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INFORMATIONAL REPRESENTABILITY FOR 
 CONTEXTS IN DEDEKIND CATEGORIES

                          By 

 Hitomi OKUMA ; Wendy MACCAULL t and Yasuo KAWAHARA$

                           Abstract 

  This paper presents a categorical formulation for association rules in informa

tion systems. MacCaull developed a tableaux style calculus that is sound and 

complete for the implication problem for association rules. The proof of the com

pleteness required an informational representability result, to go from frames to 
contexts with 1. To show the completeness for the implication problem for associa

tion rules in our categorical framework, we prove an informational representability 

result in Dedekind categories.

1. Introduction 

   Relational database theory has been studied since Codd (1970) introduced rela
tional database models. Dependency theory is concerned with the general problem of 
relationships among attributes in database relations. Database dependency theory has 
been studied with relational methods. Orlowska (1987) proposed a relational formula
tion of functional, multivalued and other dependencies, and Buszkowski and Orlowska 
(1998) developed an axiomatic relational calculus for dependency theory. Okuma and 
Kawahara (2000, 2001) extend some database dependency theory to Dedekind categories. 
Schmidt and Strohlein (1993) explained a basic relational feature of functional depen
dency for relational models of databases. The foundations and recent applications of re
lational methods in computer science are excellently summarized in Brink et al. (1997). 

   MacCaull (2000, 2001) investigated a relational formulation for functional and 
multivalued dependencies and association rules, and proved soundness and complete
ness for the implication problem of these dependencies with a Rasiowa/Sikorski-style 
tableaux proof system. MacCaull (2001) focuses on association rules in contexts, which 
are databases such that all attribute values are either 0 or 1. There the notion of associ
ation relation was used to express association rules and sufficient conditions were given 
to prove an informational representability result used in the proof of the completeness 
of a tableaux deduction method for the implication problem for association rules. 

   The aim of this paper is to give a categorical formulation for information systems 
and to prove the informational representability for contexts in our categorical framework 
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in order to extend the work on association rules to Dedekind categories. 

   The remainder of this paper is organized as follows: In Section 2, we first review 
the notion of information systems, a generalization of database relation to indeterminate 
databases (of use both in rough set theory and in classical database theory). Then we 
review the notion of contexts, association relation and association rule in a context with 
1. 

   In Section 3, we briefly review the definition of Dedekind category, a kind of relation 
category, and list basic properties of relations in Dedekind categories. Next we present 
the definition and some properties of binomial equivalence relations in order to discuss 
association rules in Dedekind categories. 

   In Section 4, we give a definition of information system in a Dedekind category. 
We show some properties of indiscernibility relations found in MacCaull (2000, 2001) 
hold in Dedekind categories. 

    Next we generalize the notions of context with 1, association relation and associa
tion rule in contexts with 1 to Dedekind categories. We show some basic properties of 
association relations in a Dedekind category, which are generalizations of the results in 
MacCaull (2001). Finally we define the notion of information frame in a Dedekind cate

gory and prove that the informational representability result found in MacCaull (2001) 
holds.

2. Information Systems 

    In this section, we review the definition of information systems and the formulation 
of some constraints in information systems. 

    First we recall a foundation of (binary) relational calculus on sets. A relation R 
of a set A to a set B, denoted by a half arrow R : A B, is a subset of the cartesian 
product A x B. Given relations R : A  — B, S : B C and T : A — C, the operations 
of composition, conversion and residue are defined as follows: 

RS={(x,z) E Ax Cl for some yE B, (x,y) ERand (y,z) ES}, 

R#={(x,y) EBxAJ (y,x) ER} and 

T S = {(x,y) EA x B I for all z E C, (y, z) E S implies (x, z) E T}. 

As relations are subsets of a cartesian product, the inclusion C, the union U, the inter
section fl and the complement — are available as usual. 

   Now we review the definition of information systems as presented in MacCaull 
(2000) . 

   An information system is a 4-tuple (X, U, {Va : a E U}, f), where X is a set (of 
tuples); U is a set (of attributes); for each a E U, Va is the set of values of an attribute 
a, and for each x E X and a E U, f (x, a) C Va. This is a generalization of database 
relation to the situation of indeterminate databases, and it is of use both in rough set 
theory (see Orlowska, 1998) and classical database theory. If f(x, a) E Va then this is a 
database relation with attributes in U.
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   For each P C U, an indiscernibility relation  R' : X X is defined by 

RzP d = { (x, y) E X x X IVa E P, f (x, a) = f (y, a) }. 

Using the indiscernibility relations one may express many dependencies in relational 
databases (see Orlowska, 1987; Buszkowski and Orlowska, 1998; MacCaull, 2000). For 
example, let P and Q be subsets of U: 

        a functional dependency P -4 Q holds in X 
iff Vx, y E X, { (Va E P, f (x, a) = f (y, all (Va E Q, f (x, a) = f (y, a)) } 
iff R) C RQ d . 

   Given an information system (X, U, {Va : a E U}, f), the following hold for all 
subsets P and Q of U: (a) RP d is an equivalence relation, (b) RP d n R' = RPJQ 
and (c) Rt)n d = X x X. The properties (b) and (c) imply that the set of indiscernibility 
relations is a set of strong relations (see Orlowska, 1998). 

   Now we recall the definitions of context, association relation and association rule 
in a context with 1 (MacCaull, 2000, 2001). 

   A context is an information system (X, U, {Va : a E U}, f) such that all attribute 
values are either 0 or 1; that is, f (x, a) E Va = {0,1} for all x E X and for all a E U. A 
context with 1 is a context with an object lu in X satisfying f (1u, a) = 1 for all a E U. 
An association rule is a dependency for contexts with 1 defined as follows: let P and Q 
be subsets of U, an association rule P = Q holds in X iff Vx E X, f(x, a) = 1 for all 
a E P implies f(x,a)=1 for all aEQ. 

   An association relation RP : X X in a context with 1 is defined as follows: 

RP ={(x,y)EX xXlVaEP,f(x,a)=1 iff VaEP,f(y,a)=1}. 

   A relational formulation for the association rule P = Q may be given as follows: 

                    PQ iff Rp =RpJQ. 
   Given a context with 1, the following hold for all subsets P and Q of U: (a) RP is 

an equivalence relation, (b) RP n RQ C RPUQ and (c) = X x x. The properties 
(b) and (c) imply that the set of association relations is a set of semistrong relations. 

   Fact 1 Let (X, U, {Va : a E U}, f) be an information system and fa : X p(Va) 
be a function such that fa(x) = f (x, a) for all x E X and for all a E U. Then we have 
naEP fa fa = R)' for each subset P of U. 

    PROOF. The result follows from 

(x, y) E naEPfafa 
iff Va E P, (x, y) E fa fa 
iff Va E P, 3v E p(Va), v = fa(x) n v = fa(y) { fa is a function } 
iff Va E P, f (x, a) = f (y, a) 
iff (x, y) E Ri d.
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   The next fact shows that an association relation can be expressed using indiscerni

bility relations and residues. 

   Fact 2 Let  (X, U, {Va : a E U}, f) be a context with 1, t : {*} -+ X be a function 
from a singleton set {*} to X such that t(*) = lu. Then {(tRp d)1 = (tRp d) } n 
{(tRPd)# = (tRpd)1t}0 = RP for each subset P of U. 

    PROOF. First we have 

         (x, y) E (tRP d)q  (tRp d)# 
iff (y, *) E (tRPd)U implies (x, *) E (tRpd)11 
iff (lu, y) E R)' implies (1u, x) E RPd 
iff Va E P : f (lu, a) = f (y, a) implies Va E P : f (1u, a) = f (x, a). 

   In the same way we have 

(x, y) E {(tRp d)#  (tRp d)t}# 
iff Va E P : f (lu, a) = f (x, a) implies Va E P : f (1u, a) = f (y, a). 

   Then we conclude 

       (x, y) E {(tRP d)#  (tRpd)U} f {(tRp d)#  (tRP d)t}a 
iff Va E P : f (x, a) = f (1u, a) if and only if Va E P : f (y) a) = f (lu, a) 
iff (x, y) E RP .

3. Dedekind Categories 

   In this section, we first recall the definition of a Dedekind category, a kind of 
relation category (following Olivier and Serrato, 1980) which is our general framework, 
and then present some properties of relations in Dedekind categories. The composition 
operator will bind stronger than all other binary operators. 

   Throughout this paper, a morphism a from an object A into an object B in a 
Dedekind category (which will be defined below) will be called a relation, and denoted 
by a half arrow a : A 7 B. The composite of a relation a : A —, B followed by a 
relation Q : B —i C will be written as a/3 : A —7 C. We denote the identity relation on 
an object A by idA. 

   DEFINITION 3.1. A Dedekind category D is a category satisfying the following: 
Dl. [Complete Distributive Lattice] For all pairs of objects A and B the hom-set D(A, B) 
consisting of all relations of A into B is a complete distributive lattice with the least 
relation OAB and the greatest relation VAB. Its algebraic structure will be denoted by 

D(A,B) = (D(A,B), C,U,n,OAB)VAB)• 

That is, (a) C is a partial order on D(A, B), (b) Va E D(A, B) :: OAB C a C VAB, (c) 
UjEJai C a iff ai C a for all j E J, (d) a C niEJa~iffaC ai for all j E J, and (e) 
an(UjEjai) = UjEJ(a n a3).
D2. [Converse] For all objects A and B there is given an operator # : D(A, B) --p D(B, A)
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such that for all relations a, a' : A B,  /3 : B C, the following laws hold: 
(a) (a/3)0 _ /30a0, (b) (a#)# = a, (c) If a C a' then a# 
D3. [Dedekind Formula] For all relations a : A B, ,Q : B 7 C and y : A — C the 
Dedekind formula a/3 n 7 C a(/3 n ao'y) holds. 
D4. [Residues] For all relations ,3 : B —r C and y : A C the residue (or division 
or weakest precondition) -y = /3 : A — B is a relation such that a/3 C y if and only if 
aCy=,Q for all relations a:A-rB.^ 

   In a Dedekind category D a function f : A —4 B is a relation f : A —r B such that 
f # f E idB (univalent) and idA C LP d (total), and an equivalence relation 71:A-7A is 
a relation such that idA C ii (reflexive), no C ij (symmetric) and Tin C ij (transitive). 

   An object I of a Dedekind category D is called a unit if OH 0 id/ = VII. A unit I 
is called strict if VA/VIA = VAA for all objects A of D. An I-point x of A is a function 
x : I — A. 

   In the next proposition we collect some basic properties of relations in Dedekind 
categories. The proof of the next proposition and more details on fundamental properties 
of relations may be found in Freyd and Scedrov (1990), Schmidt and Strohlein (1993) or 
Furusawa and Kahl (1998). 

PROPOSITION 3.2. Let a, a' : A —i B, /3,,3',/3: B C, y, y', yj : A — C, 
8 : D — B be relations and C : E A a function in a Dedekind category D. Then the 
following hold:

(a) 0AB = OBA, DAB = VBA and idA = idA. 

(b) (a U a')# = a0 U all and (a n a')0 = all n a'#. 

(c) a(UjEJ/3j) = UjEJa/3 . 

(d) a(11jej0i) C njEJa1j. 

(e) IfaCa' and /3E/i' then a/3Ea'/3'. 

(f) If a is univalent then a(njej,Qj) = n3EJa/j. 

(g) (7  0)0 C 7, 7  idc = y, V AC  l3 = V AB and y  OBC = DAB • 

(h) (njEJ7j)  N = J(7j  /3) and 7  (UjEJ$) = njEJ(7  f3j). 

(i) 7  (50) = (7 -13)  8. 

(j) If7Cy' and 0'C,Q then y=,3Cy'=0'. 

(k) ((7  0) = ((7)  /3• 

(1) If /3 is a function then y = /3 = y/30.U

   Next we recall the definition of binomial equivalence relations, which generalizes 

the notion of equivalence relation with at most two equivalence classes.
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    DEFINITION 3.3. For a relation p :  I A define a binomial equivalence relation 
(p) : A A as: 

(P) = (P# = P#) n (P# = P#)#. 

a 

    The next lemma collects some properties of binomial equivalence relations. Later 
on, we will use them to show the properties of association relations in Dedekind cate
gories. 

LEMMA 3.4. Let p, pi, p2 : I A and ' : A A be relations and t : I —+ A an 
I-point of A in a Dedekind category D. Then the following hold: 

 (a) e(p) : A 7 A is an equivalence relation on A. 

 (b) (Pi) n e(P2) c e(Pl n P2). 

 (c) S(VIA) = S(OIA) = VAA• 

 (d) If rl is an equivalence relation then rl COn). 
 (e) If i is reflexive then t (trl) = tr~. 

    PROOF. (a) First reflexivity follows from the next equivalence: idA C p# = p# iff 
idAp# _Cp#.(p) is clearly symmetric by the definition. By Proposition 3.2(g) we have 
(pt_p#) (p#  p#) C p# _ p#, and hence transitivity follows from 

 (P)(P) = {(P#  P#) n (P#  P#)#}{(P# = P#) n (P# = P#)#} 
(P# _ P#) (P# _ p#) n (P# _ p#) # (P# _ P")" { Proposition 3.2(d) } 

C (p#  P#) n (P# _ P#)# 
= (P)

(b) It is enough to show that 

(Pi _ P1)11 (P2  P) E (P1 n P2)# = (P1 n P2)#. 
This follows from 

(PiPi)n(P2-P2) C {p# = ( i n p2#} n#p2_(pin p2)} { Proposition 3.2(j) } 
_(PinP2) (Pin p2) { Proposition 3.2(h) } 

        = (P1 n P2)# = (P1 n p2)#• { Proposition 3.2(b) } 

(c) By Proposition 3.2(g), (a) we have e(VIA) = (VIA  01A) n (V IA  OIA)# = DAA, 
and ((:IIA) = (OIA  OIA) n (OIA  O1,4)# = DAA• 
(d) Assume that rl is an equivalence relation. Then we have ii(tri)# = (trl)# and so 

C (trl)# = (ti)#. Hence 'q C e(tn). 
(e) Assume that 7/ is reflexive. We first get idA E no since rj is reflexive, and so id/ E 
tt# C trJ#t# = t(trl)# since t is total. Then we have 

t{(t11)0 = (t17)0} = {t(t17)#} = (tri)# { t is function and Proposition 3.2(k) } 
             = id/ = (t9 )# { t(ti)it = id/ } 

                = VIA,{ id/ = DII and Proposition3.2(g) }
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and 

 {(tr)#  = (trl)#}t# = {(trj)# = (W#} = t { t is function and Proposition 3.2(1) } 
_ (trl)# = {t(tl))#} { Proposition 3.2(i) } 

             = (tij)# = idI {t(tij)# = idI} 
              = (t11)1.{ Proposition 3.2(g) } 

By the univalency of t we have the assertion as follows 

tOn) = t[{(tij)# = (t?-1)0} n {(ti)0 = (tri)#}#] 
= t{(tii)# = (tn)#} n t{(tij)# = (ti)#}# { Proposition 3.2(f) } 

          = VIA n {(ti )#}# 
             = til. 

   We define a notion of complementary horn-sets and Dedekind categories. 

   DEFINITION 3.5. A horn-set D(A, B) is complemented, if each relation a : A — B 
in D has a complement relation a : A 7 B such that a n a = OAB and a U a = V AB . 
A Dedekind category D will be called complemented if for each object A, the horn-set 
D(A, A) is complemented.^ 

   If each horn-set D(I, A) is complemented, then p#=p# = (p#-p) for each p : I A, 
and so e(p) = p# p U p-# p if I is a strict unit. It follows from 

(Pe P U P13-)  n (P) 
       = (pp U pp) n (Pit p U p#p-) 

       = (P#P n P# P) U (Pitt) n P#P ) U (13-" r n P# P) U (P #P n P#P 
       = (p# n P# )P U P# (P n p-) U P-# (P n p) U (P—# El P# )P 

          { Proposition 3.2(f) } 
           OAA 

and 

(P#P U PP ) U e(P) = (P#P U 1) ) U (P# P U r) 
                 = (P# n P# )P U (P-# n Pi)P 

                     = VAIP U VAIP
                 = VAI(P U r) 

= VAIVIA 
V AA.{ I is a strict unit }

4. Association Rules in Dedekind Categories 

   In this section, we introduce a definition of information system in a Dedekind 

category, and we define the categorical notion of association relations and association 
rules for information systems in Dedekind categories.
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    DEFINITION 4.1. Let U be a set (of attributes). An information system in a 
Dedekind category  D is an Uindexed set  { fa : X -4 Va I a E U} of functions fa f
rom an object X into an object Va in D. Then for each subset P of U define a relation 
n[P] : X —i X by r/[P] = naEPfafa• When P is an empty set, we set rn[0] =v xx.  ^ 

    The basic properties of the indiscernibility relation found in MacCaull (2001) can 
be also shown in information systems in Dedekind categories. 

    LEMMA 4.2. Given an information system { fa : X Va I a E U} in a Dedekind 
category D, the following hold for all subsets P and Q of U: 

 (a) r1[P] is an equivalence relation on X. 

 (b) 71[P U Q] = 71[P] n ri [Q] 

 (c) If P D Q then 1)[P] C rl [Q] 

 (d) rl [P] [Q] C 71[P n Q] 

    PROOF. (a) Reflexivity follows from idxC naEPfan= i1[P], since fa is total 
for each a E P. We have n[1111 _ (naEPfafa)# = naEPfafit = 71[P], and hence n[P] is 
symmetric. Transitivity follows from 

n[PJn[P] = (naEPfafa)(naEPfafa) 
naEpfafafafa{ Proposition 3.2(d) } 

C naEPfafa{ fafa C idva } 
               = 77[PJ. 

(b) It follows from 

?AP U Q] = naEPUQfafa 
(naEPfafa) n (naEQfafa) 

                   = i1[P] n n[Q]• 

(c) Assume that P D Q. Then we have i1[P] = ri[P U Q] = i1[P] n n[Q] C n[Q] by (b). 
(d) It follows from 

i1[P]i[Q] = (naEPfafa)(naEQfafa) 
C naEpnQfafafafa { Proposition 3.2(d) } 

na€PnQfafa { fafa C idva } 
               = ?AP nQ]. 

   Throughout the rest of this section we assume D is a Dedekind category with a 

unit I and { fa : X -+ Va I a E U} is an information system in D. 

   For an I-point t : I -+ X, corresponding to 1u in the context with 1 , we call the 
binomial equivalence relation e(tr)[P]) : X — X as an association relation in D. 

   We show the properties of association relations found in MacCaull (2001) in Dedekind 
categories.
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   LEMMA 4.3. Let  { fa : X -+ Va I a E U} be an information system with a designated 
I-point t : I —4 X in D. Then the following hold for all subsets P and Q of U: 

 (a) e(trl[P]) is an equivalence relation on X . 

(b) (trl[P]) n .(trl[Q]) C e(trl[P U Q])• 

 (c) e(trl[0]) = V xx 

    PROOF. (a) The claim is immediate from Lemma 3.4(a). 
(b) Since t is univalent, we have trl[P U Q] = t(i [P] n r)[Q]) = trl[P] fl trl[Q] by Lemma 
4.2(b) and Proposition 3.2(f). Hence we have t;(trl[P]) n (trl[Q]) C (trl[P] n trl[Q]) = 

(trl[P U Q]) by Lemma 3.4(b). 
(c) By the definition of rl[0] we have trl[0] = tVxx = Vix since t is total, and so 
01l[0]) = Vxx by Lemma 3.4(c). 

                                                           0 

   We may express association rules in Dedekind categories as follows: 

DEFINITION 4.4. Let { fa : X -4 Va I a E U} be an information system with a 
designated I-point t : I -* X in D. An association rule is a formal expression of the 
form P = Q, where P and Q are subsets of U. We say that a association rule P = Q 
holds in the information system if and only if e(tr)[P]) C (t/)[P U Q]).0 

   The following lemma presents a simpler condition which is equivalent to the con
dition of association rule in the above definition. 

   LEMMA 4.5. Let { fa : X -4 Va a E U} be an information system with a designated 
I-point t : I -+ X in D. Then the following statements are equivalent for all subsets P 
and Q of U: 

 (a) e(trl[P]) C (t71[P U Q]). 

 (b) trl[P] C trl[Q] 

 (c) (trl[P]) _ 0r1[P U (2])• 

    PROOF. First we show that (a) implies (b). Suppose (tr)[P]) C (trl[P U Q]). 
Then we have trl[P] t (trl[P]) C t (tr)[P U Q]) = trl[P U Q] C tii[Q] by Lemma 3.4(e) 
and Lemma 4.2(c). Next we show that (b) implies (c). Suppose trl[P] C trl[Q]. Then 
(trl[P]) = (trl[P U Q]) is obvious from the fact that t77[P] C trl[Q] if trl[P] = tr)[P U Q]. 

Finally the claim (c) implies (a) is obvious.^ 

    Following the last lemma, the validity of the Armstrong axioms for association rules 
can be proved easily by using properties of rl[P]. 

   Fact 3 Let { fa : X Va I a E U} be an information system with a designated 
I-point t : I X in D. The following hold for all subsets P, Q and S of U: 
(a) If P D Q holds then P Q holds. 
(b) If P Q holds then PUS Q U S holds. 
(c)IfP=Q and Q=S hold then P=Sholds.
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    PROOF.  (a) By Lemma 4.2(c) we have tri[P] C tri[Q], which is equivalent to 
e(tii[P]) E e(tn[P U Q]) • 

 (b)  Assume  that  tii[P]  C  tr)[Q].  Then  trl[PUS]  =  ti1[P]nti1[S] C trj[Q]ntri[S] = ti1[QUS] 
by Lemma 4.2(b) and Proposition 3.2(f). 
(c) Assume that tri[P] C tr)[Q] and trl[Q] C tii[S]. Then tii[P] C trl[S]. ^ 

    The implicationproblem for association rules in contexts with 1 is the following: 
The formula niPiQi D P = Q is provable if for all contexts with 1 if the associations 
Pi Qi hold, for all i, then the association P = Q holds. 

    MacCaull (2000, 2001) gives sufficient conditions on semistrong equivalence rela
tions to develop a relational proof system that is sound and complete for the implication 
problem for association rules in contexts with 1. In fact it is shown that (1) if the tableau 
for the formula ni Pi = Qi D P = Q closes, then if for all i, the associations Pi = Qi 
hold in a context with 1 then P . Q holds in that context and (2) if the tableau is open, 
then one can construct a context with 1 where for all i, the associations Pi = Qi hold 
but the association P = Q does not hold. The proof of (2) required an informational 
representability result, to go from information frames to information systems that are 
contexts with 1 (the completeness of the tableaux system is frame completeness). 

    In order to show the completeness for the implication problem for association rules 
in Dedekind categories, we extend the informational representability result found in 
MacCaull (2001) to Dedekind categories. We first give a definition of information frames 
in Dedekind categories. 

DEFINITION 4.6. An information frame in D is a structure of the form K = (X, U, E), 
where X is an object in D, U is a finite set and E is a map E : p(U) -+ D(X, X) assigning 
a relation E[P] on X to each subset P of U. If each E[P] is an equivalence relation, then 
we say K is a frame with equivalence relations. The frame is called semistrong if and 
only if for all subsets P and Q of U, E[P] n E[Q] C E[P U Q] and E[0] = Vxx. ^ 

    We conclude this section by establishing the theorem on the informational repre
sentability for contexts in a Dedekind category. 

    THEOREM 4.7. (Informational representability) Let K = (X, U, E) be a semistrong 
information frame with equivalence relations having a designated I-point t : I —+ X in 
D. Suppose for all subsets P of U, the relations E[P] satisfy the following axioms: 
(Asl) (ts[P]) C E[P]. 
(As2) If P 3 Q then te[P] C tE[Q]. 
(Equiv) For each equivalence relation 9 : X —7 X, there is an object X/9 in D together 
with a surjection q : X —+ X/9 such that 9 = ggt1 and q0q = idx/o 

    Then there is an information system with a designated I-point t in D such that 
e(trl[P]) = E[P]. 

    PROOF. Given a semistrong information frame (X, U, E) with a designated /-point 
t : I —> X and equivalence relations that satisfy (Asl), (As2) and (Equiv), we construct 
an information system with t, as follows: 
   By (Equiv) there exists a surjection qa : X X/E[{a}] such that gaqa = e[{a}] 

and gaqa = idx/E[{a}i for each a in U. Set Va = X/E[{a}] for each a in U. Then
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 {qa : X -+ Va I a E U} is a information system in D and n[P] = na.Epgaga for each 
subset P of U. 

   Then we need to show that for all subsets P of U, E[P] = (tri[P]). By (Asl) we 
have e[P] = (te[P]) since e[P] C e(te[P]) always holds by Lemma 3.4(d), so it is enough 
to show tn[P] tE[P] for each subset P of U. First we have 

9[P] = naePgaga 
= naEpe[{a}] { gaga = E[{a}] } 
C_ e[Uaep{a}] { K is semistrong } 

                 = e[P] 

and so tri[P] C tE[P]. Next we show the reverse containment. We have for all a in 
P, tE[P] C te[{a}] by (As2). Hence tE[P] C naEptE[{a}] = t(naEpE[{a}]) = trj[P] by 
Proposition 3.2(f). We conclude tri[P] = te[P].O

5. Conclusion and Future work 

   In this paper we present a categorical formulation of indiscernibility relations and 
association relations and show that properties of those relations hold in Dedekind cat
egories. We also prove the categorical analogue of the informational representability 
result, necessary for completeness of the implication problem. 

   Much of database dependency theory has been extended to Dedekind categories 
(Okuma and Kawahara, 2000, 2001). The question arises whether we can extend the 
work on association rules to Dedekind categories. There are two different approaches 
one could take: 

   The first approach is to develop a tableaux-style of deduction for complemented 
Dedekind categories (in the sense of Definition 3.5). In fact, since the hom-sets are com
plete distributive lattices, most of the core relational deduction rules are admissible (see, 
for example, Orlowska, 1997). The condition that for any a : X —i X, a U a— = Vxx 
is required so that we may call sequences containing the subsequence a, a— axiomatic; 
that is this condition gives a branch closing condition for the tableau. It is of interest to 
see if this approach gives us tableaux style proofs for implications of functional or multi
valued dependencies or association rules in complemented Dedekind categories. It is also 
of interest to investigate the possibility of a tableaux style of deduction appropriate for 
other dependencies for complemented Dedekind categories. With such a development 
deductions in complemented Dedekind categories can be automated in the same way 
that relational deduction systems are automated (see Little et al., to appear) . 

   The second approach is to give an axiom system of the style in Okuma and Kawa
hara (2000, 2001) for association rules in Dedekind categories. This involves designing 
deduction rules corresponding to the properties of semistrong relations and the proper
ties (Asl), (As2) and (Equiv) in Theorem 4.7.
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