) 0(bk2)0(bk1)0(bk)dbk2dbk-idbk 

z-2k pzbk-2k_1 /'zbkbk_1•••-b3-22       +ak-i f/... 
          0Jo 

(H'(z  bk  bk_i  ...  b2)  ac) q5(b2)0(b3) . . . 0(bk)db2db3 • • dbk 

                    fz-xkzbk-2k_1 Zbk -bk _1..•-b2-21       +akJf...~     000 

H'(z  bk  bk_i  ...  b1)0(b1)0(b2) . . . q(bk)dbidb2 ... dbk. 

                                                           0 

   Case A. Assume 1-4 (iii) = H+ (Ri) > ac. Then it follows that 4 < 1:11 for all 
k(1<k<N). 

PROPOSITION 3.5. Assume HL(R1) < 0 and H2+(Ri) > ac. Then we have xk = 
Ri for all k(1 <k<N). 

    PROOF. Since Hl_(Ri) < 0, H'(z) is negative for z < R1. Whence > R1, and 
we complete our proof by Proposition 3.3 and the condition in Case A. ^ 

   PROPOSITION 3.6. Suppose H +(R1) 
N. ac. Ift= R1 for some p (1<p < N -1), thenxk=R1 for all k with p + 1 <k<N 

    PROOF. This is also clear by Proposition 3.3 and the condition in Case A. ^ 

   Let =k+i < Ri. Then tk+i is a solution of the equation F, (z) = 0, precisely it is 
the minimal solution of its equation. Because of F4(z) = H1(z) for z < R1, we may find 
±-i to solve the equation Hi (z) = 0. 

For <z<R1, 

z-21 

Fl (z) = Hi (z) — ac + a J Hi (z — bi)01) dbl • 

                                     0
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Thus we can get  22 to solve the equation Fl (z) = 0. It follows from Proposition 3.4 that 
the functions F4(z)  for Xk < z < R1 can be written by replacing H'(z) with Hi (z), and 
we keep on this step. 

   Case B. Suppose H+(Rm) < 0. Then we have Rm. < =k for all k 1 < k <_ N. 
   In this case there is a number 21 that is a solution of the equation H;n+1(z) = 0 

by the fact that F4(z)  = H;+1(z) for z > Rm. Replacing all the function 111(z) in the 
equation of Proposition 3.4 with H;n+1(z), we are able to write 11(z) for z > Rm by 
using only the function H;n+1(z). 

    Case C. Assume that H+(Rp_1) < 0 and H+(RR) > ac. Then it follows that 
Rp-1 < xk < Rp for all k 1 < k < N. Applying the properties in cases A and B to 
this case we know the following statements: 

  1. IfH'(Rp)<0, then 2k=Rp for all k (1<k<N). 

 2. If = Rp for some p (1 < p < N  1), then xk = Rp for all k (p + 1 < k < N). 

  3. If Xk+1 < Rp, then Rp_1 < < Rp. Hence we may find 21 to solve the equation 
Hp'(z) = 0. Replacing all the function H'(z) in Proposition 3.4 with Hp'(z), the 

    functions F(z) (Rp_1 < z < Rp) can be expressed in terms of the function HH(z). 
    For the sake of finding k+1, it is enough to solve the equations F(z) = 0 (1 < 

    i < k) successively. 

    Case Di. Suppose that H+(Rp_1) < 0, F11_1)+(Rp) > 0 and H+(Rm) < 
ac(1 + a + :: +a`-1)Then we have Rp-1 < 2k< Rp for all k 1 < k < 1 and 
   ++•+ 
Rm < 2k for all k l + 1 < k < N. 

   In this case it is necessary to change the H' (z) in order to express F (z) . We write 
them explicitly. At first solve the equation H,(z) = 0 to get 21. Next for 2 < k < 1 1 
and 2k < z < Rp, we have by Proposition 3.4 

                                 rz-2k Fk(z) =H,(z)  ac + aJ(H,(z  bk)  ac)0(bk)dbk 

         f0 
                   z-2kz—bk-2k-1 

         +a2                          (I-4(z  bk  bk_i)  ac) 0(bk1)cb(bk)dbk-idbk 
      0 0 

Z-2k  

 +az—bk-2k-1 z—bk—bk_1-2k-2 
    3fff 

    000 

(H,(z  bk  bk_i  bk-2)  ac) 0(bk2)0(bk1)0(bk)dbk2dbk-idbk 

z-2k zbk-2k_1zbk—bk_1—...—b3-22     +ak-1fo.. 
     0 (HP(z  bk  bk_i  ...  b2)  ac) 4(b2)0(b3) ... 0(bk)db2db3 . . dbk 

z-2k zbk-2k_1zbk—bk_1—...-b2-21      +akff...~ 
   000 

H,(z  bk  bk_i  ...  b1)0(b1)0(b2) ... 0(bk)dbidb2 ... dbk.
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   We may continue to find a solution  tk+1 of the equation F, (z) = 0, < z < Rp 
for 2 < k < 1 — 1. If we could not find any solution, then = Rp. 

   Next we shall show Ft (z) by I-11 (z), however it is complicated. For the simplicity 
we introduce the functions hi (z), h1_1(z), 14-2(z), ... , h2 (z), hl (z) for z > Rm as 
follows. 

                     z-2, hi-8(z) =f. ff 
    00 

(H'(z — bl — bt-1 ... — bt—s) — ac) 0(b1-8) ... 4)(bi1)0(bl)dbi—s • • dbl—ldbi 
(0<s<l-2), 

                 z-2i zbi-2!_1zblbl_1...-b2-21  hl(z) = ff...f 
   000 

H'(z — bi — b1_1 — ... — bl)0(b1)0(b2) ... ¢(bi)dbldb2 . . . dbl. 

   Then we obtain 
z-2iz-Z1 h1(z) = fH'(z — bl)¢(bi)dbi — acfq5(bi)dbi 

 o0 

      rx-Rmm-1 zRm+p-t-1 

JH'(z — bi)0(bi)dbi + >fH'(z — b`)0(bi)dbi 0t=pz.1                                                                                  -t 

           +fz-~1z-xt            H'(z — bi)0(bi)dbi — ac1.00(bi)dbi   zRp 

      z-Rmm-1rZRm+P-t-1 

  f 

             Hint — bl)~(bc)dbl +JH+n —t(z — bi)0(bi)dbi 
    0t=pzRm+P-t 

    + fZ-2/Z—x/           Hp'—bi)¢(b`)dbi — acf/(bi)dbi. 
   zRp0 

Let 1<s<1-1. We set 

n-1 

K1—s = {(b1_8,  be-8+1, ... , bl) I 0 < bd—n < z — E bt_j — 2t—n 0 < n < s }, 
j=0 

Ki_sp = {(b1_8,  bi_3+1, ... , b1) I Z — Rp < bt-s+j < Z — Xl-s 
j=0 

Ebl—n+j <z-2(_n (0<n<s-1), bl—s+n>0 (0<n<s)}, 
j=0 

KZ—si = { (bi—s, bi—s+i, ... , b1) I z — Ri <bl +j < z — Ri-1 
j=0 

bi_s+n>0 (0<n<s) } (p+1<i<m), 

                                                              l Ki_sm+i = {(bi_3,br—s+l,... , b1) 1E bi_s+j < z — Rm, bz—s+n > 0 (0 < n < s)}. 
     j=0JJ
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Then 
 Kt_. = Ki—sp U Kt—sp+1 U ... U Kt—sm U Kt_sm+1 

Put 

g(b) = 9(bt—s, b1-3+1, ..., bt) 
          = (H'(z — bt — b1_1 — ... — b1_s) — ac) 0(bt—s)0(bt—s+1) ... 4(bt) 

9t(b) = 9t(bt—s, b1_s+1, ... , b,) 
          = (HH(z — bt — bt-1 — ... — bt—s) — ac) t(bt—s)4(bt—s+1) ... 0(bt), 

(p<t<m+1), 

where we make a minor change when s =1 — 1. It is shown that 

hi_s (z) = ff...fg(b)dbz_sdbz_s+idbz 
                                   _, 

                m+1 r 

                      fJ... fK1_8, 9(b)dbi_sdbi_8+1 ... dbt         t=p  

m+1 

fffKj_,t 
                                 This yields us to express the function 17(z) as follow 

t-1 

Fi (z) = Hmt ±i (z) — ac + Ea~+1 ht—i (z). 
=o 

    We need to keep on searching ~t+2, ~t+3, ... , xlv, and so it is necessary to write 

F1+1(z), Fi+2 (z), ... , FN_1(z). Unfortunately they demand more calucations than that 
of Fl (z) if we would search them in the general form. 

   We have discussed how to find 2N. However it is too difficult to deal with this 

inventory system even when it is rather easier case. We should develop the thoery to 

handle our dynamic inventory problem.
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