AN APPLICATION OF A COMBINATORIAL THEOREM TO A SEPARATION PROBLEM : I

Maruyama, Fumio
Department of Economics, Miyazaki Sangyo-Keiei University

https://doi.org/10.5109/13493
AN APPLICATION OF A COMBINATORIAL THEOREM TO A SEPARATION PROBLEM: I

By

Fumio MARUYAMA *

Abstract

We consider functionals which arise naturally from game theoretical consideration and are also generalizations of the functionals in Hisano and Maruyama (1989). In the study of the natural partial order on the set of these functionals, we establish a separation theorem, making use of the theorem of Hales-Jewett.

1. Introduction

A sequence of operations of minimizing or maximizing a function subject to the variables can be considered an optimal play of some game. For example, for a real-valued function F defined on the Cartesian product of finite sets Z^1, Z^2, Z^3, Z^4,

$$\min_{z^2 \in Z^2} \max_{z^1 \in Z^1} \min_{z^4 \in Z^4} \max_{z^3 \in Z^3} F(z^1, z^2, z^3, z^4),$$

is the value of some zero-sum game between minimizer and maximizer where F (resp. $-F$) is the payoff function of maximizer (resp. minimizer). Since this game is a finite zero-sum game of perfect information, in normal-form representation, this game has a saddle point and the players have optimal pure strategies. And so there exist $z_0^2 \in Z^2, \varphi_0^1 \in Z^2 Z^1$ (where $Z^2 Z^1$ denotes the set of all functions from Z^2 into Z^1), $\varphi_0^3 \in (Z^2 x Z^4) Z^3, \varphi_0^4 \in Z^3 Z^4$ such that (z_0^2, φ_0^1) and $(\varphi_0^3, \varphi_0^4)$ are optimal pure strategies of minimizer and maximizer respectively. Then

$$\min_{z^2 \in Z^2} \max_{z^1 \in Z^1} \min_{z^4 \in Z^4} \max_{z^3 \in Z^3} F(z^1, z^2, z^3, z^4),$$

$$= F(\varphi_0^1(z_0^2), z_0^2, \varphi_0^3(z_0^2, \varphi_0^4(\varphi_0^1(z_0^2))), \varphi_0^4(\varphi_0^1(z_0^2))).$$

Using such response functions we can also consider this game as a two-stage game, whose value is equal to

$$\min_{(z^2, \varphi^4) \in Z^2 x Z^4} \max_{(z^1, z^3) \in Z^1 x Z^3} F(z^1, z^2, z^3, \varphi^4(z^1))$$

$$= \max_{(\varphi^1, \varphi^3) \in Z^2 x Z^4} \min_{(z^1, z^3) \in Z^1 x Z^3} F(\varphi^1(z^2), z^2, \varphi^3(z^3, z^4), z^4).$$

* Department of Economics, Miyazaki Sangyo-Keiei University, Miyakonojo 885-0035, Japan
Then, for instance, it is quite natural to consider two-stage games as follows.

1. Minimizer chooses $\varphi^2 \in Z^1 Z^2$ and $\varphi^4 \in Z^3 Z^4$ in the first stage, maximizer observes minimizer’s choice and chooses $z^1 \in Z^1$ and $z^3 \in Z^3$ in the second.

2. Maximizer chooses $\varphi^1 \in Z^1 Z^1$ and $\varphi^3 \in Z^3 Z^3$ in the first stage, minimizer observes maximizer’s choice and chooses $z^2 \in Z^2$ and $z^4 \in Z^4$ in the second.

The values of these games are

$$\min_{(\varphi^2, \varphi^4) \in Z^1 Z^2 \times Z^3 Z^4} \max_{(z^1, z^3) \in Z^1 \times Z^3} F(z^1, \varphi^2(z^1), z^3, \varphi^4(z^3))$$

and

$$\max_{(\varphi^1, \varphi^3) \in Z^1 Z^1 \times Z^3 Z^3} \min_{(z^2, z^4) \in Z^2 \times Z^4} F(\varphi^1(z^2), z^2, \varphi^3(z^4), z^4)$$

respectively. The functionals

$$F \in (Z^1 \times Z^2 \times Z^3 \times Z^4) \rightarrow \min_{(\varphi^2, \varphi^4) \in Z^1 Z^2 \times Z^3 Z^4} \max_{(z^1, z^3) \in Z^1 \times Z^3} F(z^1, \varphi^2(z^1), z^3, \varphi^4(z^3))$$

and

$$F' \in (Z^1 \times Z^2 \times Z^3 \times Z^4) \rightarrow \max_{(\varphi^1, \varphi^3) \in Z^1 Z^1 \times Z^3 Z^3} \min_{(z^2, z^4) \in Z^2 \times Z^4} F(\varphi^1(z^2), z^2, \varphi^3(z^4), z^4)$$

cannot be represented by iteration of minimization and maximization.

The set of functionals corresponding to these kind of two-stage games is strictly wider than the set of functionals represented by iteration of minimization and maximization. We consider the natural pointwise order on the set of such functionals.

By the result in Hisano and Maruyama (1989), the order structure on the set of functionals of sequential minimization or maximization is clear. The purpose of this paper is to study the order structure on this widened set of functionals. We construct a separating function in this paper and an ordering function in the follow-up paper. In Maruyama (1992) the games related to the functionals in this paper are described.

In Section 2, we give a precise definition of the set of functionals we are concerned with in this paper. In Section 3, we study the pairwise order relations between the functionals defined in Section 2. In Section 4, for functionals $\tau, \tau_1, \tau_2, \ldots, \tau_t$ with $\tau_i \preceq \tau$ (resp. $\tau_i \not\preceq \tau$) $(1 \leq i \leq t)$, we prove the existence of a separating function F such that $\tau_i(F) \prec \min_{1 \leq i \leq t} \tau_i(F)$ (resp. $\tau_i(F) \succ \max_{1 \leq i \leq t} \tau_i(F)$) when the domain of each variable has sufficiently many elements.

In the case of propositional functions, this generalization of functionals corresponds to the generalization of linear quantifier prefixes to nonlinear quantifier prefixes (Henkin quantifier prefixes Krynicki and Mostowski (1995)) and their dual quantifier prefixes. So in the present investigation we also obtain logical results relating to Henkin quantifier prefixes and their dual quantifier prefixes.
2. Notation

We denote the cardinality of a set U by $|U|$. For a set U and a cardinal k we write $\binom{U}{k} = \{V \subseteq U \mid |V| = k\}$. Denote by UV the set of all mappings from a set U into a set V. We note that $\phi V = \{\phi\}$. Denote by $D(f)$ and $R(f)$ the domain and the range of a mapping f respectively.

For integers k and l, $[k,l]$ denotes the set of integers larger than $k - 1$ and less than $l + 1$. We denote by \mathcal{N}, \mathbb{R}, respectively, the set of all positive integers, and the set of all real numbers. We write $\mathbb{R} = \mathbb{R} \cup \{-\infty, \infty\}$.

Let $n \in \mathbb{N}$ be fixed. For each $k \in [1,n]$ let Z^k be a set which contains at least two elements. We set

$$\Pi_k = \{\eta \in [1,k] \mid \eta([1,k]) = k\} \quad (1 \leq k \leq n), \quad \Pi = \Pi_n, \quad \Pi_0 = \{\phi\},$$

$$\Gamma(\pi, l) = \left\{ \gamma = (\gamma_1, \ldots, \gamma_l) \in \left(\bigcup_{k=0}^{l-i} \Pi_k \right) \mid \bigcup_{k=1}^{l} R(\gamma_k) \subseteq \pi([l + 1, n]) \right\} \quad (1 \leq l \leq n, \pi \in \Pi),$$

$$\Gamma(\pi, 0) = \{\phi\},$$

$$\Phi(l, \eta) = (Z^{\eta(1)} \times \cdots \times Z^{\eta(k)}) \quad (k, l \in [1,n], \eta \in \Pi_k),$$

$$\Phi(l, \phi) = Z^l \quad (1 \leq l \leq n).$$

For $F \in (Z^1 \times \cdots \times Z^n) \mathbb{R}$, $\pi \in \Pi$, $l \in [1,n]$, $\gamma \in \Gamma(\pi, l)$ define

$$\pi * F : Z^{\pi(1)} \times \cdots \times Z^{\pi(n)} \rightarrow \mathbb{R}$$

and

$$\gamma * \pi * F : \Phi(\pi(1), \gamma_1) \times \cdots \times \Phi(\pi(l), \gamma_l) \times Z^{\pi(l+1)} \times \cdots \times Z^{\pi(n)} \rightarrow \mathbb{R}$$

by

$$(\pi * F)(z^{\pi(1)}, \ldots, z^{\pi(n)}) = F(z^1, \ldots, z^n)$$

and

$$(\gamma * \pi * F)(\varphi^1, \ldots, \varphi^l, z^{\pi(l+1)}, \ldots, z^{\pi(n)}) = (\pi * F)(\varphi^1(z^{\gamma_1(1)}, \ldots, z^{\gamma_1(k_1)}), \ldots, \varphi^l(z^{\gamma_l(1)}, \ldots, z^{\gamma_l(h_l)}), z^{\pi(l+1)}, \ldots, z^{\pi(n)})$$

respectively for all $\varphi^1 \in \Phi(\pi(1), \gamma_1), \ldots, \varphi^l \in \Phi(\pi(l), \gamma_l)$ and $z^{\pi(l+1)} \in Z^{\pi(l+1)}, \ldots, z^{\pi(n)} \in Z^{\pi(n)}$ where $D(\gamma_k) = [1,h_k]$ $(1 \leq k \leq l)$. We set $\phi * \pi * F = \pi * F$.

For $l \in [0,n]$, $\pi \in \Pi$, $\gamma \in \Gamma(\pi, l)$ define

$$\sigma_+(l, \pi, \gamma), \sigma_-(l, \pi, \gamma) : (Z^1 \times \cdots \times Z^n) \mathbb{R} \rightarrow \overline{\mathbb{R}}$$
by

$$
\sigma_+ (l, \pi, \gamma) (F) = \sup_{\phi^1 \in \Phi(l, \pi, \gamma)} \cdots \sup_{\phi^l \in \Phi(l, \pi, \gamma)} \inf_{z^1 \in z^{l+1} \in \mathbb{Z}^{l+1}} \cdots \inf_{z^n \in z^n \in \mathbb{Z}^n} (\gamma * \pi * F) (\phi^1, \ldots, \phi^l, z^{l+1}, \ldots, z^n),
$$

$$
\sigma_- (l, \pi, \gamma) (F) = \inf_{\phi^1 \in \Phi(l, \pi, \gamma)} \cdots \inf_{\phi^l \in \Phi(l, \pi, \gamma)} \sup_{z^1 \in z^{l+1} \in \mathbb{Z}^{l+1}} \cdots \sup_{z^n \in z^n \in \mathbb{Z}^n} (\gamma * \pi * F) (\phi^1, \ldots, \phi^l, z^{l+1}, \ldots, z^n).
$$

We set

$$
\Sigma_+ = \left\{ (\sigma_+ (l, \pi, \gamma) \in \mathbb{Z}^{l+1} \cdots \mathbb{Z}^n) | 0 \leq l \leq n, \pi \in \Pi, \gamma \in \Gamma (\pi, l) \right\},
$$

$$
\Sigma_- = \left\{ (\sigma_- (l, \pi, \gamma) \in \mathbb{Z}^{l+1} \cdots \mathbb{Z}^n) | 0 \leq l \leq n, \pi \in \Pi, \gamma \in \Gamma (\pi, l) \right\},
$$

$$
\Sigma = \Sigma_+ \cup \Sigma_-.
$$

For \(\nu = \sigma_+ (l, \pi, \gamma) \), \(\mu = \sigma_- (l, \pi, \gamma) \) \(\in \Sigma \) we set \(\bar{\nu} = \mu = \pi([l+1, n]) \), \(\nu = \bar{\mu} = \pi([l+1, n]) \),

$$
\nu_+ = \mu_- = \bigcup_{k=1}^{l} \{ (u, \pi(k)) \in [1, n]^2 | u \in \mathcal{R}(\gamma_k) \},
$$

$$
\nu_- = \mu_+ = \bigcup_{k=1}^{l} \{ (\pi(k), u) \in [1, n]^2 | u \in \pi([l+1, n]) \setminus \mathcal{R}(\gamma_k) \}.
$$

For \(\tau, \tau' \in \Sigma \) and \(p \in [1, [n/2]] \) (where \([n/2]\) denotes the largest integer not exceeding \(n/2 \)) define

$$
C(\tau, \tau', p) = \left\{ \eta \in \Pi_{2p} | (\eta(p + k), \eta(k)) \in \tau'_+ \quad (1 \leq k \leq p), \right. \\
(\eta(k), \eta(p + k + 1)) \in \tau_- \quad (1 \leq k \leq p - 1), (\eta(p), \eta(p + 1)) \in \tau_- \right\}.
$$

We set \(C(\tau, \tau', 0) = \tau \cap \tau' \).

3. Order on \(\Sigma \)

We define the order \(\leq \) on \(\Sigma \) by, for \(\tau, \tau' \in \Sigma \), \(\tau \leq \tau' \) if and only if \(\tau (F) \leq \tau' (F) \) for all \(F : \mathbb{Z}^1 \times \cdots \times \mathbb{Z}^n \rightarrow \mathbb{R} \). We will give a necessary and sufficient condition of \(\tau \leq \tau' \).

Theorem 3.1. Suppose that \(\nu, \nu' \in \Sigma_+ \) and \(\mu, \mu' \in \Sigma_- \). Then

1. \(\nu \not< \nu' \iff C(\nu', \nu, 0) \cup C(\nu', \nu, 1) \neq \phi \),

2. \(\mu \not< \mu' \iff C(\mu', \mu, 0) \cup C(\mu', \mu, 1) \neq \phi \).
PROOF. We prove only (1). The proof of (2) is similar. Without loss of generality we can assume that \(\{0,1\} \subset \mathbb{Z}^i \) (\(1 \leq i \leq n \)).

\(\iff \): If \(C(\nu', \nu, 0) \neq \phi \), then we take \(k \in C(\nu', \nu, 0) \) and define \(F : \mathbb{Z}^1 \times \cdots \times \mathbb{Z}^n \rightarrow \mathbb{R} \) by

\[
F(z^1, \ldots, z^n) = \begin{cases}
0 & (z^k = 0), \\
1 & (z^k \neq 0).
\end{cases}
\]

If \(C(\nu', \nu, 0) = \phi \) and \(C(\nu', \nu, 1) \neq \phi \), then we take \(\eta \in C(\nu', \nu, 1) \) and define \(F \) by

\[
F(z^1, \ldots, z^n) = \begin{cases}
0 & (z^\eta(1) = 0 \iff z^\eta(2) = 0), \\
1 & \text{(otherwise)}.
\end{cases}
\]

In both cases \(\nu'(F) = 0 \), \(\nu(F) = 1 \) and therefore \(\nu \not\leq \nu' \).

\(\Longrightarrow \): The condition \(C(\nu', \nu, 0) \cup C(\nu', \nu, 1) = \phi \) implies that there exist \(\pi \in \Pi, \ h, l \in [0, n] \), \(\gamma \in \Gamma(\pi, h), \delta \in \Gamma(\pi, l) \) such that \(h, l \leq l \), \(\mathcal{M}(\gamma_k) \cap \pi([l + 1, n]) \subset \mathcal{M}(\delta_k) \), \(\nu = \sigma_+(h, \pi, \gamma), \nu' = \sigma_+(l, \pi, \delta) \). Then for \(F : \mathbb{Z}^1 \times \cdots \times \mathbb{Z}^n \rightarrow \mathbb{R} \)

\[
\nu(F) = \sup_{\nu \in C(\pi(1), \gamma_1)} \cdots \sup_{\nu \in C(\pi(h), \gamma_h)} \inf_{\zeta \in \mathcal{M}(\delta(h) \mathcal{M}(\gamma(h)))} \inf_{\zeta \in \mathcal{M}(\gamma(h))} z^{\pi(h+1)}, \ldots, z^{\pi(n)}
\]

\[
\leq \sup_{\nu \in C(\pi(1), \gamma_1)} \cdots \sup_{\nu \in C(\pi(h), \gamma_h)} \inf_{\zeta \in \mathcal{M}(\delta(h) \mathcal{M}(\gamma(h)))} \inf_{\zeta \in \mathcal{M}(\gamma(h))} z^{\pi(h+1)}, \ldots, z^{\pi(n)}
\]

\[
\leq \sup_{\nu \in C(\pi(1), \delta_1)} \cdots \sup_{\nu \in C(\pi(l), \delta_l)} \inf_{\zeta \in \mathcal{M}(\delta(l) \mathcal{M}(\gamma(l)))} \inf_{\zeta \in \mathcal{M}(\gamma(l))} z^{\pi(l+1)}, \ldots, z^{\pi(n)}
\]

\[
\nu(F) = \sup_{\nu \in C(\pi(1), \delta_1)} \cdots \sup_{\nu \in C(\pi(l), \delta_l)} \inf_{\zeta \in \mathcal{M}(\delta(l) \mathcal{M}(\gamma(l)))} \inf_{\zeta \in \mathcal{M}(\gamma(l))} z^{\pi(l+1)}, \ldots, z^{\pi(n)}
\]

Therefore \(\nu \leq \nu' \). \(\square \)

Lemma 3.2. Let \(\mu \in \Sigma_-, \nu \in \Sigma_+, p \in [1, [n/2]], \eta \in C(\mu, \nu, p) \) and let \(F : \mathbb{Z}^1 \times \cdots \times \mathbb{Z}^n \rightarrow \mathbb{R} \) be defined by

\[
F(z^1, \ldots, z^n) = \begin{cases}
1 & (z^{\eta(k)} = 0 \iff z^{\eta(p+k)} = 0) \quad (1 \leq k \leq p), \\
0 & \text{(otherwise)}.
\end{cases}
\]

Then \(\mu(F) = 0 \) and \(\nu(F) = 1 \).

Proof. By the condition \(\eta \in C(\mu, \nu, p) \), we can write \(\mu = \sigma_-(l, \pi, \gamma) \) where \(l \in [p, n], \pi \in \Pi \) and \(\gamma \in \Gamma(\pi, l) \) are such that \(\pi(k) = \eta(p + k) \) (\(1 \leq k \leq p \)), \(\eta(k) \in \mathbb{Z} \).
\(\mathcal{R}(\gamma_{k+1}) \) (1 \(k \leq p - 1 \)) and \(\eta(p) \in \mathcal{R}(\gamma_1) \).
Define \(\varphi_k^i \in \mathcal{D}(\pi(k), \gamma_k) \) (1 \(k \leq p \)) by

\[
\varphi_k^{i+1}(z^\gamma_{k+1}, \ldots, z^\gamma_{k+1}(i+1)) = \begin{cases}
0 & (z^\gamma_k = 0), \\
1 & (z^\gamma_k \neq 0)
\end{cases} \quad (1 \leq k \leq p - 1),
\]

\[
\varphi_k^i(z^{\gamma_k}, \ldots, z^{\gamma_i(i)}) = \begin{cases}
0 & (z^\gamma_p = 0), \\
1 & (z^\gamma_p \neq 0)
\end{cases} \quad (1 \leq k \leq p - 1),
\]

where \(\mathcal{D}(\gamma_k) = [1, l_k] \) (1 \(k \leq p \)). Then

\[
\mu(F) = \inf_{\varphi^1 \in \mathcal{D}(\pi(1), \gamma_1)} \cdots \inf_{\varphi^p \in \mathcal{D}(\pi(p), \gamma_p)} \sup_{r^{(i+1)}(i) \in \mathcal{Z}^{\gamma_{i+1}}} \cdots \sup_{r^{(n)} \in \mathcal{Z}^{\gamma_n}} \gamma \ast \pi \ast F(r^1, \ldots, r^p, z^{\gamma_{i+1}}, \ldots, z^{\gamma_n})
\]

\[
= 0
\]

where \(\gamma' = (\gamma_1, \ldots, \gamma_p) \in \Gamma(\pi, p) \). Clearly \(\nu(F) = 1 \). □

Lemma 3.3. Let \(\nu \in \Sigma_+ \), \(\mu \in \Sigma_- \), \(p \in [1, n/2] \), \(\eta \in C(\nu, \mu, p) \). Let \(T_k \) (0 \(k \leq p + 1 \)) be defined by

\[
T_0 = \{(0, 1)^p \times \mathcal{Z}^{\gamma_{p+1}} \times \cdots \times \mathcal{Z}^{\gamma_{2p}}\} \setminus \{(0, 1)^{2p}\},
\]

\[
T_1 = \{(0, 1)^p \times \{1\} \times \{0\}^{p-k} \times \{0, 1\}^{k-1} \times \{0\} \times \{0, 1\}^{p-k} \} \quad (1 \leq k \leq p),
\]

\[
T_{p+1} = \{0\}^p \times \{1\}^p
\]

and let \(T = \bigcup_{k=0}^{p+1} T_k \). Define \(F : \mathcal{Z}^1 \times \cdots \times \mathcal{Z}^n \to \mathbb{R} \) by

\[
F(z^1, \ldots, z^n) = \begin{cases}
0 & ((z^{\gamma_1}, \ldots, z^{\gamma_2(p)}) \notin T), \\
1 & ((z^{\gamma_1}, \ldots, z^{\gamma_2(p)}) \in T).
\end{cases}
\]

Then \(\nu(F) = 0 \) and \(\mu(F) = 1 \).

Proof. \(\nu(F) = 0 \): By the condition \(\eta \in C(\nu, \mu, p) \), we can write \(\nu = \sigma_+(l, \pi_0, \gamma^0) \) where \(l \in [p, n] \), \(\pi_0 \in \Pi \) and \(\gamma^0 \in \Gamma(\pi_0, l) \) are such that \(\pi_0(k) = \eta(k) \) (1 \(k \leq p \)), \(\eta(p+k+1) \notin \mathcal{R}(\gamma^0_k) \) (1 \(k \leq p - 1 \)) and \(\gamma(p+1) \notin \mathcal{R}(\gamma^0_k) \). Let \(\rho_0 \in \Pi_0 = \Gamma(\rho_0, p) \) be such that for each \(k \in [1, 2p] \) \(\rho_0(k) = \eta(k) \) and for each \(k \in [1, p-1] \) \(\mathcal{D}(\delta^0_k) = [1, p-1] \),

\[
\delta^0_k(j) = \begin{cases}
\eta(p + j) & (1 \leq j \leq k), \\
\eta(p + j + 1) & (k + 1 \leq j \leq p - 1)
\end{cases}
\]

and \(\mathcal{D}(\delta^0_k) = [1, p-1] \), \(\delta^0_k(j) = \eta(p + j + 1) \) (1 \(j \leq p - 1 \)).

We claim that

\[
\sup_{\varphi^1 \in \mathcal{D}(\rho_0(1), \delta^0_k)} \cdots \sup_{\varphi^p \in \mathcal{D}(\rho_0(p), \delta^0_k)} \inf_{z^{\gamma_1(p+1)}} \cdots \inf_{z^{\gamma_2(p+1)}} \gamma \ast \rho \ast F(\varphi^1, \ldots, \varphi^p, z^{\gamma_2(p+1)}, \ldots, z^{\gamma_2(p+1)}, 0, \ldots, 0)
\]

\[
= 0.
\]
Assume to the contrary that there exist $\varphi^1, \ldots, \varphi^p \in \Phi(\rho_0(p), \delta^0)$ such that

$$
\forall z_n(p+1) \in \mathbb{Z}^n(p+1), \ldots, \forall z_n(2p) \in \mathbb{Z}^n(2p)
$$

\[
\left(\varphi^1(z_n(p+1), z_n(p+3), \ldots, z_n(2p)), \ldots, \varphi^{p-1}(z_n(p+1), \ldots, z_n(2p-1)), \varphi^p(z_n(p+2), \ldots, z_n(2p)), z_n(p+1), \ldots, z_n(2p) \right) \in T.
\]

Let

\[
S_k = \left\{ (z_n(p+1), \ldots, z_n(2p)) \in \{0, 1\}^p \mid \varphi^k(z_n(p+1), \ldots, z_n(p+k), z_n(p+k+2), \ldots, z_n(2p)) = 1 \right\} \quad (1 \leq k \leq p-1),
\]

\[
S_p = \left\{ (z_n(p+1), \ldots, z_n(2p)) \in \{0, 1\}^p \mid \varphi^p(z_n(p+2), \ldots, z_n(2p)) = 1 \right\}.
\]

The assumption implies that $S_k \cap S_j = \emptyset$ ($1 \leq k, j \leq p, k \neq j$) and

$$
\{0, 1\}^p \setminus \{1\}^p = \bigcup_{k=1}^p S_k.
$$

Since $\sum S_k \equiv 0 \pmod{2}$ ($1 \leq k \leq p$) it follows that $2^p - 1 \equiv 0 \pmod{2}$, a contradiction.

Combining with $\mathcal{R}(\delta^0_k) \cap \mathcal{R}(\eta) \subset \mathcal{R}(\delta^0_k)$ ($1 \leq k \leq p$), the claim implies that

$$
\nu(F) = \sup_{\varphi^1 \in \Phi(\rho_0(1), \delta^0)} \cdots \sup_{\varphi^1 \in \Phi(\rho_0(1), \delta^0)} \inf_{z_n(1) \in \mathbb{Z}^n(1+1)} \cdots \inf_{z_n(1) \in \mathbb{Z}^n(1+1)} \left((\gamma^0 \ast \eta \ast F)(\varphi^1, \ldots, \varphi^p, z^0(1+1), \ldots, z^0(1+1)) \right)
\]

$$
\leq \sup_{\varphi^1 \in \Phi(\rho_0(1), \delta^0)} \cdots \sup_{\varphi^1 \in \Phi(\rho_0(1), \delta^0)} \inf_{z_n(1) \in \mathbb{Z}^n(1+1)} \cdots \inf_{z_n(1) \in \mathbb{Z}^n(1+1)} \left((\delta^0 \ast \rho_0 \ast F)(\varphi^1, \ldots, \varphi^p, z^0(1+1), \ldots, z^0(1+1), 0, \ldots, 0) \right)
\]

$$
= 0.
$$

$\mu(F) = 1$. By the condition $\eta \in C(\nu, \mu, p)$, we can write $\mu = \sigma_{-}(h, \pi_1, \gamma^1)$ where $h \in [p, n]$, $\pi_1 \in \Pi$ and $\gamma^1 \in \Gamma(\pi_1, h)$ are such that $\pi_1(k) = \eta(k)$, $\eta(k) \not\in \mathcal{R}(\delta^0_k)$ ($1 \leq k \leq p$). Let $\rho_1 \in \Pi, \delta^1 \in \Gamma(\rho_1, p)$ be such that for $k \in [1, p], \rho_1(k) = \eta(k)$, $\rho_1(p+k) = \eta(k)$,

$$
D(\delta^1_k) = [1, p-1], \quad \delta^1_k(j) = \begin{cases}
\eta(j) & (1 \leq j \leq k-1), \\
\eta(j+1) & (k \leq j \leq p-1).
\end{cases}
$$

Let $\varphi^1 \in \Phi(\rho_1(1), \delta^1_1), \ldots, \varphi^p \in \Phi(\rho_1(p), \delta^1_p)$. If for some $k \in [1, p]$ $\varphi^k(0, \ldots, 0) \neq 1$, then for $(z_n(1), \ldots, z_n(p)) \in \{0\}^{k-1} \times \{1\} \times \{0\}^{p-k}$,

$$
(z_n(1), \ldots, z_n(p), \varphi^1(z_n(2), \ldots, z_n(p)), \ldots, \varphi^p(z_n(1), \ldots, z_n(p-1))) \in T_0 \cup T_k \subset T.
$$

If for all $k \in [1, p]$ $\varphi^k(0, \ldots, 0) = 1$ then

$$(0, \ldots, 0, \varphi^1(0, \ldots, 0), \ldots, \varphi^p(0, \ldots, 0)) \in T_{p+1} \subset T.$$
Therefore, since $\mathcal{A}(\gamma_k) \cap \mathcal{A}(\eta) \subset \mathcal{A}(\delta_k)$ ($1 \leq k \leq p$),

$$
\mu(F) = \inf_{\varphi^1 \in \mathcal{A}(\gamma_1)} \ldots \inf_{\varphi^n \in \mathcal{A}(\gamma_n)} \ldots \sup_{\varphi^1 \in \mathcal{A}(\eta_1)} \ldots \sup_{\varphi^n \in \mathcal{A}(\eta_n)} \sup_{\pi_1 \in \mathcal{A}(1)} \ldots \sup_{\pi_n \in \mathcal{A}(n)}
\left(\gamma^1 \ast \pi_1 \ast F\right)\left(\varphi^1, \ldots, \varphi^n, z^{\eta(1)}, \ldots, z^{\eta(n)}\right)
$$

$$
\geq \inf_{\varphi^1 \in \mathcal{A}(\rho_1)} \ldots \inf_{\varphi^n \in \mathcal{A}(\rho_n)} \sup_{\pi_1 \in \mathcal{A}(1)} \ldots \sup_{\pi_n \in \mathcal{A}(n)}
\left(\delta^1 \ast \pi_1 \ast F\right)\left(\varphi^1, \ldots, \varphi^n, z^{\eta(1)}, \ldots, z^{\eta(n)}, 0, \ldots, 0\right)
$$

$$
= 1. \quad \square
$$

Theorem 3.4. For any $r, r' \in \Sigma$, it follows that

$$
\tau \not\in r' \iff \bigcup_{i=0}^{[n/2]} C(r', r, i) \neq \phi.
$$

Proof. Let $\nu \in \Sigma_+, \mu \in \Sigma_-$. By Theorem 3.1 it is enough to prove

$$
(1) \; \nu \not\in \mu \iff \bigcup_{i=0}^{[n/2]} C(\mu, \nu, i) \neq \phi,
$$

$$
(2) \; \mu \not\in \nu \iff \bigcup_{i=0}^{[n/2]} C(\nu, \mu, i) \neq \phi.
$$

Proof of (1): If $C(\mu, \nu, 0) \neq \phi$, then $\nu \not\in \mu$. If $\bigcup_{i=0}^{[n/2]} C(\mu, \nu, i) \neq \phi$ then $\nu \not\in \mu$ follows from Lemma 3.2.

Suppose that $\bigcup_{i=0}^{[n/2]} C(\mu, \nu, i) = \phi$ and let $k = \gamma_\mu$. Then there exists $\rho \in \Pi_k$ such that $\mu = \rho([1, k])$ and

$$(i, \rho(j)) \in \mu_- \implies ((\rho(j), i) \not\in \nu_+, (\rho(j + 1), i) \not\in \nu_+, \ldots, (\rho(k), i) \not\in \nu_+)$$

$$(i \in \mu, 1 \leq j \leq k).$$

We show this first. If there exists nonempty $S \subset \mu$ such that

$$\forall p \in S \exists q \in \mu \exists r \in S \left((p, q) \in \nu_+, (q, r) \in \mu_-\right)$$

then there exist $i \in [1, [n/2]]$, $p_1, p_2, \ldots, p_i \in \mu$, $q_1, q_2, \ldots, q_i \in \mu$ such that $(p_1, q_2, \ldots, q_i, p_1) \in \nu_+$ ($1 \leq j \leq i$), $(q_j, p_{j+1}) \in \mu_-$ ($1 \leq j \leq i - 1$), $(q_i, p_1) \in \mu_-$. Letting $\eta \in \Pi_2i$ be such that $\eta(j) = q_j, \eta(i + j) = p_j$ ($1 \leq j \leq i$) we have $\eta \in C(\mu, \nu, i)$, which contradicts the assumption. Therefore

$$\phi \not\in \forall S \subset \mu \exists p \in S \forall q \in \mu \forall r \in S \left((q, r) \in \mu_- \implies (p, q) \not\in \nu_+\right).$$

Using this we can define $\rho(k), \rho(k - 1), \ldots, \rho(1) \in \mu$ so that

$$\forall i \in \mu \forall l \in \mu \setminus \rho([j + 1, k]) \left((i, l) \in \mu_- \implies (\rho(j), i) \not\in \nu_+\right).$$
For \(j \in [1,k] \) let
\[
A_j = \{ i \in \mathbb{N} \mid (\rho(j), i) \notin \nu_+, (\rho(j+1), i) \notin \nu_+, \ldots, (\rho(k), i) \notin \nu_+ \}.
\]

Then, since \(A_1 \subset A_2 \subset \cdots \subset A_k \), there exist \(\eta \in \Pi_{n-k}, h_1, h_2, \ldots, h_k \in [0, n-k] \) so that \(h_1 \leq h_2 \leq \cdots \leq h_k \), \(\eta([1, h_j]) = A_j \ (1 \leq j \leq k) \).

Let
\[
\tau = \sup \cdots \sup \inf \sup \cdots \sup \inf \sup \cdots \sup \inf
\]
\[
\sup z(n(1))^{(1)} \cdots \sup z(n(1))^{(1)} \inf z(n(1))^{(1)} \sup \cdots \sup \inf \sup \cdots \sup \inf
\]
\[
\sup z(n(h_1+1))^{(1)} \cdots \sup z(n(h_1+1))^{(1)} \inf z(n(h_1+1))^{(1)} \sup \cdots \sup \inf \sup \cdots \sup \inf
\]
\[
\in \Sigma_+ \cap \Sigma_-.
\]

If \((i, \rho(j)) \in \mu_- \) then \(i \in A_j \) and so \((i, \rho(j)) \in \tau_- \ (i \in \mathbb{N}, 1 \leq j \leq k) \). Since \(\mu = \tau \) we have \(\mu_- \subset \tau_- \). Therefore \(C(\mu, \tau, 0) = \phi, C(\mu, \tau, 1) = \phi \) and, by Theorem 3.1, \(\tau \leq \mu \). If \((\rho(j), i) \in \nu_+ \) then \(i \notin A_j \) and so \((\rho(j), i) \in \tau_+ \ (i \in \mathbb{N}, 1 \leq j \leq k) \). Thus \((\tau \times \tau) \cap \nu_+ \subset \tau_+ \). Clearly \(\nu \subset \tau \). Therefore \(C(\tau, \nu, 0) = \phi, C(\tau, \nu, 1) = \phi \) and, by Theorem 3.1, \(\nu \leq \tau \). Hence \(\nu \leq \mu \). This completes the proof of (1).

Proof of (2): \((\Rightarrow)\) follows from Lemma 3.3. The proof of \((\Longrightarrow)\) is similar to that of (1). \(\Box\)

4. Separation Theorem

In this section we show the existence of \(F, G : [1, n] \times \cdots \times [1, n] \rightarrow \mathbb{R} \) such that
\[
\tau(F) < \min_{\tau \neq \tau'} \tau'(F), \quad \max_{\tau \neq \tau'} \tau'(G) < \tau(G)
\]
for each \(\tau \in \Sigma \) when \(\|Z^1, \ldots, \|Z^n \) are sufficiently large.

Theorem 4.1. (Erdős (1964)). For all \(p, q, r \in \mathbb{N} \) there exists \(N = N(p, q, r) \in \mathbb{N} \) such that if \(m \geq N \) and \(S \subset [1, m]^p \), \(\|S \| \geq \frac{m^p}{r} \) then there exist \(S_1, \ldots, S_p \subset [1, m] \) satisfying \(\|S_1 \| = q, \ldots, \|S_p \| = q, S_1 \times \cdots \times S_p \subset S \).

The following theorem is one of the most famous and fundamental results in Ramsey theory.

Theorem 4.2. (Hales-Jewett (1963)). For all positive integers \(m, c \) there exists an integer \(k \) such that whenever \(I \geq k \)
\[
\forall F : [1, m]^I \rightarrow [1, c], \exists J \subseteq [1, I] \exists f : J \rightarrow [1, m], \|F(L(f))\| = 1
\]
where
\[
L(f) = \left\{ (i_1, \ldots, i_I) \in [1, m]^I \mid \prod_{j \in J} \{i_j\} = \prod_{j \notin J} \{f(j)\}, \prod_{j \notin J} \{i_j\} \subseteq \bigcup_{i \in [1, m]} \{i\}^{I_{-J}} \right\}.
\]
Let \(HJ(m, c) \) be the least such integer.
DEFINITION 4.1. For positive integers $p, N \geq 2$ we define $X_i^j = X_i^j(p, N)$ ($0 \leq j \leq i - 1, 1 \leq i \leq p$) as follows. Define m_j^N and X_j^p ($1 \leq j \leq p - 1$) by downward induction on j by $X_j^p = [1, N^2], m_j^N = HJ(X_j^p, N)$ and $X_j^{p-1} = (X_j^p)^{m_j^N}$. We set $X^p = X_0^p$. Define m_j^i and X_j^i ($1 \leq j \leq i - 1, 1 \leq i \leq p - 1$) by downward induction on i and j by

$$X_{i-1}^1 = \left[1, N \cdot \prod_{k=i+1}^{p} \prod_{j=1}^{i} \left\{ (x_{j}^k + 1)^{m_j^i} - (x_{j}^k)^{m_j^i} \right\} \right],$$

$$m_j^i = HJ(x_j^i, N^{X_j^{i-1} \cdots X_j^1}) \text{ and } X_j^{i-1} = (X_j^i)^{m_j^i}.$$

We set $X_i^i = X_i^i$ and $M(N, p) = \#X^i$. □

If $1 \leq j \leq k \leq i - 1 \leq p$ then we can write $w \in X_{j-1}^i$ as

$$w = \left(w(s_j, s_{j+1}, \ldots, s_k) \right)_{1 \leq s_j \leq m_j^i, 1 \leq s_{j+1} \leq m_{j+1}^i, \ldots, 1 \leq s_k \leq m_k^i}$$

or

$$w = \left(w_{s_j} \right)_{1 \leq s_j \leq m_j^i} = \left(w_1, w_2, \ldots, w_{m_j^i} \right)$$

where $w(s_j, s_{j+1}, \ldots, s_k) \in X_k^i$ ($1 \leq s_j \leq m_j^i, 1 \leq s_{j+1} \leq m_{j+1}^i, \ldots, 1 \leq s_k \leq m_k^i$) and $w_{s_j} \in X_j^i$ ($1 \leq s_j \leq m_j^i$).

In the following definitions and lemmas let $p \in [2, \lceil n/2 \rceil]$ be fixed. Set

$$\mathcal{B}_j^i = \bigcup_{J \subseteq [1, m_j^i]} J X_{j-1}^i \quad (2 \leq i \leq p, 1 \leq j \leq i - 1),$$

$$\mathcal{C}(f) = [1, m_j^i] \setminus \mathcal{D}(f) \quad (f \in \mathcal{B}_j^i).$$

DEFINITION 4.2. For $j \in [1, i - 1], i \in [2, p]$ and $f_k \in \mathcal{B}_k^i$ ($1 \leq k \leq j$) we set

$$L(f_1, \ldots, f_j) = \left\{ x_i^j \in X_i^j \mid \prod_{s_1, \ldots, s_k} \{ x_i^j(s_1, \ldots, s_k) \} \in \bigcup_{w \in X_{j-1}^i} \{ w \}^{\mathcal{C}(f_1) \times \cdots \times \mathcal{C}(f_j)}, \quad x_{i_j, \ldots, s_k}^j = f_k(s_k) \quad ((s_1, \ldots, s_k) \in \mathcal{C}(f_1) \times \cdots \times \mathcal{C}(f_{k-1}) \times \mathcal{D}(f_k) \quad (1 \leq k \leq j)) \right\},$$

$$I(L(f_1, \ldots, f_j)) = \mathcal{C}(f_1) \times \cdots \times \mathcal{C}(f_j),$$

$$J(L(f_1, \ldots, f_j)) = ([1, m_j^j] \times \cdots \times [1, m_j^1]) \setminus I(L(f_1, \ldots, f_j))$$ □
DEFINITION 4.3. We set
\[\mathcal{L}'(X^i) = \{L(f_1, \ldots, f_j) \subseteq X^i \mid f_k \in \mathcal{F}_k \ (1 \leq k \leq j)\}, \]
\[\mathcal{L}'(X^{j+1} \times \cdots \times X^p) = \{L_j^{j+1} \times \cdots \times L_j^p \subseteq X^{j+1} \times \cdots \times X^p \mid L_j^{j+1} \in \mathcal{L}'(X^{j+1}), \ldots, L_j^p \in \mathcal{L}'(X^p)\}, \]
\[\mathcal{L}(X_{j-1}) = \left\{ \left\{ (w_1, \ldots, w_{m_j}) \in X^i_{j-1} \mid w_k = f(k) \ (k \in \mathcal{D}(f)) \right\} \cap \mathcal{F}_j^i \right\} \quad (1 \leq j \leq i - 1, \ 2 \leq i \leq p). \]

For \(f_1 \in \mathcal{F}_1^i, \ldots, f_j \in \mathcal{F}_j^i \ (1 \leq j \leq i - 2, \ 2 \leq i \leq p) \) we set
\[\mathcal{L}(L(f_1, \ldots, f_j)) = \{L(f_1, \ldots, f_j, f_{j+1}) \subseteq L(f_1, \ldots, f_j) \mid f_{j+1} \in \mathcal{F}_j+1^i \}. \]

For \(L_i \in \mathcal{L}^i(X^i) \ (2 \leq i \leq p, \ 1 \leq k \leq i - 1) \) let \(\lambda_{L_i^k} \) be a bijection from \(X^i_k \) onto \(L_i^k \) such that for all \(w \in X^i_k \)
\[x^i = \lambda_{L_i^k}(w) \iff x^i(s_1, \ldots, s_k) = w \quad ((s_1, \ldots, s_k) \in I(L_i^k)). \]

For \(L_i \in \mathcal{L}^i(X^i), \ldots, L_i \in \mathcal{L}^i(X^i) \ (1 \leq k \leq p - 1, \ k + 1 \leq j \leq p, \ j \leq i \leq p) \) let \(\lambda_{L_i^k \times \cdots \times L_i^k} \) be a bijection from \(X^i_k \times \cdots \times X^i_k \) onto \(L_i^k \times \cdots \times L_i^k \) such that for all \((w^j, \ldots, w^i) \in X^i_k \times \cdots \times X^i_k \)
\[\lambda_{L_i^k \times \cdots \times L_i^k}(w^j, \ldots, w^i) = (\lambda_{L_i^k}(w^j), \ldots, \lambda_{L_i^k}(w^i)). \]

Note that
\[\mathcal{F}_j^i = \sum_{r=0}^{m_j^i-1} \binom{m_j^i}{r} \cdot (\mathcal{I}X_j^i)^r = (\mathcal{I}X_j^i+1)^m_j^i - (\mathcal{I}X_j^i)^m_j^i \quad (2 \leq i \leq p, \ 1 \leq j \leq i - 1) \]
so
\[\mathcal{L}^k(X^i) = \prod_{j=1}^{k} \left\{ (\mathcal{I}X_j^i+1)^m_j^i - (\mathcal{I}X_j^i)^m_j^i \right\} \quad (1 \leq k \leq p - 1, \ k + 1 \leq i \leq p). \]

For each \(k \in [1, p - 1] \) let \(\alpha^k \) be a fixed bijection from \(\mathcal{L}^k(X^{k+1} \times \cdots \times X^p) \times [1, N] \) onto \(X_{k-1}^k \) and let \(\alpha^p \) be a fixed bijection from \([1, N]^2 \) onto \(X_{p-1}^p \). We make the following three definitions depending on these \(\alpha^1, \alpha^2, \ldots, \alpha^p \).

DEFINITION 4.4. (1) We define
\[Q^k : X^1 \times \cdots \times X^k \longrightarrow \mathcal{L}^k(X^{k+1} \times \cdots \times X^p) \cup \{\phi\} \quad (1 \leq k \leq p - 1) \]
by induction on \(k \) as follows. For \(a^1 \in \alpha^1 \left(\{L_i^1 \times \cdots \times L_i^p\} \times [1, N] \right) \) where \(L_i^j \in \mathcal{L}(X^j) \ (2 \leq j \leq p), Q^1(a^1) = L_i^1 \times \cdots \times L_i^p \). For \(k \in [2, p - 1] \) if
\[Q^{k-1}(a^1, \ldots, a^{k-1}) = L_{k-1}^1 \times \cdots \times L_{k-1}^p \in \mathcal{L}^{k-1}(X^k \times \cdots \times X^p) \]
and $a^k \in \lambda_{L_{k-1}} \circ \alpha^k([L_{k+1} \times \cdots \times L_k] \times [1,N])$ where $L_k \in \mathcal{L}(L_{k-1})$ $(k + 1 \leq j \leq p)$ then $Q^k(a^1, \ldots, a^k) = L_{k+1} \times \cdots \times L_k$. Otherwise $Q^k(a^1, \ldots, a^k) = \phi$.

(2) We define

$$Q^p : X^1 \times \cdots \times X^p \longrightarrow [1,N] \cup \{\phi\}$$

as follows. If $a^1 = \alpha^1(Q^1(a^1), b^1)$ for some $b^1 \in [1,N]$ and $a^p \in \lambda_{Q^p(a^1, \ldots, a^{p-1})} \circ \alpha^p([b^1] \times [1,N])$ then $Q^p(a^1, \ldots, a^p) = b^1$. Otherwise $Q^p(a^1, \ldots, a^p) = \phi$.

(3) For $k \in [1, p - 1], (a^1, \ldots, a^k) \in X^1 \times \cdots \times X^k$ if

$$Q^k(a^1, \ldots, a^k) = L_{k+1} \times \cdots \times L_k \in \mathcal{L}(X_{k+1} \times \cdots \times X^p),$$

let $Q^k_1(a^1, \ldots, a^k) = L_{k+1}$. If $Q^k(a^1, \ldots, a^k) = \phi$, let $Q^k_1(a^1, \ldots, a^k) = \phi$.

DEFINITION 4.5. We define $\beta^k : X^1 \longrightarrow [1,N]$ by $\beta^k(a^1) = b^1$ if $a^1 \in X^1$ and $b^1 \in [1,N]$ are such that $a^1 = \alpha^1(Q^1(a^1), b^1)$. For $k \in [2, p]$ we define $\beta^k : X^1 \times \cdots \times X^k \longrightarrow [0,N]$ by $\beta^k(a^1, \ldots, a^k) = b^k$ if $a^1 \in X^1, \ldots, a^k \in X^k$ and $b^k \in [1,N]$ are such that $a^k = \lambda_{Q^k_1(a^1, \ldots, a^{k-1})} \circ \alpha^k(Q^k(a^1, \ldots, a^k), b^k)$ and $\beta^k(a^1, \ldots, a^k) = 0$ otherwise.

DEFINITION 4.6.

$$T = T(p, N) = \{(x^1, \ldots, x^p, y^1, \ldots, y^p) \in X^1 \times \cdots \times X^p \times [1,N]^p \mid y^k = \beta^k(x^1, \ldots, x^k), 1 \leq k \leq p\}. \quad \square$$

LEMMA 4.3. For each $k \in [1, p]$ let $\varphi^k : [1,N]^{p-1} \longrightarrow X^k$ and let d^k_1, d^k_2 be distinct elements of $[1,N]$. Then

$$\{(\varphi^1(y^1, y^2, \ldots, y^p), \ldots, \varphi^{p-1}(y^1, \ldots, y^{p-1}), \varphi^p(y^2, \ldots, y^p), y^1, \ldots, y^p) \in X^1 \times \cdots \times X^p \times [1,N]^p \mid y^k \in \{d^k_1, d^k_2\}, 1 \leq k \leq p\} \not\subseteq T.$$

PROOF. Assume to obtain a contradiction that

$$\{(\varphi^1(y^1, y^2, \ldots, y^p), \ldots, \varphi^{p-1}(y^1, \ldots, y^{p-1}), \varphi^p(y^2, \ldots, y^p), y^1, \ldots, y^p) \in X^1 \times \cdots \times X^p \times [1,N]^p \mid y^k \in \{d^k_1, d^k_2\}, 1 \leq k \leq p\} \subseteq T.$$
Then by induction we show that
\[
\forall y^1 \in \{d_1^1, d_1^2\} \ldots \forall y^k \in \{d_k^1, d_k^2\} \forall y^{k+2} \in \{d_1^{k+2}, d_2^{k+2}\} \ldots \forall y^p \in \{d_p^1, d_p^2\}
\]
\[
Q^k \left(\varphi^1(y^1, y^3, \ldots, y^k, d_1^{k+1}, y^{k+2}, \ldots, y^p), \ldots, \varphi^{k-1}(y^1, \ldots, y^{k-1}, d_1^{k+1}, y^{k+2}, \ldots, y^p), \varphi^k(y^1, \ldots, y^k, y^{k+2}, \ldots, y^p) \right)
\]
\[
= Q^k \left(\varphi^1(y^1, y^2, \ldots, y^k, d_2^{k+1}, y^{k+2}, \ldots, y^p), \ldots, \varphi^{k-1}(y^1, \ldots, y^{k-1}, d_2^{k+1}, y^{k+2}, \ldots, y^p), \varphi^k(y^1, \ldots, y^k, y^{k+2}, \ldots, y^p) \right)
\]
\[
\neq \varphi \quad (1 \leq k \leq p - 1),
\]
\[
\forall y^2 \in \{d_1^2, d_2^2\} \ldots \forall y^p \in \{d_p^1, d_p^2\}
\]
\[
Q^p \left(\varphi^1(d_1^1, y^3, \ldots, y^p), \ldots, \varphi^{p-1}(d_1^1, y^2, \ldots, y^{p-1}), \varphi^p(y^2, \ldots, y^p) \right)
\]
\[
= Q^p \left(\varphi^1(d_2^1, y^3, \ldots, y^p), \ldots, \varphi^{p-1}(d_2^1, y^2, \ldots, y^{p-1}), \varphi^p(y^2, \ldots, y^p) \right) \neq \varphi.
\]

The case \(k = 1\) is obvious. We write
\[
\varphi^k(y^1, y^2, \ldots, y^p)
\]
\[
= (\varphi^1(y^1, y^3, \ldots, y^p), \varphi^2(y^1, y^2, y^4, \ldots, y^p), \ldots, \varphi^k(y^1, \ldots, y^k, y^{k+2}, \ldots, y^p))
\]
\[
(1 \leq k \leq p - 1).
\]

Suppose that \(2 \leq k \leq p - 1\) and
\[
Q^{k-1} \left(\varphi^{k-1}(y^1, \ldots, y^{k-1}, d_1^k, y^{k+1}, \ldots, y^p) \right)
\]
\[
= Q^{k-1} \left(\varphi^{k-1}(y^1, \ldots, y^{k-1}, d_2^k, y^{k+1}, \ldots, y^p) \right) \neq \varphi
\]
for each \(y^j \in \{d_1^j, d_2^j\} (j \in [1,p] \setminus \{k\})\). Then, since the assumption implies that
\[
d_j^k = \beta^k \left(\varphi^k(y^1, \ldots, y^{k-1}, d_j^k, y^{k+1}, \ldots, y^p) \right) \neq 0 \quad (j = 1, 2),
\]
we have
\[
\varphi^k(y^1, \ldots, y^{k-1}, d_j^k, y^{k+2}, \ldots, y^p) \in Q^{k-1}_1 \left(\varphi^{k-1}_1(y^1, \ldots, y^{k-1}, d_j^k, y^{k+1}, \ldots, y^p) \right)
\]
\[
= Q^{k-1}_1 \left(\varphi^{k-1}_1(y^1, \ldots, y^{k-1}, d_2^k, y^{k+1}, \ldots, y^p) \right)
\]
and
\[
\varphi^k(y^1, \ldots, y^{k-1}, d_j^k, y^{k+1}, \ldots, y^p)
\]
\[
= \lambda Q^{k-1}_1 \left(\varphi^{k-1}_1(y^1, \ldots, y^{k-1}, d_j^k, y^{k+1}, \ldots, y^p) \right) \circ \alpha^k \left(Q^k \left(\varphi^k(y^1, \ldots, y^{k-1}, d_j^k, y^{k+1}, \ldots, y^p) \right), d_j^k \right)
\]
\[
= \lambda Q^{k-1}_1 \left(\varphi^{k-1}_1(y^1, \ldots, y^{k-1}, d_2^k, y^{k+1}, \ldots, y^p) \right) \circ \alpha^k \left(Q^k \left(\varphi^k(y^1, \ldots, y^{k-1}, d_2^k, y^{k+1}, \ldots, y^p) \right), d_j^k \right)
\]
\[
(j = 1, 2).
\]

Therefore, since \(\alpha^k\) is a bijection,
\[
\varphi^k(y^1, \ldots, y^{k-1}, d_1^k, y^{k+2}, \ldots, y^p) \neq \varphi^k(y^1, \ldots, y^{k-1}, d_2^k, y^{k+2}, \ldots, y^p)
\]
and since y^{k+1} was arbitrary,

$$\varphi^k(y^1, \ldots, y^{k-1}, d_k, y^{k+2}, \ldots, y^p), \varphi^k(y^1, \ldots, y^{k-1}, d_{k+1}, y^{k+2}, \ldots, y^p)$$

$$\in Q_k^k(y^1, \ldots, y^{k-1}, d_k, y^{k+2}, \ldots, y^p)$$

$$\cap Q_k^k(y^1, \ldots, y^{k-1}, d_{k+1}, y^{k+2}, \ldots, y^p)$$

$$(j = 1, 2).$$

Then for each $y^j \in \{d_1^j, d_2^j\} (j \in [1, p] \setminus \{k + 1\})$

$$\left\{Q_k^{k-1}(\varphi^{k-1}(y^1, \ldots, y^k, d_1^{k+1}, y^{k+2}, \ldots, y^p))$$

$$\cap Q_k^{k-1}(\varphi^{k-1}(y^1, \ldots, y^k, d_2^{k+1}, y^{k+2}, \ldots, y^p))\right\} \geq 2.$$

Note that if $L, L' \in Q_k^k(X^k)$ then $\|L \cap L'\| \geq 2$ implies $L = L'$. Hence

$$\varphi^k(y^1, \ldots, y^k, y^{k+2}, \ldots, y^p) \in Q_k^k(\varphi^{k-1}(y^1, \ldots, y^k, d_1^{k+1}, y^{k+2}, \ldots, y^p))$$

$$= Q_k^k(\varphi^{k-1}(y^1, \ldots, y^k, d_2^{k+1}, y^{k+2}, \ldots, y^p)).$$

Then, since the assumption implies that

$$\varphi^k(y^1, \ldots, y^k, y^{k+2}, \ldots, y^p)$$

$$= \lambda Q_k^{k-1}(\varphi^{k-1}(y^1, \ldots, y^k, d_1^{k+1}, y^{k+2}, \ldots, y^p)) \circ \alpha^k(Q_k^k(\varphi^k(y^1, \ldots, y^k, d_1^{k+1}, y^{k+2}, \ldots, y^p)), y^k)$$

$$= \lambda Q_k^{k-1}(\varphi^{k-1}(y^1, \ldots, y^k, d_2^{k+1}, y^{k+2}, \ldots, y^p)) \circ \alpha^k(Q_k^k(\varphi^k(y^1, \ldots, y^k, d_2^{k+1}, y^{k+2}, \ldots, y^p)), y^k)$$

$$(j = 1, 2).$$

we have

$$Q_k^k(\varphi^k(y^1, \ldots, y^k, d_1^{k+1}, y^{k+2}, \ldots, y^p)) = Q_k^k(\varphi^k(y^1, \ldots, y^k, d_2^{k+1}, y^{k+2}, \ldots, y^p)) \neq \phi.$$

Similarly, from the $k = p - 1$ case, it follows that

$$Q^p(\varphi^1(d_1^1, d_2^1, \ldots, d_p^1), \ldots, \varphi^{p-1}(d_1^1, \ldots, d_p^{p-1}), \varphi^p(d_1^1, \ldots, d_p^1))$$

$$= Q^p(\varphi^1(d_1^2, d_2^1, \ldots, d_p^1), \ldots, \varphi^{p-1}(d_1^2, \ldots, d_p^{p-1}), \varphi^p(d_1^2, \ldots, d_p^1)) \neq \phi.$$

Hence $\beta^1(\varphi^1(d_1^1, d_2^1, \ldots, d_p^1)) = \beta^1(\varphi^1(d_1^2, d_2^1, \ldots, d_p^1))$. Then, since the assumption implies that $d_1^1 = \beta^1(\varphi^1(d_1^1, d_2^1, \ldots, d_p^1))$ and $d_2^1 = \beta^1(\varphi^1(d_1^2, d_2^1, \ldots, d_p^1))$, we have $d_1^1 = d_2^1$ which contradicts $d_1^1 \neq d_2^1$.

LEMMA 4.4. For $k \in [1, p]$ let $\Phi^k = X^1 \times \cdots \times X^{k-1} \times X^{k+1} \times \cdots \times X^p$ $[1, N]$. Then

$$\forall \varphi^1 \in \Phi^1 \ldots \forall \varphi^p \in \Phi^p \exists x^1 \ldots \exists x^p \in X^p$$

$$(x^1, \ldots, x^p, \varphi^1(x^2, \ldots, x^p), \ldots, \varphi^p(x^1, \ldots, x^{p-1})) \in T.$$

PROOF. Let $\varphi^k \in \Phi^k (1 \leq k \leq p)$. Using the theorem of Hales-Jewett we will find a^1, a^2, \ldots, a^p inductively so that

$$(a^1, \ldots, a^p, \varphi^1(a^2, \ldots, a^p), \ldots, \varphi^p(a^1, \ldots, a^{p-1})) \in T.$$
An application of a combinatorial theorem

Since $m_1^2 = HJ \left(\#X_1 \cap N \times X_2 \cap \cdots \times X_p \right)$ and $X^2 = (X_1^2)^{m_1^2}$ there exists $L_1 \in \mathcal{L}(X^2)$ such that

$$\forall x^2 \in X^2 \implies \forall x^p \in X^p \implies \{ \varphi^1(x^2, \ldots, x^p) \in [1, N] \mid (x^2, \ldots, x^i) \in L_1 \} = 1.$$

Let $3 \leq i \leq p$ and $L_i \in \mathcal{L}(X^i)$ $(2 \leq j \leq i - 1)$. Suppose that

$$\forall x^i \in X^i \implies \forall x^p \in X^p$$

$$\{ \varphi^i(x^2, \ldots, x^p) \in [1, N] \mid (x^2, \ldots, x^i) \in L_i \} = 1.$$

Then, since $m_1^2 = HJ \left(\#X_1 \cap N \times X_2 \cap \cdots \times X_p \right)$ and $X_i = (X_1^2)^{m_1^2}$, there exists $L_i \in \mathcal{L}(X^i)$ such that

$$\forall x^{i+1} \in X^{i+1} \implies \forall x^p \in X^p$$

$$\{ \varphi^{i+1}(x^2, \ldots, x^p) \in [1, N] \mid (x^2, \ldots, x^{i+1}) \in L_{i+1} \} = 1.$$

By induction there exist $L_1 \in \mathcal{L}(X^2), \ldots, L_p \in \mathcal{L}(X^p)$ such that $\{ \varphi^i(L_1 \times \cdots \times L_i) = 1$.

Let $b^i = \varphi^i (L_1 \times \cdots \times L_i)$ and $a^1 = a^1 (L_1 \times \cdots \times L_i, b^1)$. Then we have $\beta^i(a^1) = b^i$ and $Q^i(a^1)$.

If $2 \leq k \leq p - 1$ and if $a^1 \in X^1, \ldots, a^{k-1} \in X^{k-1}$ and $b^1, \ldots, b^{k-1} \in [1, N]$ are defined so that for each $j \in [1, k - 1]$ there exist $L_j^{k+1} \in \mathcal{L}(L_{j-1}^{k+1}), \ldots, L_p \in \mathcal{L}(L_{p-1}^{k+1})$ (where $L_0 = X^2, \ldots, L_0 = X^p$) such that

$$Q^j(a^1, \ldots, a^j) = L_j^{k+1} \times \cdots \times L_{k+1}^{k},$$

$$\beta^j(a^1, \ldots, a^j) = b^j = \varphi^j (a^1, \ldots, a^{j-1}, x^{j+1}, \ldots, x^p) \quad ((x^{j+1}, \ldots, x^p) \in Q^j(a^1, \ldots, a^j))$$

then we define

$$\varphi^k(a^1, \ldots, a^k-1) : L_{k-1}^{k+1} \times \cdots \times L_{k-1}^{k} \rightarrow [1, N]$$

by

$$\varphi^k(a^1, \ldots, a^k-1) (x^{k+1}, \ldots, x^p) = \varphi^k (a^1, \ldots, a^{k-1}, x^{k+1}, \ldots, x^p).$$

Then, since $\varphi^k(a^1, \ldots, a^k-1) \circ \alpha_{L_{k-1}^{k+1} \times \cdots \times L_{k-1}^{k}} : X_{k-1}^{k+1} \times \cdots \times X_{k-1}^{k} \rightarrow [1, N]$, similarly as in the case of φ^1, there exist $U^{k+1} \in \mathcal{L}(X_{k-1}^{k+1}), U^{k+2} \in \mathcal{L}(X_{k-1}^{k+2}), \ldots, U^p \in \mathcal{L}(X_{k-1}^p)$ such that

$$\{ \varphi^k(a^1, \ldots, a^k-1) \circ \alpha^k(L_{k-1}^{k+1} \times \cdots \times L_{k-1}^{k}) = 1.$$

Let $L_k = \lambda_{L_{k-1}^{k+1} \times \cdots \times L_{k-1}^{k}}(U^i)$ $(i \in [k+1, p])$, let $b_k \in \varphi^k(a^1, \ldots, a^k-1)(L_{k-1}^{k+1} \times \cdots \times L_{k-1}^{k})$ and let

$$a^k = \alpha_{L_{k-1}^{k+1} \times \cdots \times L_{k-1}^{k}}(L_{k-1}^{k+1} \times \cdots \times L_{k-1}^{k}, b_k).$$

Then $Q^k(a^1, \ldots, a^k) = L_{k-1}^{k+1} \times \cdots \times L_{k-1}^{k}$ and

$$\beta^k(a^1, \ldots, a^k) = b_k = \varphi^k (a^1, \ldots, a^{k-1}, x^{k+1}, \ldots, x^p) \quad ((x^{k+1}, \ldots, x^p) \in Q^k(a^1, \ldots, a^k)).$$
Thus, inductively, we can find $a_1 \in X', \ldots, a_{p-1} \in X^{p-1}$ such that for all $k \in [1, p-1]$

\[
\beta^k(a^1, \ldots, a^k) = \varphi^k(a^1, \ldots, a^{k-1}, x^{k+1}, \ldots, x^p) \quad ((x^{k+1}, \ldots, x^p) \in Q^k(a^1, \ldots, a^k)).
\]

Let

\[
a_p = \lambda_{Q^{p-1}(a^1, \ldots, a^{p-1})} \circ \alpha^p(\beta^1(a^1), \varphi^p(a^1, \ldots, a^{p-1})).
\]

Then $\varphi^p(a^1, \ldots, a^{p-1}) = \beta^p(a^1, \ldots, a^p)$ is clear by the definition of β^p and for $k \leq p-1$ $\varphi^k(a^1, \ldots, a^{k-1}, a^{k+1}, \ldots, a^p) = \beta^k(a^1, \ldots, a^p)$ follows from $(a^{k+1}, \ldots, a^p) \in Q^k(a^1, \ldots, a^k)$ and the above result. Hence

\[
(a^1, \ldots, a^p, \varphi^1(a^2, \ldots, a^p), \ldots, \varphi^p(a^1, \ldots, a^{p-1})) = (a^1, \ldots, a^p, \beta^1(a^1), \ldots, \beta^p(a^1, \ldots, a^p)) \in T. \quad \square
\]

Proposition 4.5. If $\|Z^k > 2^{1k}$ ($1 \leq k \leq n$), then

\[
\forall \mu \in \Sigma_\tau \exists F \in (Z^1 \times \cdots \times Z^n) \ R \mu(F) < \min_{\tau \notin \mu} \tau.
\]

Proof. We may assume that $\{0, 1\}^{2k} \subset Z^k (1 \leq k \leq n)$. Let

\[
E_1 = \{(e_1, \ldots, e_{2k}) \in \{0, 1\}^{2k} \mid e_s = i \} \quad (1 \leq s \leq 2k, i = 0, 1).
\]

Suppose that $\mu = \sigma_\tau(i, \pi, \eta)$ and $\{r \in \Sigma \mid r \notin \mu\} = \{\tau_1, \ldots, \tau_t\}$.

For $s \in [1, t]$ if $C(\mu, \tau_s, 0) \neq \phi$ then we take $k \in C(\mu, \tau_s, 0)$ and define a function F^s by

\[
F^s(z_1^n) = \begin{cases}
0 & (z_k \in E_0), \\
1 & (z_k \notin E_0).
\end{cases}
\]

If $C(\mu, \tau_s, 0) = \phi$ then, since $\bigcup_{i=1}^{[n/2]} C(\mu, \tau_s, i) \neq \phi$, we take $p_s \in [1, [n/2]]$ and $\eta_s \in C(\mu, \tau_s, p_s)$ and define F^s by

\[
F^s(z_1^n) = \begin{cases}
1 & (z_n^{\eta_s} \in E_0 \iff z_n^{\eta_s(p_s+k)} \in E_0) \quad (1 \leq k \leq p_s), \\
0 & \text{(otherwise)}.
\end{cases}
\]

Let $F : Z^1 \times \cdots \times Z^n \rightarrow R$ be defined by $F(z_1^n) = \max_{1 \leq s \leq t} F^s(z_1^n)$ and let

\[
\varphi^k : Z^{\eta_1(1)} \times \cdots \times Z^{\eta_k(h_k)} \rightarrow Z^{\eta(k)} \quad (1 \leq k \leq l)
\]

be such that

\[
\varphi^k(z_1^{\eta_1(1)}, \ldots, z_1^{\eta_k(h_k)}) \in \left(\bigcap_{a \in U_{h_1}} E_0^a \right) \cap \left(\bigcap_{a \in [3, 3l] \setminus U_{h_k}} E_1^a \right)
\]
where

\[U_k = U_k(z^{\gamma_1}, \ldots, z^{\gamma_k}) \]

\[= \{ s \in [1, \Sigma] \mid C(\mu, \tau, 0) \neq \phi \} \cup \{ s \in [1, \Sigma] \mid \pi(k) = \eta_s(p_s + 1), z^{\eta_s(p_s)} \notin E_0' \} \]

\[\cup \left(\bigcup_{j=2}^{p_s} \{ s \in [1, \Sigma] \mid \pi(k) = \eta_s(p_s + j), z^{\eta_s(j-1)} \in E_0' \} \right) \]

and \(D(\gamma_k) = [1, h_k] \). Then

\[\forall z^{\pi(1)} \in Z^{\pi(1)} \ldots \forall z^{\pi(n)} \in Z^{\pi(n)} \ (\gamma \ast \pi \ast F)(\varphi^1, \ldots, \varphi^l, z^{\pi(1)}, \ldots, z^{\pi(n)}) = 0 \]

so \(\mu(F) = 0 \). Since \(\tau_s(F) = \tau_s(F^s) = 1 (1 \leq s \leq t) \) is clear we have \(\mu(F) < \min_{\tau \notin \mu} \tau(F) \). □

Proposition 4.6. If \(\sharp Z^k \geq M(N(\lfloor n/2 \rfloor, 2, \Sigma), n/2) \) \((1 \leq k \leq n) \), then

\[\forall \nu \in \Sigma_+ \exists F \in (Z^1 \times \cdots \times Z^n) \ R \ \nu(F) < \min_{\tau \notin \mu} \tau(F). \]

Proof. Let \(N = N(\lfloor n/2 \rfloor, 2, \Sigma) \). We may assume that \([1, N] \subset Z^k \) \((1 \leq k \leq n) \). For \(p \in [2, \lfloor n/2 \rfloor], \eta \in \Pi_{2p}, k \in [1, p] \) let \(\theta^n_k : X^k(p, N) \rightarrow Z^n(k) \) be an injection. Define

\[\theta^n : X^1(p, N) \times \cdots \times X^p(p, N) \times [1, N]^p \rightarrow Z^n(1) \times \cdots \times Z^n(p) \times [1, N]^p \]

by

\[\theta^n(x^1, \ldots, x^p, y^1, \ldots, y^p) = (\theta^n_1(x^1), \ldots, \theta^n_p(x^p), y^1, \ldots, y^p). \]

Suppose that \(\nu = \sigma_+(l, \pi, \gamma) \) and \(\tau \notin \nu \). If \(C(\nu, \tau, 0) \neq \phi \) then we take \(k \in C(\nu, \tau, 0) \) and define \(F^\tau \) by

\[F^\tau(z^1, \ldots, z^n) = \begin{cases} 0 & (z^k \in [1, N]), \\ 1 & (z^k \notin [1, N]). \end{cases} \]

Then

\[\forall \varphi^l \in \Phi(\pi(1), \gamma_1) \ldots \forall \varphi^l \in \Phi(\pi(l), \gamma_l) \]

\[\sharp \{ (z^{\pi(1)}, \ldots, z^{\pi(n)}) \in [1, N]^{n-l} | (\gamma \ast \pi \ast F^\tau)(\varphi^1, \ldots, \varphi^l, z^{\pi(1)}, \ldots, z^{\pi(n)}) = 1 \} = 0. \]

Clearly \(\tau(F^\tau) = 1 \).

If \(C(\nu, \tau, 0) = \phi \) and \(C(\nu, \tau, 1) \neq \phi \) then we take \(\eta \in C(\nu, \tau, 1) \) and define \(F^\tau \) by

\[F^\tau(z^1, \ldots, z^n) = \begin{cases} 0 & (z^{(1)}, z^{(2)}) \in (Z^{n(1)} \times [1, N]) \setminus \bigcup_{s=1}^{N} \{(s, s)\}, \\ 1 & (\text{otherwise}). \end{cases} \]
Then for \(\varphi^i \in \Phi(\pi(1), \gamma_1), \ldots, \varphi^l \in \Phi(\pi(l), \gamma_l) \)

\[
\{ (z^{\pi(l+1)}, \ldots, z^{\pi(n)}) \in [1, N]^{n-1} | (\gamma \ast \pi \ast F^\tau)(\varphi^1, \ldots, \varphi^l, z^{\pi(l+1)}, \ldots, z^{\pi(n)}) = 1 \} \leq N^{n-l-1} \leq \frac{N^{n-l}}{\| \Sigma \}.
\]

Clearly \(\tau(F^\tau) = 1 \).

If \(C(\nu, \pi, 0) = \phi \) and \(C(\nu, \pi, 1) = \phi \) then, since \(\bigcup_{i=2}^{[n/2]} C(\nu, \pi, 1) \neq \phi \), we take \(p \in [2, [n/2]] \) and \(\eta \in C(\nu, \pi, p) \) and define \(F^\tau \) by

\[
F^\tau(z^1, \ldots, z^n) = \begin{cases} 0 & (z^{\gamma(1)}, \ldots, z^{\gamma(2p)}) \in [1, N]^p, (z^{\gamma(1)}, \ldots, z^{\gamma(2p)}) \notin \theta^\eta(T(p, N))) \\ 1 & \text{(otherwise)}. \end{cases}
\]

Then, since \(N(p, 2, \| \Sigma \} \leq N = N([n/2], 2, \| \Sigma \} \), it follows from the theorem of Erdős and Lemma 4.3 that

\[
\forall \varphi^i \in \Phi(\pi(1), \gamma_1) \ldots \forall \varphi^l \in \Phi(\pi(l), \gamma_l)
\{ (z^{\pi(l+1)}, \ldots, z^{\pi(n)}) \in [1, N]^{n-1} | (\gamma \ast \pi \ast F^\tau)(\varphi^1, \ldots, \varphi^l, z^{\pi(l+1)}, \ldots, z^{\pi(n)}) = 1 \} \leq \frac{N^{n-l}}{\| \Sigma \}.
\]

Lemma 4.4 implies that \(\tau(F^\tau) = 1 \).

Define \(F \) by \(F(z^1, \ldots, z^n) = \max_{\gamma \notin \nu} F^\tau(z^1, \ldots, z^n) ((z^1, \ldots, z^n) \in Z^1 \times \cdots \times Z^n) \).

Then for \(\varphi^i \in \Phi(\pi(1), \gamma_1), \ldots, \varphi^l \in \Phi(\pi(l), \gamma_l) \)

\[
\{ (z^{\pi(l+1)}, \ldots, z^{\pi(n)}) \in [1, N]^{n-1} | (\gamma \ast \pi \ast F)(\varphi^1, \ldots, \varphi^l, z^{\pi(l+1)}, \ldots, z^{\pi(n)}) = 1 \} \leq \sum_{\gamma \notin \nu} \{ (z^{\pi(l+1)}, \ldots, z^{\pi(n)}) \in [1, N]^{n-1} | (\gamma \ast \pi \ast F^\tau)(\varphi^1, \ldots, \varphi^l, z^{\pi(l+1)}, \ldots, z^{\pi(n)}) = 1 \} \leq \| \tau \in \Sigma | \tau \notin \nu \} \cdot \frac{N^{n-l}}{\| \Sigma \} < N^{n-l}.
\]

So

\[
\forall \varphi^i \in \Phi(\pi(1), \gamma_1) \ldots \forall \varphi^l \in \Phi(\pi(l), \gamma_l) \exists z^{\pi(l+1)} \in Z^{\pi(l+1)} \ldots \exists z^{\pi(n)} \in Z^{\pi(n)}
(\gamma \ast \pi \ast F)(\varphi^1, \ldots, \varphi^l, z^{\pi(l+1)}, \ldots, z^{\pi(n)}) = 0.
\]

That is, \(\nu(F) = 0 \). Clearly \(\tau(F) \geq \tau(F^\tau) = 1 (\tau \notin \nu) \). Hence \(\nu(F) < \min_{\tau \notin \nu} \tau(F) \). \(\square \)

By Proposition 4.5 and Proposition 4.6 with the dual results we have the following.

Theorem 4.7. Assume that \(Z^1, \ldots, Z^n \) are sufficiently large. Then for all \(\tau \in \Sigma \) there exist \(F, G : Z^1 \times \cdots \times Z^n \rightarrow R \) so that \(\tau(F) < \min_{\gamma \notin \nu} \tau(F) \) and \(\max_{\gamma \notin \nu} \tau(G) < \tau(G) \).
Acknowledgment

I would like to thank Professors Seiichi Iwamoto and Hiroshi Hisano for variable comments.

References

Received December 22, 1999
Revised August 9, 2000
Re-revised August 30, 2000