
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

COMBINATORY LOGIC AND $ lambda $-CALCULUS FOR
CLASSICAL LOGIC

Baba, Kensuke
Graduate School of Information Science and Electrical Engineering, Kyushu University

Kameyama, Yukiyoshi
Department of Information Science, Kyoto University

Hirokawa, Sachio
Computing and Communications Center, Kyushu University

https://doi.org/10.5109/13496

出版情報：Bulletin of informatics and cybernetics. 32 (2), pp.105-122, 2000-12. Research
Association of Statistical Sciences
バージョン：
権利関係：



Bulletin of Informatics and Cybernetics, Vol. 32, No. 2, December, 2000

COMBINATORY LOGIC AND ACALCULUS FOR 
           CLASSICAL LOGIC

                           By 

Kensuke  BABA; Yukiyoshi KAMEYAMAt and Sachio HIROKAWA$

                            Abstract 

  Since Griffin's work in 1990, classical logic has been an attractive target for 
extracting computational contents. However, the classical principle used in Griffin's 
type system is the doublenegationelimination rule, which prevents one to analyze 
the intuitionistic part and the purely classical part separately. By formulating a 
calculus with J (for the elimination rule of falsehood) and P (for Peirce formula 
which is concerned with purely classical reasoning) combinators, we can separate 
these two parts. This paper studies the APJ calculus with P and J combinators and 
the AC calculus with C combinator(for the doublenegationelimination rule). We 
also propose two Acalculi which correspond to APJ and AC. We give four classes 
of reduction rules for each calculus, and systematically study their relationship by 
simulating reduction rules in one calculus by the corresponding one in the other. It 
is shown that, by restricting the type of P, simulation succeeds for several choices 
of reduction rules, but that simulating the full calculus APJ in AC succeeds only 
for one class. Some programming examples of our calculi such as encoding of 
conjunction and disjunction are also given.

1. Introduction 

    The Acalculus possesses several features of programming language and their im
plementations. In spite of its very simple syntax, the Acalculus is strong enough to 
describe all mechanically computable functions. Therefore the Acalculus can be viewed 
as a paradigmatic programming language. For example, a term Ax.M represents the 
function whose parameter is x, and MN is considered the result of applying function 
M to argument N. The value of function Ax.M at an argument N is calculated by 
substituting N for x in M, so (Ax.M)N can be simplified to M[x := N]. The term 
rewriting procedure 

                      (Ax.M)N —> M[x := N] 
is called 0reduction. In order to deal with functions with domain and range, the notion 
of type is used for Acalculus. Types are assigned to A-terms as follows. 

M:L3 M:a—*,Q N:a 
Axa.M.a--->0 MN:03 

If the type of parameter x is a and the type of M is 0, the type of function Ax.M is 
a —> O. If the type of function M is a -} /3 and the type of argument N is a, the type of 
* Graduate School of Information Science and Electrical Engineering

, Kyushu University 
t Department of Information Science , Kyoto University 
t Computing and Communications Center , Kyushu University



106K. BABA, Y. KAMEYAMA and S. HIROKAWA

 MN is 0. If we regard types as logical formulae, they are consistent with inference rules 
on implicational fragment. Namely, types can be considered formulae and terms can be 
considered proofs, respectively. Moreover, normalizations of proof figure correspond to 
reduction rules of A-term. For example, the elimination of inference rules corresponds 
to the ,Qreduction as follows. 

[x : a]Q 
: PN:a 

M:/3 Q[x:a] 
Ax.M:a—*13 N:aP 

               (Ax.M)N : ,Q reduces toM[x := N] : 13 

This correspondence between logic and typed Acalculi is the CurryHoward Isomorphism 
(Howard (1995)). 

    Historically the isomorphism had been restricted to intuitionistic logic, since no con
structive interpretation was (believed to be) possible for classical logic. A breakthrough 
was brought by Griffin (1990). He assigned a consistent type to Felleisen's Coperator 
(Felleisen et al. (1987)), and showed that it corresponds to the doublenegationelimina
tion rule (the elimrule), hence the system gives computational meaning to classical 
proofs. After him, many researchers formulated typed Acalculi which corresponds to 
classical logic, such as Parigot's Apcalculus (Parigot (1992)), its callby-value variant 
( Ong and Stewart (1997)), de Groote's exception calculus, and classical catch/throw 
calculus NK,/t (Sato (1997)). These are extension of the isomorphism to classical logic 
from a computational viewpoint, but we extend it from a logical one. The purpose of our 
research is to find the reduction rule (or the normalization of proof, in a logical sense) 
peculiar to classical logic. In order to make the difference between various logic clear, 
we restrict logical connectives to implicational fragment and falsehood in this paper. 

    Although Griffin's type system for the Coperator is really striking, there are at 
least two unpleasant points in his type system. 

    First, the elim-rule is so powerful that adding the rule to minimal logic (intu
itionistic logic without the 1elimination rule) yields classical logic, hence, we cannot 
distinguish which parts of reduction rules come from intuitionistic logic, and which parts 
are purely classical one. Instead of introducing the elim-rule, we can choose the com
bination of the 1elimination rule and the socalled Peirce formula ((a Q) —* a) —; a 
as the basis of our classical calculi. The situation is illustrated as follows: 

classical logic = minimal logic + elim-rule 
                  = minimal logic + 1elim-rule + Peirce formula 

                          intuitionistic logic + Peirce formula 

Then, we may be able to distinguish reduction rules for intuitionistic logic (concerning 
the 1elimination rule), and reduction rules for the purely classical part (concerning 
Peirce formula). 

    The second unpleasant point of Griffin's type system is well known; in order to 
apply the following Felleisen's reduction, the whole term must have the type 1. 

E[CN] —> N(Ax.A(E[x])) 

Since the 1 type is the empty type, we can never use this reduction rule. Different solu
tions to this problem have already been proposed by Griffin and Felleisen (Griffin (1990),



Combinatory Logic and  aCalculus for Classical Logic107

Felleisen et al. (1987), Felleisen and Hieb (1992)); yet we can avoid this problem by sim
ply going back to the call/ccoperator which has the following reduction rule: 

                E[call/ccN] —* E[N(Ax.A(E[x]))] 

In this reduction rule, the whole term E[call/ccN] may have arbitrary type 0, in that 
case the most general type of call/cc is ((a ---> 13) --> a) a, Peirce formula. 

    In summary, the calculus with the 1elimination rule and Peirce formula is worth 
studying in detail. With this motivation in mind, we propose in this paper two combi
natorylogic-style calculi APJ and AC. The former has two combinators P (for Peirce 
formula) and J (for the 1elimrule), and the latter has one combinator C (for the 
elimrule). Besides 0 and 7ireductions, we classify classical reduction rules into four 
classes; the logical reduction, simplification reduction, base-case reduction, and uj-like 
reduction. By appropriately choosing a certain class of reduction rules, our calculi have 
close connection to classical calculi proposed in the literature, for example, Felleisen's 
(Cleft) rule is close to our simplification rule. 

   We then study the relationship between APJ and AC by defining translation from 
one to the other, and check if a class of reduction rules in one calculus can be simulated 
by the corresponding class of reduction rules in the other calculus. It turned out that, 
the simulation mostly works well if we restrict the type of P, but does not work so well 
for the full P. 

    We shall also present Acalculi AJ and A which corresponds to these calculi. This 
Acalculus-style is more convenient to use, since the notation of these calculi is more 
compact than the combinatory-logic style. We also study the relation between the A
calculus style and the combinatory-logic style by giving translations from one to the 
other. As expected, this translation works well. 

    The four calculi above and translations between them can be summarized as the 
following diagram.

   The main contribution of this paper is (1) to give two calculi each of which has 
combinators for classical inference rules, (2) to analyze various classes of reduction rules 
systematically, and (3) to consider the Acalculus-style presentation and give the precise 
relation to combinatorylogic-style presentation. 

    The rest of this paper is organized as follows: Sections 2 and 3 presents combinatory
logic-style calculi and Acalculus-style calculi for classical logic, respectively, and study 
translations between them. Section 4 briefly mentions properties of our calculi such as 
confluency. Section 5 presents programming examples of our calculi. Comparison with 
other works including Parigot's AAcalculus as well as concluding remarks are given in 
Section 6.



108K. BABA, Y. KAMEYAMA and S. HIROKAWA

2. Combinatory Logic for Classical Logic 

   In this section we propose two calculi  APJ and AC as extensions of the simply 

typed Acalculus, then study their relationship.

2.1. Syntax 

   The starting system of all our calculi in this paper is the implicational fragment of 
minimal logic, (or the simply typed Acalculus, under the CurryHoward Isomorphism). 
We believe that the implicational fragments are the essence of various logics, and it is 
relatively easy to introduce other connectives to the calculi once after we understand 
the behavior of implicational fragments. 

    Types are defined as the following grammar where A is a metavariable for atomic 
types other than 1 (falsehood). 

a Al 1 l a-+a 

Negation is defined in a standard way by -'a o 
    Preterms of AC and AP are given as follows where x" is a metavariable for variables 

of type a. 

             (for AC) M ::= x" I Ax" .M I (MM) C 
            (for APJ) M ::= x" I Ax' .M (MM) I P I J 

    As usual, A is the only binding operator, and bound/free occurrences of variables 
are defined as standard. The set of free variables in M is denoted as FV(M). We may 
sometimes omit the type a in a variable x". We then give typing rules. 
Typing Rules for Ordinary A-terms 

M:/3 M:a-0 N:a 
x":a Ax' .M:a->/3 MN:/.3 

Typing Rules for Combinators 

C: ->a P:((a+/3)->a)-+a J 

    Terms are preterms which are typed by the above typing rules. Types are sometimes 
written as a superscript, for instance, (J1-'M-L)". Substitution M[xa := N"] is 
defined as usual. We use lowercase letters such as x, y, z, u, v for variables, uppercase 
letters such as L, M, N for terms, and Greek letters such as a, /3, -y for types. If the P 
combinator has type (-'a ---^ a) -> a, namely the type /3 is 1, it is also denoted as P. 
This finishes the definition of the languages of AC and APJ. Note that AC and APJ 
only denote the languages; reduction rules will be defined later. 

    The following theorem is wellknown. 

    THEOREM 2.1. Let a be a type. Then the following three are equivalent: 
(1) a is provable in classical logic. 
(2) there exists a closed AC-term M such that M : a is provable in AC. 
(3) there exists a closed APJ-term N such that N : a is provable in APJ. 

    This theorem shows that the two calculi are logically equivalent and both are clas
sical calculi.



Combinatory Logic and  aCalculus for Classical Logic109

2.2. Reduction Rules 

   We define four classes of reduction rules for AC and )PJ other than the standard 

,3 and ij reductions: 

(Axa.MQ)Na -* MQ[xa := Na] (0) 
Axa.Ma-'13xa -p M°-'a(ii) 

In the 77reduction the sidecondition x ' FV(M) must be satisfied. 
    Our design policy for reduction rules is that, we do not insist on making confluent 

calculi. Rather, we try to formulate reduction rules as natural as possible even if they 
are not confluent. It is because, in the case of classical calculus, we have no universal 
principle on which two terms should be equated. After defining calculi and studying 
relationship, we can consider how confluent subcalculus can be obtained in different 
settings. 

Logical Reduction Rules The first class of classical reduction rules are called log
ical reduction rules, which originate from the third author and others' Preduction 
( Hirokawa et al. (1996)). It has a quite simple form, and moreover, the type assign
ment of the Preduction naturally induces the type ((a -; /3) -4 a) -* a, Peirce formula. 
The logical reduction rules are defined as follows: 

M-a(C x"xN„a) -~ N„aM,a(C) 
Ma-'13(P((a-'13)-'a)-'aN(a'13)-'°) -4 Ma-'Q(N(a'Q)'aMa-',Q) (p) 

M,a(J1-'aNI)N1(J) 

These reduction rules may be rewritten in the style of proofconversions as follows:

           •C:i~a-*a N:-'-'a• 

                                                                                                                                                                                                                                 • M:-'aCN:aN: M: -'a  
      M(CN) :1reduces to NM :1 

          P: ((a-*(3) -›a) -+a N: (a--*(3) ->a 

M:a-4/3 PN:a  
M(PN) : /3 

                                     • N:(a±(3)-4a M:a-> ,Q 
M:a-;,3 NM:a 

                 reduces toM(NM) : /3 

                                                                           • J N:1  
M: JN:a• 

             M(JN) :1reduces to N :1 

From these proof conversions, it is clear that the types are preserved by the reductions.



110K. BABA, Y. KAMEYAMA  and S. HIROKAWA

    Although the logical reduction rules in this style are natural, unrestricted use of 
(P) or (C) immediately causes nonconfluency. An example of collapse by (P) is given 
in Hirokawa et al. (1996). Let M be the following term. 

(.Aza.xa'((Aua.u)z))(P(\va—'a.vya)) 

Then we have the following reductions using (,3) and (P) . 

                    M (P) (4) x(xy) 
(0) (P) (Q)                M — —^ xy 

To make the comparison with other calculi easier, we shift to another formulation of logi

cal reduction rules here. An applicative context is a context where the hole is surrounded 

by no .Aabstraction: 

-E[] ::= [ ] I (E[] M) (M E[]) 

The term E[M] denotes the term E[ ] where the hole [ ] is replaced by the term M 
(provided it is welltyped). The definition of logical reductions using an applicative 
context is given below: 

E'[G,~~a—>aN~~a]N—a(Axa.EI[x])(EC) 
E~[p(a—~Q)~a.aN(a—°)—'a] —* EQ[N(a—'Q)—'a(Axa.E[x])](EP) 

E1[J1—'aN1]—4 N1(EJ) 

    The two sets of logical reductions are equivalent modulo the [3nequality, since, for 
instance, we have 

                M(CN)(EC) N(Ax.Mx) (7) NM 

and 

            E[CN] (~) (ax.E[x])(CN)-> N(ax.E[x]) 

where (13') is the inverse of ,Q reduction. The latter set of logical reduction rules are 
also not confluent, but restricting them to obtain confluent subcalculus is easier than 
the former. In the following, we use the latter set of reductions (EC), (EP) and (EJ) as 
logical reduction rules. 

    The logical reduction rules are close to the evaluation rules of Felleisen's Coperator 
and the call/cc operator in Scheme (Clinger and Rees (1991)): 

                  E'[CN] — N(Ax.A(E'[x])) 
E' [call/ccN] -* E' [N(.x.A(E' [x]) )] 

E' [AN] —* N 

where E' is an evaluation context, which is defined depending on which evaluation 
strategy is adopted, such as callby-name. The differences of our logical reduction rules 
and these evaluation rules are (1) we allow arbitrary applicative contexts, while in the 
latter case, the evaluation context is restricted, and (2) the latter reductions need the



Combinatory Logic and  aCalculus for Classical Logic111

Aoperator inserted after the computation. The role of the Aoperator is "escape", so it 
is similar to our Jcombinator. But the Aoperator is assigned the type 1-1 in Griffin's 

typing, so it is not useful. On the other hand, J is of type 1-> a for an arbitrary type 

a. 

Simplification Reduction Rules The second class of classical reduction rules are 

simplification reduction rules defined by:

(CM)N -> C(Az.M(\u.z(uN)))(Csimp) 
(PM)N -> P(.z.M(Au.z(uN))N)(Psimp) 

  PM -* P±(Az.M(au.J(zu)))(Pisimp) 
(JM)N -> JM(Jsimp)

Since the righthand sides are quite complex, we omitted the types of terms in the above 

definition, but they can be easily recovered from the following proofconversions. In the 

following, a is al  a2.

u:a N:ai 
z : uN : a2  

                        •z(uN) :1 

                                                                                                                                                                                                       • M : -'-'a .u.z(uN) : -'a 

  M :M(Au.z(uN)) :1  
     CM : a N : al\z.M(Au.z(uN)) : -i~a2 

       (CM)N : a2 reduces to C(Az.M(au.z(uN))) : a2 

M:(a  3)-*a 

PM:a N:al  

       (PM)N : a2 reduces to 

u:a N:ai 
z:a2 13 uN:a2 

                •z(uN) • /3  

M: (a>1^3)->a Au. z(uN):a->I3 

                        M(Au.z(uN)) : aN : al 

M(Au.z(uN))N : a2 

)tz.M(Au.z(uN))N : (a2 -* /3) -> a2 

P(Az.M(\u.z(uN))N) : a2



112K. BABA, Y. KAMEYAMA and S. HIROKAWA

 z: -'a u:a  

                                                  zu :1  

                                                                                                                                                                                       • J(zu) : ,Q 

M:(a*0)-->a Au.J(zu):a-*/.3 

M(.u.J(zu)) : a  

M : (a -> /3) -* aAz.M(.u.J(zu)) : -,a -> a 

   PM : areduces to PL(Az.M(Au.J(zu))) : a 

M:1  
JM:a N:al M:1  

             (JM)N : a2 reduces to JM : a2

   Note that there are type restrictions on the simplification rules, and not all the 
terms in the form (CM)N, (PM)N, PM and (JM)N can be reduced by these rules. 
The motivation of simplification rules are to simplify the type of combinators. For 
example, in the (Ps imp) rule, the type of P in the lefthand side is ((a -4 /3) -4 a) --* a, 
and that in the righthand side is ((a2 -* /3) -* a2) -* a2. Since a is al -> a2, the type 
of P was simplified. 

   There are two simplification rules for P; (Psimp) and (PLsimp). Let P be of type 

((a -; /3) -+ a) -> a. The former simplifies a (provided a is not an atomic type) and 
the latter simplifies /3. 

Base-case Reduction Rules The following reduction rules are what we call base-case 
reduction rules 1. 

C,,L->L(Ax,1-.M1) -> M1(Co) 
P(,a-•a)-'a(Ax,a.Ma) -> Ma (Po) 

J,LML --+ M1(Jo) 

    In the first two rules, we assume x V FV(M). These reductions eliminate combi
nators in a certain situation. 

ij-like Reduction Rules The following reduction rules are what we call ij-like reduction 
rules. 

                   C'-+a (Ax'
(.xMa)->Ma(Ca)               P(-'')'(ax,a .JJ'a(XMa))-4 Ma(P']) 

        C'-"Y(Ax'a x(C—a'a(ty-a.xMa)))---->Ma(Cs) 

    l 

   In these rules, we assume x V FV(M) and in the last rule, y V FV(M). We call the 
first two rules (Crj) and (PO, since it looks like the rireduction Ax.Mx -* M. The last 
reduction rule is taken from Ao calculus (Rehof and SOrensen (1994)), hence we call it 
(CA). The (Co) reduction rule is apparently complex. However, it seems impossible to 
derive this rule by other simple rules. 
1 We do not know if any standard names exist for these reduction rules.



Combinatory Logic and  ACalculus for Classical Logic113

2.3. Relation to Other Classical Calculi 

   The AC and APJ are closely connected to other classical calculi by choosing appro

priate classes of reduction rules. If we take the reduction rule (EC), then the calculus 
AC is close to FelleisenGriffin's system. The simplification rule (Csimp) is the same as 
the rule (Cleft) in Felliesen's axiomatization, although he did not treat the operator as 
a combinator. 

    The calculus APJ is close to the call/ccoperator in the programming languages 
Scheme ( Clinger and Rees (1991)), and similar calculi have been studied by several 
researchers, for instance, Nishizaki (1991) used (EP) and (EJ). The simplification rule 
(Psimp) comes from the first author's previous work (Hirokawa et al. (1996)). 

    To our knowledge, the base-case reduction rules and 7i-like reduction rules are not 
intensively studied, though it seems that they are used from time to time.

2.4. Simulation 

   In this subsection, we study the relationship between APJ and AC for four classes 
of reduction rules. We shall give two translations • from APJ to AC, and o from AC 
to APJ, and study how each reduction rule is simulated by the corresponding reduction 
rule. 
    Before going to the concrete translations, we give some terminology. Suppose there 
are two calculi S1 and S2, and 0 is a translation from S1 terms to S2 terms. Then, 
we say a reduction rule M —> N in S1 is simulated by reduction rules R1, • • • , R,,, in 52 
if there is a reduction sequence 0(M) -4 • • • —> 0(N) where only R1, • • • , Rn, /3 and 1J 
reductions are used. In some cases we cannot prove the simulation relation, but we can 

prove c(M) and 0(N) are equal with respect to the equivalence relation generated by 
Rl, • • • , Rn, ,Q and it reductions. In this case we say the reduction rule M —> N in Si is 
weakly simulated by reduction rules Rl , • • • , Rn in S2 2. 

    Note that the weak simulation has no meaning if the equivalence relation induced 
by the reduction rules is collapsed.

Translation from AC to APJ A translation function o from AC terms to APJ terms 

is given below. 

x° = x 

                       (Ax.M)° = Ax.M° 

                   (MN)° = M°N° 
                        C° = Ax.P(Ay.J(xy)) 

Then we have the following theorem. 

    THEOREM 2.2. For the translation o, we have the following. 

(1) o is sound w. r. t. the type system, namely, if M : a in AC, then M° : a in APJ. 
(2) (EC) can be simulated by (EP) and (EJ) . 
(3) (Csimp) can be weakly simulated by (Psimp) and (Jsimp). 
(.t) (C0) can be simulated by (Po) and (Jo). 
2 Plotkin used the word "translation" in this case . We diverge from his terminology in order to use the 

  word "translation" for the mapping function on terms.



114K. BABA, Y. KAMEYAMA and S. HIROKAWA

(5)  (Cri) can be simulated by (Pi1) . 
(6) (Ca) can be simulated by (J), (P0) and (PO . 

    Proofs are easy exercises; we give a proof of (3) only. Each side of the (Csimp) 
reduction rule can be reduced as follows: 

          (CMN)° = (Ax.P(Ay.J(xy)))M°N° 
(a) P(Ay.J(M°y))N° 

(P p) P(Az.(Ay.J(M°y))(Au.z(uN°))N°) 

-4 

                   (Jp) P(Az.J(M°(Au.z(uN°)))) 

(C(Az.M(Au.z(uN))))° = (Ax.P(Ay.J(xy)))(Az.M°(Au.z(uN°))) 

                       Q) P(Ay.J((Az.M°(Au.z(uN°)))y)) 

                      (2 P(Ay.J(M°(Au.y(uN°)))) 

    Hence, the (Csimp) reduction rule is weakly simulated. Since the use of 0-reduction 
is reversed, it is not simulation in the strong sense. Nevertheless, this weak simulation 
is useful, since we can construct confluent theories which include (Csimp). 

    As in the theorem, all reduction rules except (Cs) can be simulated by the corre
sponding rules. 

First Translation from APJ to AC The translation from APJ to AC is problematic 
compared to the inverse direction, since the type restriction in (EC) is too restrictive 
to simulate (EP) . From the computational viewpoint, the reason is clear; Felleisen's 
operator (under Griffin's typing) can be reduced only when the surrounding evaluation 
context has the type 1, while the call/cc operator can be reduced in general. We are 
inclined to think that C corresponds to P1 (with J), and does not correspond to full P. 

   Here, we shall give two translations from APJ to AC; one is from a subcalculus of 
APJ to AC which works well, and the other is from the full APJ to AC which is not 
completely successful. 

   The subcalculus of APJ is obtained by restricting P to P1, namely, we restrict the 
,Q in type ((a —* 0) .— a) - a of P to 1. The following translation is from AP1J to 
AC. 

x' = x 

(Ax.M)• = Ax.M' 

(MN)' = M'N' 
P1• = Ax.C(Ay.y(xy)) 

J' = Ax.C(Ay.x) 

    Using this translation, we have the following results.



Combinatory Logic and  aCalculus for Classical Logic115

    THEOREM 2.3. For the translation •, we have the following. 
(1) The translation • is sound w.r.t. the type system. 
(2) (EP) and (EJ) can be simulated by (EC) . 
(3) (Psimp) and (Jsimp) can be weakly simulated by (Csimp). 
(4) (Po) can be simulated by (Ci7). 
(5) (Jo) can be simulated by (C0). 
(6) (Pu) can be simulated by (Cs). 

Second Translation from APJ to AC To give a translation from full APJ to AC, we 
need to change the translation for P as follows. For brevity, we use the same name • 
for the second translation. 

P. = ax.C(.y.y(x(Az.C(Au.yz)))) 

    Other definitions are the same. Then we have the following results for this trans
lation. 

    THEOREM 2.4. For the new translation •, we have the following. 
(1) • is sound w.r.t. the type system. 
(2) (EJ) can be simulated by (EC) . 
(3) (Psimp) and (Jsimp) can be weakly simulated by (Csimp). 
(4) (PLsimp) can be weakly simulated by (Csimp) and (Co). 
(5) (Po) can be simulated by (CO. 
(6) (Jo) can be simulated by (Co) . 
(7) (Puj) can be simulated by (Cs) and (C0). 

   The problem is, as we mentioned, (EP) cannot be simulated by (EC) . Consider the 
following reduction. 

(E[PN])' = E' [(ax.0 (Ay .y(x(Az.0 (Au .yz)))))N.] 
C-413) E'[C(\y .y(N'(Az.C(Au.yz))))] 

We cannot proceed further if the type of (E[ ])' is not 1. 

Summary of Simulation We can summarize the results of simulation as the following 
table. In this table, <---> means that each set of reduction rules can be simulated by the 
set of reduction rules in the other side and vice versa. The symbol means that the 
simulation is weak simulation. We adopt the first translation as the translation from 
APJ to AC. 

AC APIJ 

                (EC) <---> (EP) + (EJ) 
               (Csimp) H (Psimp) + (Jsimp) 

         (EC) + (Csimp) H (EP) + (EJ) + (Psimp) (Jsimp) 

We have no good equivalence result if the reduction set contains the base-case reduction 
rules or the u-like reduction rules. It follows that, if we use the second translation as the 
translation from APJ to AC, the only meaningful equivalence is (Csimp) H (Psimp) + 
(Jsimp).



116K. BABA, Y. KAMEYAMA and S. HIROKAWA

    REMARK. In either translation from APJ to AC, the correspondence is more com
plex than the translation from AC to APJ. For instance, (C0) is simulated by (Po) and 

 (Jo) while (P0) is simulated not by (Co) but by (CO . Actually, the translation of the 
left side of (Po) can be reduced as follows: 

(PL(Az.M))' = (Ax.C(Ay•y(xy)))(Az.M') 
C(Ay•y((Az.M')y)) 
                     (~) C(Ay yM') 

                     (~~) M. 

In this simulation, the type of C is -'-'a —* a if the type of P1(Az.M) is a. Then we 
cannot apply (Co) but it needs (CO. In the same way, we have that (P71) cannot be 
simulated by (Cii) but it needs the complex rule (Cs) .

Relation of Translations After establishing the results on simulations, a natural ques

tion arises: whether the translations 0 and • are inverse mappings to each other, namely, 

M•° = M for any AC term M, and N°' = N for any APJ term N ? Unfortunately, 

it does not hold. The first half holds if we allow the (C) reduction rule, however the 

second half does not hold for adding any reduction rule considered in this paper.

3. Acalculus for Classical Logic 

   In this section, we introduce two calculi A and AJ. The two calculi have the A

calculus style rather than combinators. The calculus A corresponds to AC and the 

calculus AJ corresponds to APJ.

3.1. Syntax 

    First we define preterms. 

             (for A) M ::= x I Ax.M (MM) I Ax.M 
(forAJ) M ::= xI Ax.M I(MM)IAT.MIJ 

As is seen, we eliminated combinators C and P, and added new binding mechanisms 
Ax.M and A. The J combinator remains inXJ. For notational convenience, a sequence 
of binders will be punctuated, for example, Axyz.xyz is Ax.A .az.xyz, and Axyz.xyz is 
Ax.Ay.Az.xyz. 
    The typing rules for new terms are as follows: 
Typing Rules for Classical A-terms 

[x : -ia] [x : a --+ ,3] 

M:1 M:a  
Ax.M : a Ax.M : 

    In these typing rules, the assumptions x : -'a and x : a —0 are discharged at the 
application of these two rules.



Combinatory Logic and ACalculus for Classical Logic117

3.2. Reduction Rules 

    The classical reduction rules are classified into four classes. Since reduction rules 

for the J combinator are the same as before, we give one for Ax.M and  Ax.M only. 

Note that we give the same name to the reduction rule as the corresponding rule in 

combinatorylogic-style calculi.

Logical Reduction Rules 

E[Ax.M] M[x := Ay.E[y]](EC) 
E[ax.M] —* E[M[x := Ay.E[y]]](EP) 

where E[ ] is an applicative context. 

Simplification Reduction Rules 

          (Ax.M)N —+ Az.M[x := Au.z(uN)](Csimp) 
(A .M)N —* Az.M[x := Au.z(uN)]N(Psimp) 

Ax.M -* Az.M[x := )u.J(zu)](PI simp) 

Base-case Reduction Rules 

               Ax.M -* M (Co) 
Ax.M M (Po) 

where x FV(M). 

ri-like Reduction Rules 

                Ax.xM  M (Cuj) 
)Y.J(xM) —4 M (Prj) 

                Ax.x(Ay.xM) --* M (Co) 

where x FV(M).

3.3. Relation to Other Classical Calculi 

    Classical calculi in the Acalculus-style proposed so far are not many; the only 
exception is Ascalculus by Rehof and Scrensen (1994), which roughly corresponds to 
A with the reduction rules (Csimp), (Co) and (CA).

3.4. Simulation 

    As in the case of the combinatorylogic-style presentation, the two calculi AJ and 

A can simulate each other. The translations are given as follows: 

x° = xx• = x 

          (Ax.M)° _ Ax.M°(Ax.M)• = Ax.M* 
         (MN)° = M°N°(MN)' = M•N• 
            (Ax.M)° = Ax.J(M)°(A-z-.M)• = Az.zM• 
                                                 = Axy.x 

By these translations, we have the same result as Theorems 2.2, 2.3, and 2.4.



118K. BABA, Y. KAMEYAMA and S. HIROKAWA

3.5. Relationship between Combinatory-logic style and Acalculus style 

   The combinatorylogics AC and APJ and the Acalculi A and  IT corresponds to 
each other. We define a translation b from the Acalculusstyles to combinatorylogic
styles and a translation ti from combinatorylogicstyles to the Acalculusstyles. 

xb = xxa = x 

(Ax.M)b = Ax.Mb(Ax.M)° = Ax.M° 

(MN) = MbNI)(MN)a = MaNa 

(Ax.M) = C(Ax.Mb)Ca = Axy.xy 

(ax.M)b = P(Ax.M1')Pp = Axy.xy 
Jb = JJd = J 

    THEOREM 3.1. For the translation b and , we have the following: 

(1) b and t# are sound w. r. t. the type system. 
(2) every reduction rule is simulated (in a strong sense) by the reduction rule which has 
the same name. 

(3) The two translations are inverses of the other; namely, APb =0.7 M and Nb1 =0, N 
for any term M in AC, APJ and any term N in A , AJ, where =0, means /3i conversion. 

    In this sense, we may regard the combinatory logics AC and APJ are exactly the 
same systems as the Acalculi A and AJ, respectively.

4. Properties of the Calculi 

    In this section we briefly give known properties of our calculi.

4.1. Confluency 

    As mentioned earlier, unrestricted use of the logical reduction causes nonconfluency, 
so we must, for instance, restrict evaluation strategy. This topic is thoroughly studied 
in the literature, and we do not get into detail. The simplification reduction (Csimp) 
is well behaved in the sense it produces a confluent calculus with /3 and ij reductions. 
Moreover, we can safely add the reductions (Co) and (Cy) to this calculus without losing 

the confluency. It seems that we can add (Cs) to this calculus. 

   By the simulation between APJ and AC, these results can be lifted to APJ, for 
instance, the system with (Psimp) is confluent, and so on. Adding the (P1simp) rule 
does not cause a problem, since the order of (Psimp) and (Plsimp) can be exchanged.

4.2. Normalization 

   The first author with others proved that weak normalization holds for (Psimp). 
Careful inspection of this result shows that, a subcalculus of APJ which has (Psimp) 
rule is always weakly normalizing. We do not know if a calculus without (Psimp) ( for 
instance, a calculus with (EP) only) is weakly normalizing or not. 

    Very little about strong normalization is known until now. We know that the 
system with (P) is not strongly normalizing (Hirokawa et al. (1996)).



Combinatory Logic and  aCalculus for Classical Logic119

4.3. Normal Forms 

   Normal forms in NJ have an elegant form if we slightly modify the (Psimp) reduc

tion. It was given as the following form: 

(A .M)N -* A .M[x := Au.z(uN)]N(Psimp) 

We can slightly modify it to a more general reduction as follows. 

Ax.M -> Ay.A ..M[x := Au.z(uy)]ynew (Psimp) 

Then we have the following theorem. 

    THEOREM 4.1. Let M be a normal term in AJ. Then it is in the form of 

Ax1 ... xnyl • • • ym.zMi . . . Mk 

for some variables x1, • • , xn, yl, , ym, z and normal terms M1, • • • , Mk (n, m, k > 0). 

    The theorem follows from the fact that, if there is a subterm in the form ,yx.M, 
then we can always apply (Psimp) rule, so it was not normal. This is an normal extension 
of normal form of Acalculus in the sense that when y • • • , ym does not occur, the term 
is the usual normal form of Acalculus. This means that a formula of the form a — /3 is 
only proved by an introduction rule of the implication.

5. Computation in APJ 

    In this section we examine the expressive power of our calculi. Since computational 

aspects of AC are relatively well known, our target here is APJ or AJ with reduction 

rules (Prj) and (Jsimp).

5.1. Catch/Throw Mechanism 

    A common usage of continuation is to simulate the catch/throw mechanism in 
Common Lisp. Define Catch and Throw as follows: 

Catch(x, Ma) = 
Throw(x, Ma) = J(x-aMa) 

For example, Catch(x, Throw(x, 0) + 1) is defined as Ax.J(x0) + 1. Here we assume 
integers and + are added to the language and we have the reduction (JM)+N -> JM. 
Then we have Catch(x, Throw(x, 0) + 1) —* Ax.J(x0) -> 0 as expected.

5.2. Defining Conjunction and Disjunction 

   As in other calculi for classical logic, we can define conjunction (A) and disjunction 

(v) using implication and falsehood. 
    Let a A /3 be -,(a -* -0). Then we can define 

pair (M0, N13) ° Aua->-)3. uMN 

iro (Lan13) AY' . J (L(Aya za •xy) 

~1(Lana) ° AY-) .  J(L(Ayazi.xz)



120K. BABA, Y. KAMEYAMA and S. HIROKAWA

As expected,  7ro(pair(M, N)) reduces to M by the following reduction sequence: 

iro(pair(M, N)) --* Ax.J((A f . f MN)(Ayz.xy)) 
-^ ax.J((Ayz.xy)MN) 
-~ ax.J(xM) 

                   (P+ M 

Similarly, we obtain ir1(pair(M,N)) -* N. 
    Disjunction a V /.3 can be defined as -,a 

in jo (Ma)Ax-' y-' .xM 
inji(NQ)Ax .yN 

case(L"v 3; x".Mry; yi3.N1) J(L(Ax".zM)(ayfi.zN)) 

As expected, case(injo(L); x".M1'; yQ.N.') reduces to M[x := L] by the following reduc
tion sequence: 

       case(injo(L); x.M; y.N) -* Xz.J((Axy.xL)(Ax.zM)(Ay.zN)) 
--> az.J((tx.zM)L) 
-+ az.J(z(M[x := L])) 

(P' M[x := L] 

Similarly we obtain case(inji(L); x.M; y.N) --^ N[y := L].

6. Concluding Remarks 

    Parigot's Ai-calculus is yet another interesting calculus for classical logic. Basically, 
Apcalculus corresponds to multipleconsequence logic in a natural deduction style, so it 
differs from Griffin's type system in the fundamental principle. However, de Groote has 
shown that the structural reduction rule in aµ can be simulated by a subset of reduction 
rules in GriffinFelleisen's system (de Groote (1994)). If we interpret de Groote's result 
in our setting, the structural reduction rule in aµ can be simulated by (Csimp) in AC, 
or (Psimp) + (Jsimp) in APJ. 

    However, we think another, more direct correspondence exists between aµ and APJ 
as shown in the following diagrams. 

                      LK --> LJ + Peirce 

                              AP 

In this diagram, LK means the implicational fragment (without the falsehood) and 
LJ+Peirce means the implicational fragment of LJ (without the falsehood) with the 
following rule (Peirce-rule) added. 

F,A-*BHA 
F I A



Combinatory Logic and ACalculus for Classical Logic121

It seems that we can translate a proof in LK to a proof in LJ+Peirce; since the only differ
ence is the existence of right weakening/contraction rules, all we have to do is to replace 
right contraction rules by Peirce-rules and other intuitionistic rules  (Hirokawa (1996)). 
If this translation succeeds, then it may be straightforward to move the translation to 
the translation from A t to AP, since there is a natural translation from LK to ,\p, and 
LJ + Peirce to AP.

                          Acknowledgement 

The authors would like to thank the referee very much for useful comments.

                                References 

Clinger, W. and Rees, J. editors. (1991). Revised' Report on the Algorithmic Language 
   Scheme, http://www-swiss.ai.mit.edurjaffer/r4rs_toc.html. 

de Groote, Ph. (1994). On the Relation between the aµCalculus and the Syntactic The
  ory of Sequential Control, LPAR'94, Lecture Notes in Artificial Intelligence, 822, 
   31-43. 

Felleisen, M., Friedman, D. P., Kohlbecker, E and Duba, B. (1987). A Syntactic The
  ory of Sequential Control, Theoretical Computer Science, 52, 205-237. 

Felleisen, M. and Hieb, R. (1992). The Revised Report on the Syntactic Theories of Se

  quential Control and State, Theoretical Computer Science 103, 235-271. 

Griffin, T. (1990). A Formulae-as-Types Notion of Control, Conference Record of 17th 
  ACM Symposium on Principles of Programming Languages, 47-58. 

Hirokawa, S. (1996). Right Weakening and Right Contraction in LK, Proc. CATS'96, 
  Australian Computer Science Communications, 18(3), 168-174. 

Hirokawa, S., Komori, S., and Takeuti, I. (1996). A Reduction Rule for Peirce Formula, 
  Studia Logica, 56(3), 419-426. 

Howard, W. A. (1995). The Formulae-as-Types Notion of Construction, reprinted in 
   The CurryHoward Isomorphism (de Groote, Ph. ed.), Academia. 

Nishizaki, S. (1991). Programs with Continuations and Linear Logic, TACS'91 Proceed
  ings (T. Ito and A. R. Meyer eds.), Lecture Notes in Computer Science, 526, 513-531. 

Ong, C.-H. L. and Stewart, C. A. (1997). A CurryHoward Foundation for Functional 
  Computation with Control, Proc. 24th ACM Symposium on Principles of Program

   ming Languages. 

Parigot, M. (1992). AµCalculus: An Algorithmic Interpretation of Classical Natural 
  Deduction, Proc. International Conference on Logic Programming and Automated 

  Reasoning (A. Voronkov ed.), Lecture Notes in Artificial Intelligence, 624, 190-201. 

Rehof, N. J. and SOrensen, M. H. (1994). The AA-Calculus, Theoretical Aspects of 
  Computer Software (M. Hagiya and J. C. Mitchell eds.), Lecture Notes in Computer 

   Science, 789, 516-542. 

Sato, M. (1997). Intuitionistic and Classical Natural Deduction Systems with the Catch 
  and the Throw Rules, Theoretical Computer Science, 175(1), 75-92.



122K. BABA, Y. KAMEYAMA and S. HIROKAWA

Received August 9,1999 

Revized November 13, 2000


