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                           Abstract 

  In this paper, the earlier work on socalled "powernormal distribution" is ex

tended to a multivariate case, especially focusing on a bivariate one. The power

normal distribution is a family of distributions including the truncated normal and 

the lognormal. The present work introduces the moments and other related prop

erties of the bivariate powernormal distribution. The numerical illustrations are 

provided to demonstrate the elements and the applications of the distribution.

Key Words and Phrases: Power-normal distribution; Truncated bivariate normal distribution; 
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1. Introduction 

"Powernormal distribution" is a parametric class of probability distributions which 

includes the truncated normal and the lognormal as a special case. The powernormal 
distribution is on the basis of the Box and Cox powertransformation which is defined 
by, for a positive random variable X 

XA-1  
         X(A) = A A 0 0,(1.1) 
logX,A=0 

where A is the shape parameter (or the transformation parameter) and is chosen as a 

powertransformed variable X(A) has the normal (Box and Cox, 1964). Unfortunately 
X(A) lies in lower or upper bounded region according to A > 0 or A < 0. Therefore, X(A) 
has the truncated normal except for A = 0 . X is then said to have the powernormal 
distribution, written X ti PN(A, p, a2) if X(A) has the truncated normal distribution 
with mean p and variance a2 (Goto Matsubara and Tsuchiya, 1983: Johnson, Kotz and 
Balakrishnan, 1994). Its probability density function (pdf) is given by 

xA—i X(a) — 
      9(x:A,µ,a)=µ, x>0(1.2)                       aA                        (a

,µ~a)a 
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where q5(•) denotes the pdf of standard normal distribution N(0, 1) and 

{4)(k), A>0, A(A,p,E) =1, A=0,(1.3) 
4)(—k), A < 0 

where 40(.) denotes the distribution function of standard normal distribution and k is 
the standardized truncation point of the truncated normal for the powertransformed 
variable x0), which is given by k = (Ap + 1)/Au. With the shape parameter A , the 
powernormal distribution coincides with the truncated normal for A = 1 and with the 
lognormal if A = 0 . The systematic developments of this distribution have been given 
by Goto, Uesaka and Inoue (1979), Goto and Inoue (1980), Uesaka and Goto (1980, 
1982), Goto et al. (1983), Goto, Inoue and Tsuchiya (1984) and Goto, Yamamoto and 
Inoue (1991). 

    The purpose of the present paper is to introduce a multivariate version of the 
powernormal distribution, especially focus on a bivariate case. Such an extension is 
potentially relevant for practical applications since in the multivariate case there are 
far fewer distributions available for dealing nonnormal data than the univariate case. 
For example, in medical fields, to evaluate whether there are any effects of treatment 
on blood pressures for patients with hypertension, the two measure of blood pressures, 
systolic and diastolic blood pressures are usually observed. Then, the systolic blood 
pressure is said to be a lognormal, and for the diastolic, it has a normal. Usually the 
transformation is performed on each component separately, and achievement of joint 
normality is expected. However, in such a situation, the joint transformation may be 
more suitable to describe the data, and then the joint distribution which can deal the 
nonnormal data allowing the correlation between two measures should be considered. 

   The paper is structured as follows: In Section 2, definition, basic properties of 
the bivariate powernormal distribution and its moments are given. In addition, some 
properties of the bivariate powertransformed distribution are discussed. In Section 3, 
the computational algorithm for estimating parameters of the distribution is described. 
In Section 4, the numerical illustrations are provided to demonstrate the elements and 
the applications of the distribution. Finally, in Section 5, a multivariate powernormal 
distribution is introduced, and further developments and applications to practical fields 
are considered.

2. The Bivariate PowerNormal Distribution 

2.1. Definition 

    In this section, for the two-dimensional extension of (1.2), we consider a positive 
random variable X = (X1, X2)T, where Xi, X2 > 0. 
   Let a powertransformed variable X(A) = (X1A1), X''2))T of X = (X1, X2)T be the 

truncated bivariate normal distribution with mean vector p = (pi, p2)T and variance 
covariance matrix 

E _ ui P010z 
                                pal0.2(72 

where p is the correlation coefficient between Xiai) and X2A2). X = (X1, X2)T is then
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said to have the bivariate powernormal distribution if the joint pdf is 

 A1-1  A2-1 

9(xl, x2) =  X1  x2  f(xi~1),x2A2)), x1, x2 > 0 (2.1)  A(a, µ,  E) 

where 
      (A1)(A2)_)(a2)                        1 Q(xi(al, x2)         f (xl,x2)—2eXp2                        27ra1u2J1  p 

and 

    Q((al)(a2)= 1        xl,x2)=1 —p2       (a1)2(Ai)(A2)xx µi2pl/l1x — P2+ (x2)_ P2)Qla1Q2Q2)  
where the truncated proportional constant term A(A, p, E) is given by 

                                     62bl              A(A, µ7 E) =J02(x1) x2)d21dx2(2.2) 
                                a2al 

in terms of the joint pdf of the bivariate standard normal distribution 1 

                      1xi — 2pxlx2 + 4  0
2(xl, x2 P) = 2

71-V1  p2exp2(1  P)2 

with the values of aj and b, given in Table 1, and the standardized truncation point k; 

is given by

k _'~sp~+                          _ ~
~ ~,j = 1,2 . 

              Table 1. The values of A1, A2, ai, b1, a2 and b2 
Al A2 al b1 a2 b2  

A2 < 0—00 —k2 
Al <0 A2 =0 —oo —k1 -o0 00 

A2>0—k2 CO 

A2 < 0—00 —k2 
Al = 0 A2 = 0 —00 CO —00 00 

A2>0—k2 00 
A2 < 0—00 —k2 

Al > 0 A2 = 0 —k1 -oo -00 00 
A2>0—k2 00 

1 In general, a bivariate standard distribution is N2(0,I) with variancecovariance matrix 

I=(01 01) 
 but in this paper it is N2(0,I) with variancecovariance matrix 

                     I'=p11.
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Then, the magnitude of A(A, P, E) can be evaluated by using the terms of the bivariate 
standard normal distribution function (1)2 (x1, x2 : p) and the univariate standard normal 
distribution function, as shown in Table 2. 

    For a univariate case, the powernormal distribution has the six typical shapes 
corresponding to the value of A, i.e., A > 1(J-shape distribution), A = 0 (truncated 
normal distribution), c < A < 1, A = c (exponential-shape distribution), 0 < A < c 
(exponential-shape distribution) and A < 0 (L-shape distribution), where c = 4/(k2 + 4) 
(Goto et al., 1983). From the analogy of a univariate case, the bivariate powernormal 
distribution may include various shapes of distributions with the combinations of Al and 
A2. Figures 1(a) and 1(b) provide contour plots of the various bivariate densities with 
the combinations of Al and A2i where k1 = k2 = 3, 7-1 = T2 = 2 and p is equal to 0.3 and 
0.9, respectively, where Ti and T2 are the coefficients of variation for 4a1) and X(2A2), 
respectively.

Table 2. The relationships among (1)2(x1 i x2 : p), (1)(x) and A(A, p , E) 
Al A2 A(A, P, E)  

               A2 < 0 42(—k1, —k2 :P) 
Al < 0 A2 = 0 4)(—k1) 

               A2 > 0 (—k1) — (D2(—k1, —k2 : P)  
A2 <0 1-4(k2) 

=0 A2=0 1 
        A2 > 0 4:(k2)  
              A2 < 0 '(k1) — (D2 (k1, k2 : P) 

>0 A2=0 4(k1) 
A2 > 0 42(k1,k2 : P)

2.2. The Marginal and the Conditional Distribution 

   In this section, we discuss the marginal and the conditional distributions of the 
bivariate powernormal distribution. 

   Let gj (xj) denote the pdf of the univariate powernormal distribution for each 
Xj(j = 1, 2). gj(xj) is then 

                         A,-1(A3)
_ gj(xj . Aj,Pj,cr7) —                      0

3Aj(A7Pj~j)~~UPj(2.3) 

                                                          9 where 

                             4(kj), A> 0, 
Aj(Ai, Ai, aj) =1, A = 0, 

(1)(—k3), A < 0 

if p = 0, the density function (2.1) can be written by g(xi,x2) = gi(xi)g2(x2) as 
A(A, P, E) is A(A, P, E) = Ai (Ai, Pl, Q1)A2 (A2, P2,172). By the definition of the bivariate 

powernormal distribution (4) for (X1, X2), after some simple algebra, the pdf of the
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marginal distribution for X1 is given by 

 91(xi) 
        A1-1(A1) _(a~) _    A(A,xlQP1 [sA 22pX1al                                         P1+ k2, Al 0 0, A2 ~ 0    ( ,p, )1 V1p 

      A1-1(A) 
 l ,()    x 0x1 — pl ,Al 0 0, a2 _ 02.4     A(A
, p,E) \ al 

     1 x(A,)  Pi   ___(/) ---------------,Al = 0, A2 = 0. 
xi a1 

Therefore, by comparing (2.3) with (2.4), it is clear that the density of the marginal 
distribution for the bivariate powernormal distribution is not consistent with that for 
the univariate powernormal. However, only if A(A, p, E) = 1, the pdfs (2.3) and (2.4) 
have the same form of density. Similarly, the pdf of the marginal distribution for is given 
by X2 is given by 

92(x2)        A2-1(A2) (A2)(     
A----------aEx2a2p2[sn(Ai) px2~— p2+ kl, A2 � 0, Al 0 0    (,p,)2V1p2 

     x2-1A2)A2-1x2—p2  _Cb,A200,Al=0 
    A(A, p,E)u2 

1 x2A2) p2   ___(/) ,A2=0,A1=0. x2 a2 

   Next we consider the conditional distribution and regression of the bivariate power
normal distribution. By (2.1) and (2.4), for some A1, the pdf of conditional distribution 
of X2 given Xi = x1, is give by 

                      x2-if (x(a2) (x(A11)) 

            2 

------------------------------------------ A20 
                     sgn(A2)x(Al)P1  

9(x2~x1)       = ~------ p Ql+L.(2.5)                   V1  p2 

              f(x2a2)x1),A2 = 0 

2 where f (x(A2) x(Al)) is the conditional pdf of )C-A2) given X1A1) = xVti) in which 

(X1A1), X(A2)) has the bivariate normal distribution, that is 

    f((a2)xl(Al))    x2 

= ----------------11(A2)a2(al)2 
       2~O.2\/1  p2exp2a2(1  p2)xp2  Pa1(xi p1)
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Therefore, for A2 0 0, the conditional expectation of X2 given X1 = x1 is given by 

                        f 0 X2 (4A2)1 2(A1))dx2 
E [X2 'Xi =  x1 ]

sn.~J(~`1)1•(2.6)                        g(2)~ 
P1µl + k2 

V1 — p2 O1 
In particular, for A2 > 0, it becomes 

E [X2 IX1 = xi] 

= CO\/ L~(1—p2)(p—v)/2(k2 + prp+v + 1(2.7) 
v0 Q12 

where p = 1/A2 and 

        Q)p(A1) ;Pi)} Co= (221----------k2+P 

1x(A1)  P1-1 
xk2+p. 

             ~1  p2 al 
Then, the conditional expectation (2.7) provides the regression function of X2 on X1 
which (X1, X2) has the bivariate powernormal distribution.

2.3. The Moments and Other Properties 

    Here we further discuss the moments and other properties of the bivariate power
normal distribution. 

   For Al 0 0 and A2 $ 0, the joint moment about the origin of order (mi , m2) of 
variable (Xl, X2) is defined by 

                          00 00 xm1+A11x
2m2+A2-1      E [Xr1X221=1A~ f(xla1), X2~2))dxidx2.(2.8) 

                      A 

          J
o(,A,) 

For Al > 0 and A2 > 0, the joint moment (2.8) can be written in another form 

00 1
M     E [Xm'X2J21= C(m1, m2) >2IA 1-----pp2-Sv(P,,alP)Sv(P2, a2:P)(2.9)                                   v-0 

where 

C(ml, m2) =(AZQ2)l)                              (p2 02(k1) k2:p) 

                        00 { 2               Sv (pj , a; : p) = fo exp 212a2vdv,= 12,                        (
P) 

p3 = mi/A3, al = kl  pk2 and a2 = k2  pkl. From (2.9), the variance, covariance and 
correlation coefficient between Xl and X2 of the bivariate powernormal distribution can
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be numerically assessed. In addition, the numerical values for the skewness and kurtosis 
of the bivariate powernormal distribution can be obtained. When actually assessing the 
numerical values of the above statistics, (2.9) should be broken down into the following 
three terms 

 E  [Xi  ̀1  X2  2] = C(ml, m2) 
00 12t 

X    SO (p1, alP)So(p2 a2P) +21(1P2S21(p1,al : P)S2t(P2,a2 : P) 
          t-1 ()P(2.10) 

 00 12t+1 P--------- 
                   r~,rr~~,,  + E ---------S21+1(pi, ai : P)S21+l(p2, a2 : P) 

1-1 (2l + 1)! 1 — p2 

and then some numerical calculations are needed for each the three terms. See Appendix 
1 for the details. 

   For Al < 0 and A2 > 0, the joint moment about the origin of order (mi, m2) of 
variable (X1, X2) can be written by 

    EXX(nial)g1(l)2o2)-q2A
,,Ek2 k1~2(xlx2P) dxdx 

        rn1m2     [12]—AJk 1 — xi q1k2—x29212 

where 11 j = —A3 and qj = —pj (j = 1, 2). In particular, if q3 > 0, the following inequality 
hold. 

k2 k1k2 kldx l dx2                dxidx2(xlx2P) i<------------------------------ (2.11)                                dx2          ((klxlql(k2—x2q2ff(k1  xi91(k2x2q2   00 00l)(k2)cooo\)\) 

Then, all joint moments exist as the right side of inequality (2.11) converges absolutely 
if qi > 0 and Q2 > 0. However, except for q1 > 0 and Q2 > 0 it diverges. Hence, the joint 
moment with degree less than IA1 I and IA2I when Al < 0 or A2 < 0.

2.4. Some Properties for the Bivariate PowerTransformed Distribution 

   As described in Section 2.1, each powertransformed variable X. A') (j = 1, 2) lies in 
—1/Ai < Xj A3) < oo if A; > 0, otherwise X; lies in —oo < XP < —1/Ai if A3 < 0 under 
the condition of X; > 0. Then, the bivariate powertransformed variable ()CIA1), 4'2)) 
has a truncated bivariate normal distribution, and its joint pfd of (X1" , X2A2)) is 
defined by 

                   (A1),42))2)) —f(x1A1)'x2a2))         h(x(2.12)                             A(A
, µ, E) 

and the marginal pfds for each X1A1) and X2.2) are given by 

          hl(xVl)) =fl(x1A1)) sgn(A2)xial)—pi+k2                   A(A
, µ, E)R1 — p2 al 

and 

         h2(x(A2))_f2(5 2))sgn(A1)p42) —µ2+kl)1                JA(A , p, E)v"1 — p2 a2
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respectively. For A2 0, the conditional pfd of X2A2) given X1A1) _ x1t1) is obtained by 

                              f2(212(~2) I X(t1)) 
    h2(4a2)X1A1) = 21A1))= -------------------------------------------------        I1~(x 1(A1) (2.13) 

                                   s 

                    gn(2)µ2+ k2)1• 
p2Ul 

Form the conditional pdf (2.13), for A2 0 0, the conditional expectation of X2A2) given 
X1A1) = 2(iA1) can be written by 

           E { I X1a1) = /u2 + P~(X1~1) /21) 

          u2/1-------— p2~s(A2) (xi)_~2+ k2)] 
+^1 P ~1)(2.14) sgn(A2)(x1( — 1/2 + k2 

p2 Ul 

Then, the conditional expectation (2.14) provides the regression function of X2A2) on 
XV1) in which bivariate powertransformed variable (X1A1), X2A2)) has the truncated 
bivariate normal. Similarly as Section 2.3, the joint moment about the origin of order 

(m1, m2) of X1A1) and X2A2) can be written by 

    E ((`Y(a1)1 (4A1m2]= C'(1m~m    LL`\1JJ2) 00 1v (2.15) 
                  x >— -----PSS(ml, el P)Sv(m2, 92:P) 

                           v_O vi 1 — p2 

where 
         t_ Ul 1U2 2 P1 112           C(m lm2)2 R-V1 — P2A(A, µ, E) Qlu2 

                                     b1 

                                {v?— 2{92l vSv(M1) 01:p) = fvi1+v exp}dvi~                 l2(1 — p) 
                                   62 

                        {v3—292v2             Sv (m2,92 : P) _fav22+v expdv2, and                  a22(1 — p2) 

                                   e1 =µ1P—,e~l                                           2 =µ2— 
                              Ul 0.20.2 al 

where di, bi, a'2 and b'2 are given in Table 3. Also, ci and c2 in Table 3 are c1 = 11/A11 
and c2 = 11/A2I respectively. Actually, the complete and incomplete gamma functions 
are needed to calculate the values of S, (rn , 9; : p). See Appendix 2 for the details. 

                 Table 3. The values of di, bi, a'2 and b'2  
Al A2al bl a2 b2  
Al < 0 A2 < 0 —00 Cl /Ul —00C2/0.2 

                    A2 > 0 —00 Cl /U1 C2/0.2 00 
~l > 0 A2 < 0 —C1/0-1 00 —00C2/0-2 

                    A2 > 0 —C1 /al 00c2/a2 00
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   As defined in Section 2.1, p is the correlation coefficient of the bivariate power

transformed variable (X1A1), X2A2)). However, since (X1A1), X2A2)) has the truncated 
bivariate normal distribution, if allowing the truncation, the form of p becomes more 

complicated. If we denote the correlation coefficient allowing the truncation by  p*, p* 

is defined by 

cov [X1A1),Xa2)] 
     p* = ------------J  _  µil — µioµol(2.16) 

         Vvar [XA1)]var [x2)] \M0  /1'1200P02  4 
where                    00  

µi1 =Co(1,1)2(l2)vsv1,ei,p)sv(1,02,p), 
                                v=0 

         00  v 

          /40 = Co(1,0) E1-----Pp2sv(1,01,P)Sv(0,02,P), 
v=0 

00 1v 

          /101 = Co(0,1) EV! 1------Pp2Sv(0,91,P)Sv(1,92,P), 
v=0 

00 1 

          µ2o = Co(2, 0) Ev~1------Pp2Sv(2, 01, P)Sv(0, 02, P), 
v=0 

co 1 v 

/202 = Co(0,2)i -------P2Sv(0,01,P)Sv(2,02,p),and 
                                  v_0U.                               1_ p 

                                                      ml2 

Co (M1, m2) =~1~2m 
2irA(A, p, E) ̂ 1 — p2 

Therefore p* is slightly different from the correlation coefficient between X1A1) and 4'2), 
that is p. Figure 2 shows the relationships between p* and p for the various shapes of 
Al = A2 when k1 = k2 = 1 and 1-1 = 7-2 = 2, 4, 16. It is clear form the figure that p* has 
a smaller value compared with that of p. 

   If the measures proposed by Mardia (1970) are used to assess a bivariate normality 

of the bivariate powertransformed distribution, written by X (A) = (.Vl), X2A2))T, the 
bivariate skewness for the distribution, )3;2 is given by 

     012= E [(XA  — µ)TE—1(X (A)—µ)] 3 
           (1 — p2)-3 [p + /43 + 3(1 + 2P2)(142 + 4)  2P3/43oµo3 

            +6p {13o (P/-42 — 1-1121) — (2 + P3)11121-1/21}](2.17) 

where 
                     1          /40 = Co(3, 0) E vl (l283,01  : P)Sv(0, 02 : P), 
v=0
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00 1v 

P03 = Co (0, 3) E v1-----Pp2Sv (O,e1:P) Sv (3, 02 
                               v=0 

        0o1 

        P12 = Co(1) 2) E v, (P)Ms(i9 1 : 4Sv(2) e2 : P), and 
                             v=o 

         00 1 

        141 = Co(2,1) Evi 1 (P)vsP(2,e1:P)Sv(1,02:P).) 
                               v=0 

   Similarly, the bivariate kurtosis ,322 is also given by 

$22=E [(X(A)—µ)T E-1(X (A)—11))2 
P4o + /L04 + 2/42 + 4P(P1122 — P13 — 131) (2.18) (1 — p2)2 

where 
       00 

         /240 = Co (4, 6) Ev~1-----Pp2Sv (4, e1 P) Sv (6,92 P), v-0 

        co v 

         /404 = Co (6, 4)v~1 (P)s(oo 1:P) Sv (4, 82:P), 
                               v-0 

         00 1 

ten = Co(1, 3) Evi (l_p2Y1,91 :P)Sv(3, 02:P), 
                               v=0 

00 1 

/41 = Co(3,1) E (12)v(3'°1  : P)Sv(1, 92 : p), and 
v—o 

00 1 

         /62 = Co (2, 2) Ev! 1------Pp2Sv(2, 91:P)Sv(2) e2 P)• 
                               v=o 

Figures 3(a) and 3(b) show the relationships between 012 and p, 13;2  and p for the various 
shapes of A = Al = A2 when k1 = k2 = 1 and 7-1 = T2 = 2, 4, 16, respectively. The figures 
suggest that both 1312 and 022 are larger as p increases toward one.

3. Parameter Estimation 

   In this section, we discuss the computational algorithm for estimating parameters 
from the bivariate powernormal distribution. 

    Let X1 = (X11, X21)T, • • • , Xn = (X1n, X2n)T be the vector of observations has 
the bivariate powernormal distribution. The likelihood function for the sample size n 
is given by 

           Al-1a2-1(Ai)(A2)           x
1x21 Q(~1x2)     L(x1, x2) _------exp— 

               i=1A(A,E) 271-cr1 o2 /1 — p22 

and then the loglikelihood function becomes
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 l(x1,  x2) = log L(x1, x2)         
.21I n(~1)(~2)       = -n log(21r) {log Q12+logu12+log(1  p2) } 2E Q(x1, 22) (3.1) 

i=1 
    7L7L 

      +(A1  1) >2 log x1i + (A1  1) >2 log x2a  n log A(A, p, E) 
i=1i=1 

The maximum likelihood estimates of A1, A2, p1, P2, (4, 0.2 and p can be obtained by 
maximizing the loglikelihood function. 

   There are the two approaches to dealing with (A1, A2) when estimating µ1, p2, a?, 
Q2 and p (Bickel and Doksum, 1981; Hinkley and Runger, 1984) . The first is that the 
estimation of (A1, A2) is performed separated from those of µ1, p2i al, 4 and p. Namely, 
(A1, A2) is chosen (Al, A2) depending on the bivariate powertransformed scale and then 
for fixed (A1, A2) = (A1, A2), Pi, p2, a?, 0.2 and p are estimated. The second is that the 
estimation of (A1, A2) is performed simultaneously with those of P1, P2, a?, 0-2 and p. 
Namely, (A1, A2) is not chosen (Al i A2) depending on the bivariate powertransformed 
scale and then (A1, A2) is not estimated as a nuisance parameter, but together with P1, 
P2, Qi , of and p. In this paper, we use the first approach. 

   As pointed out in Goto et al. (1984), it seems to be difficult that the estimation al
lowing the truncation is performed in practical use. Though the estimates when allowing 
the truncation may provide more precise values than the estimates when ignoring the 
truncation if A3 > 0 and small k3, the influence of ignoring the truncation on the esti
mates would be smaller as sample size n is increased (Hamasaki and Goto, 2002). Then, 
we follow the procedure in Box and Cox (1964), that X A) = (Xii 1), X212)), • • • , XCA) = 
(Xin1), X2An2)) has the bivariate normal distribution without the truncation, assuming 
that truncation can be ignored. If A(A, p, E) Pe, 1, for fixed (A1, A2), the maximum 
likelihood estimates of P1, p2i a?, Q2 and p are given by 

n(A1)n(A2) 

              µ1(A1) = >~li,µ2(A2) = >2x2i  
             i=1 ni=1 n 

     ̂2n {x(%1) pl(A1)12^2nfx(A2)  µ2(A2)}2and     (1(A1) = >2,(2(A2) _ > 

    ;:1ni=1 n X(A1) µl(Al) (x2)  P2(A2)            , A2) = E12 QlQ2 
                                i=1 

respectively. Substitution of the maximum likelihood estimates 1i (A1), A2 (A2),  Q1 (A1), 
&2 (A2), and p(A1 i A2) into the loglikelihood function (2.19) yields 

lmax(Xi,x2) = -n log(27) n2flog6-32, + logQ2(A2) +log(1 p2(A1,A2))} 
nn 

+(A1  1) E log xi2 + (A1  1) E log x2i 
i=1i=1 

apart from constant. The maximum likelihood estimates (Al, A2) of (A1, A2) are the val
ues of the transformation parameters (A1, A2) in which the maximized loglikelihood
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function is a maximum. Furthermore, substitution of (A1 i A2) into µl (Ai), /12(A2), 
o (A1), Q2 (A2), and p(Ai i A2) yields the maximum likelihood estimates 11(A1), 112(A2), -61(-A

1),  Q2 (A2) and p(A , A2). In practice, they can be solved by using NewtonRaphson's 
method. See Hamasaki and Goto (2002) for the detailed discussions.

4. Some Examples with Real Data 

    In this section, some numerical illustrations are provided to demonstrate the ma
terials and the applications of the bivariate powernormal distribution. We shall make 
use of a data set collected by the Australian Institute of Sport and reported by Cook 
and Weisberg (1999), containing several variables measured on 202 Australian athletes. 
Azzalini and Valle (1996) and Azzalini and Capitanio (1999) have considered the data to 
illustrate the application of their proposed distribution, "the skewnormal distribution" 
which includes a normal as a special case. We shall consider the same pairs of variables 
as considered in Azzalini and Valle (1996) and Azzalini and Capitanio (1999), that is (
Height, Weight) and (LBM, BMI), where the meaning of names is: LBM, lean body 

mass; BMI, body mass index = Weight/(Height)2.

Table 4. Parameter estimates of (Height, Weight) from the fitted bivariate 
                powernormal distribution  

       Distributions Estimates Height Weight  
       Bivariate Normal p180.104 75.008 

0.29.710 13.891 
p0.781 
012 1.688 

            /322 10.810  
      Bivariatelmax 887.068 

     PowerNormal A0.200 0.000 
µ9.125 4.300 
0.20.154 0.190 
p0.808 
P*0.795 
/3122.089 
02211.958  
    Bivariate0120.899 

       PowerTransformed /3;29.106

   Tables 4 and 5 show the parameter estimates of (Height, Weight) and (LBM, BMI) 
from the fitted bivariate powernormal distribution, respectively. For (Height, Weight), 
the optimized values of shape parameter (0.200, 0.00) suggest that both are close to zero 
and (Height, Weight) has a bivariate lognormal distribution. While for (LBM, BMI), the 
optimized values of shape parameter (0.001, 1.200) suggest that LBM has a lognormal 
and BMI has a more log tailed distribution than a lognormal (L-shape distribution). 

   For the bivariate normality, in the pair of data (Height, Weight), the values of b
ivariate skewness 112 and kurtosis /322 are 2.089 and 11.958, respectively, and both 

are larger compared with those obtained when bivariate normal distribution is fitted. 
While, in the pair of data (LBM, BMI), the values of 1312 and /312 are 2.235 and 10.221, 
respectively, and both are larger compared with those obtained from the fit of the
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bivariate normal distribution. In addition, the estimates of correlation for bivariate 
powernormal distribution are smaller than those of the bivariate powertransformed 
data. Figures 4(a) and 4(b) display the scatter plot of (Height, Weight) and (LBM, 
BMI) with contours of the fitted bivariate powernormal distribution, respectively. For 
both the plots, the observed points and the fitted density exhibit moderate skewness for 
each of the components and the bivariate powernormal distribution may welldescribe 
the data. 

   For the powertransformed variables, in the both pair of the data, values of  1  2 and 
M2 are smaller compared with those obtained form of the bivariate normal and power
normal distributions, especially 012 are very close to zero. In addition, the estimates 
of correlation for bivariate powertransformed data are greater than those obtaied from 
the fit of bivariate normal distribution. Figures 5(a) and 5(b) display the scatter plot of 
the bivariate powertransformed data (Height, Weight) and (LBM, BMI) with contours 
of the fitted bivariate normal distribution, respectively. Both plots suggest that the 
bivariate powertransformed data may be close to the bivariate normal.

Table 5. Parameter estimates of (LBI, BMI) from the fitted bivariate powernormal 
              distribution  

         Distribution Estimates LBI BMI  
          Bivariate Normal it64.874 22.956 

cr13.038 2.857 
p0.714 
0121.540 
13229.741  
         Bivariatelmax 639.225 

        Power-Norma A0.001 -1.200 
                                       4.155 0.184 

0.20.203 0.003 
p0.737 
P*0.721 
13122.235 
02210.221  
       Bivariate13i20.182 

          PowerTransformed 0227.670

5. Conclusions 

   A multivariate version of the Box and Cox powertransformation has been discussed 
by Andrews, Gnanadesikan and Warner (1971) and Gnanadesikan (1977) who have 
focused on the formal extension, but have not given much attention on the properties 
of the distributions before/and after a multivariate powernormal transformation. 

   In this paper, the earlier work on so-called powernormal distribution has been 
extended to a bivariate case and various issues related to the bivariate powernormal 
distribution have been discussed. Why we have focused on the bivariate case is that the 
bivariate powernormal distribution provides the bases of the extension to a multivariate 
case of the powernormal distribution and its structure can be directly derided form 
the univariate case. However many other issues related to multivariate powernormal 
distribution are pending. For a positive random variable X = (X1i • • • , Xp)T , the pfd of
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the multivariate power-normal distribution is given by 

fiXP1 
                                      9(x1, ... xp) _ (270-p/2 IE-1Il/2 A a---------exp2                                      {-1(x — µ)TE-1(x — µ) 

where A = (A1, ... , AP)T, µ = (pi, ... , µP)T and 

                                                                                                                                                            • 

                                                                                                                                                            •                                                                                                                     • 

Pal Up ... aP 

The multivariate powernormal distribution would have the potential applications in 

multivariate analysis such as discriminant analysis, regression analysis and graphical 

models and so on. Also, in medical application, it would be helpful to analyze multi

variate data such as a laboratory.
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Appendix 1 

   Here we consider the detailed calculation for the joint moment about the origin of 
order (mi, m2) of variable (X1, X2). Let the first, the second and third terms in (12) be 
set as To, T1 and T2, respectively. Then, To, T1 and T2 can be expanded as follows:

To=do fr (pi +1) r P2+1 V(o) +  Y5a2 p1+1 P2+2 Vi(2) 
2211^1—p222 

+  V Gal  (P1 + 2 02+ 1) v(o) + 2a1a2 pi + 2 P2 + 2 v(o)1 
                               ^1 — p2 2 2 21 1 — p2 2 2 22 ' 

 Tl = do fr ml +1) I, p2 + 1 v(i) Y Ga2   (pi + 1 (p2 lV(l) 
22 11~1—p2 2 \2)12 

    +  V Gai  (P11 P2 + 1 v(1)+2a1a2 (Pil()v22P2 (1) 2 1—p2 \2/  

              r 

           (a)lP2vl(2) VGa2  (P1)P2 + 2(2) T2=dfr2J~21i1—p2 `21 2vi2                   ~1 
                                          \5a1  Pi + 1 (p2) v(2)+2a1 a2Pi + 1P2 + 1V(2) 

— p2 2\ 2 I21 1 — p2 2 222

respectively, where
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1--------
2p2{2(1  p2(P1d1 =2{2(1  p2)}(Pi +P2+1)/2  do = 

                00 

           V(i)  =c41)(1, 1)H11) (Pi, a1, 21)H1.2) (P2, a2, 21), 
1-1 

00 

          V1(21)  = 2E41)(1, ig-111) (pl,a1, 21)H22)(P2, a2, 21), 
                            1=1 

                                   00 

V(i) = 2E 41)(2,1)H21) (p1,a1,201/12)(P2, a2, 21), 
                              1=1 

                                   00 

         V(2)  P42 E J(1) (2, 2)H21) (Pi, a1, 21)H22) (p2, a2, 21), 
                               1=1 

               00 

       V(12) = P4EJ(2)(1,1)H21)(Pi, al, 21+1)Hi2)(p2,az,21+1), 
                         1=1 

                            ~„~        (2) = Pi(P2+1)tc)(2)(1)(2)V122Jc(2, 1)1111)(pl, al, 2l + 1)H2(p2, a2, 2l + 1), 
                              1=1 

            +1)p2 
                    42)(2, 1)H21) (Pi, al, 21 + 1)1-112) (P2, a2, 21 + 1),       v2(12)  _ 031  

1=1 

and 

    (2_(P1 + 1)2 + 1)(2)(1)(2)     T,-)
22J`2'2)H(p1a1i2l + 1)H2(p2, a2, 2l + 1).      2, 

                               1=1 

Also 

           J(1)(1,1)=J±(1,1)(Pi+211)(P2+21-1)p2  21(21 1) 

             J(1)(1, 2)__ 41)1(1, 2)(P1+ 21 1)(P2 + 21)p2, 21(21  1) 

             J(1) (2,1) __J(11(2,1)(P1+ 21) (P2 + 21 1)P2  21(21  1) 

J(1)(2,2) _ 411(2,2)(P1+21)(p2+21)p2  
21(21  1) 

42)(1, 1) = 42) (1, 2) = 42)(2, 1) = 42) (2, 2) = 1, 
Hil) (Pi, al, v) = tc.  Me(1,1), H12) (P2, a2, v) = cE0 M£ (2, 1), 

{=1c=1 

H(1) (p1, ai, v) = > Mc (1, 2), 4) (P2, a2, v) = MC (2, 2), 

2 

      £-1c=1
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             M11=M_11pi+v+26-1ai                (1,)i(~)
2 (2  1) 1 p2 

P1 +v+2ai                A/4(1,2)   =M£-i(1,2)2 (2e _ 1) 1 _ p2 

p2+v+2-1 a2  Me (2,1) = M41(2,1) 2 (2~  1) 1  P2) 
p2+v+2 a2  Mc (2, 2) = M£-1(2, 2) 2(2e  1) 1  p2 

and 
Mo(1,1) = Mo(1, 2) = Mo(2,1) = M0(2,2) = 1.

Appendix 2 

   Sv(mii 91 : p) in (18) can be written by 

      1 _ i  Sv (ml)e1ti91p) =fooexp2(1v-1dv1.10) 
The integral for the right hand can be represented in terms of the complete gamma 

function and the incomplete gamma function as follows; for c1 > 0 , it become 

       V1 2p2{2(1_p2)}(ml+v+e)/2 rm1 + v+ e+ 1 ci2      12' 2(1p2)4) 

and for c1 < 0 

        V1  p2 {2(1  p2)}(1711+1,±0/22 
       xprm1+v+e+1-rmi+v+ +1c2{(1  22' 2(1  p2)cd) } 

where 0 = 1 + (1)ml+v+£ Su (m2,02 : p) can be calculated in the same way described 
in that of Sv(mi, 91 : p).
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   Figure 1(a). Contour plot of the various bivariate powernormal 
distribution with combinations of  A and  A2 for k, = k2 =1, 11 =r2 = 2 
and p= 0.3

   Figure 1(b). Contour plot of the various bivariate powernormal 
distribution with combinations of A, and A2 for k, = k2 =1, Tl = 2-2 =2 
and p = 0.9
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   Figure 2. Scatter plot of  ps and p for the various shapes of 
 = =A2,when k,=k2=1 and r(=r=r2)=2,4,16

   Figure 3(a). Scatter plot of f312 and p for the various shapes of 
A=A,=A., when k,=k2=1 and ri=r2=2,4,16
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   Figure 3(b). Scatter plot of f32and p for the various shape of 
 A=.1„=A2 when kl=k2=1 and r1=r2=2,4,16

   Figure 4. Scatter plots of (a) (Height, Weight) and (b) (LBM, BMI), and 
levels of the fitted bivariate powernormal distribution
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   Figure 5. Scatter plots of the powertransformed (a) (Height, Weight) and 

(b) (LBM, BMI), and levels of the fitted bivariate normal distribution


