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Absiract

For Pitman sampling formula which is a distribution on all unordered
partitions of a positive integer, we give the moments of the number of
components of the random partition which are the descending factorial
moments, the ascending factorial moments and the usual moments. Us-
ing them the asymptotic distribution of the number of components of the
random partition is derived. The moments of Pitman sampling formula
are also given. Using them we give the asymptotic distributions of the
marginals and their functions.

Key Words and Phrases: Random partition, Pitman sampling formula, Mittag-
Leffler distribution.

1. Introduction

Let M, denote the set of all unordered partitions of a positive integer n, that is,

123
My ={(m1,...,mp) :m; 20{{=1,...,n) and Ejm,— =n}.
=1
As a probability distribution on AM,,, generalizing Ewens sampling formula Pitman
{1995) derives the distribution given by
3 k a]

— a)li- 11
P((My, .., My) = (my, ., mp)) = nl—ry H((l ;’? 1_% (1.1)

where {(m1,...,mn) € My, 209 = g(z + @) - (2 + (7 — Da), 249 = 2] k= 2 o™
the number of components of the partition, and 0 < a < 1,8 > —a.

In this paper we consider Pitman sampling formula corresponding to sampling
from an infinite population. Since the case of & = 0 gives Ewens sampling formula, we
consider only the case of 0 < a < 1. The distribution of K, = ¥.-_, M; is given by

P(K,=k) = IC(n,ka)loz L k=1,2,..n, (1.2)

a[n]
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where | C{n, k,a) |= (=1)""*C(n, k,a) and C(n, &, ) is the generalized Stirling num-
bers (Pitman(1996b,1999), Yamato et al.(1999)).

In Section 2, we give the descending factorial moments of K,,. Since it is not
easy to handle directly the moments based on the probability given by (2), we derive
the descending factorial moments of K,, by using their recurrence relation. Using the
descending factorial moments of K, we give its nsnal moments and ascending facto-
rial moments. In case of & = 0, the ascending factorial moments are given by Pitman
(1996b).

Propositions 4 and 6 of Pitman (1997) shows the almost sure convergence of K, /n®
and Theorem 2.2 of Feng and Hoppe (1998) also gives it. Pitman (1996b) gives the al-
most sure convergence of K, /n®, its convergence in the pth mean and its asymptotic
distribution. By evaluating C(n, k, &) asymptotically, Pitman (1999) obtains the asymp-
totic distribution of K, /n®. In Section 3 we shall show it using the method of moments.
By taking the limits of the moments obtained in Section 2, we show the asymptotic
distribution of K, /n®.

In Section 4, the asymptotic mean, variance, covariance and distribution for margi-
nals of Pitman sampling formula are given. For the number of components smaller than
or equal to a fixed positive integer, we give its asymptotic distribution. By the property
of the tails of the underlying distribution, these statistics also converge almost surely.

In Section 5 which is Appendix, we give the proofs of the usual moments and as-
cending factorial moments of X, stated in Section 2.

2. Moments

We consider the sequence of random variables By(= 1), By, B3, ... such that for
F=1,2,..a0d by =1, by, ..., b; = 0,1

B+ (b +--- + b;)a

P(Bj+l =1 | B:[ = b]_,..., BJ' - 63) = J +9 N (2.1)
i (bt +b)e
P(B:H_] =0 l B]_ = bl,.-., B_? = bj) = _’+9 £ . (22)
Then we can consider K, = By +---4 B, forn =1,2,..., and it holds that
0+ ko n—ka .
P(Bay1 =1 Kn=k)= 54—, P(Bua=0|K,=k)= P n (2.3)

The sequence of random variables {B;} is, for example, consiructed from the sample
from the two-parameter GEM distribution (Yamato et al.(1999})). Generally, for the
sequence of random variables {X,} subject to the two-parameter model with parameters
0<a<1and &> —a (Pitman (1995, 1996a)), we put B; = 1. For j = 1,2,... we put
Bj-l-l =1if Xj+l 56 XJ_, ...,XJ’ and B.‘H‘l = Qif Xj+1 is equa.l to any one of Xl,...,Xj.
This sequence of random variables {B;} satisfies the conditions (2.1) and (2.2).

Since Kpy1 = Kp + Buyy With B,y =0 or 1, we have K, = (K, + Boy1)") =
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KO + x5 VB wi1 Where z{™) = z{x — 1)---(z — r + 1). Then by (2.3) we have
EKY), | Ko = K +rKS ™9 + (r — Do+ (Ka =7 + 1)o]/(6 + n). Taking the
expectations of this conditional expectation, we have the following recursive relation
about the descending factorial moment EKL.

Lemma 2.1 Forr=1,2,..,

i@+ (r — 1))

=9 ER{Y (24)

EED, = (1 +t )EK(") +

This relation can be also obtained from (14) of Pitman (1996b) with f(k) = k(). For
r =1, we have

EK,,= _9—— {1+ f_g)EK,.

{(15) of Pitman (1996b)). Using this relat1on recursively, we have

9 )
B = oo+ 0+ gt
+(1+n+8)(1+n—1+8]'"(1+ 1+9) 1

The right hand side of the above is equal to (8/a)[{(8 + a)tn+1)fgl*+1]} — 1], which is
easily verified by induction. Thus for n = 1, 2,... we have

+ a)ldl

g1 W

This is also given by (18) of Pitman (1996b) and can be read from & formula of Engen
(1978) for the 2 parameter residual allocation model. In general, we have the following
descending factorial moments given by {2.5) which is easily derived by induction on n
and r using (2.4).

EK) = EK, = -[(8

Proposition 2.2 For n = 1,2,... and r = 1,2,..., the rth descending factorial
moment of K, is '

a{r:a] r . .
EK =~y (-1 ( ; )(9+ gyl (2.5)
i=0

[=]
={= )[PIZ( 1)"—3( )%

Especially in case of r =2,

80+ a) n n} 1 gln
EK® = “oo0 {0+20)") — 26+ o) + 0l l} .
Thus we have
_a0+a) B+22) @ (@+a)l) 8 @+
Var(Ka) = =3 fl "=\ e ) e e
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For the ascending factorial moment EKY, we note that EK,[:},I =E(K,+r—-1+
Bop1 )" = E(K, +7— 1) ++E[(K, +7 — 1))@ + K,a)/(0 + n)]. Thus we get
the recursive relation

M4+ T2 ERl 4
EK; , =1+ n+0)EK“ + iy
which can be also obtained from {14) of Pitman {(1996b) with f(k) = kl"l. In case of

# = (, we have

E(K, + 1)1,

(r - 1)!(1-0:)["]

EkM =+ %)EK,[:’] and EKFY = PRSI

which are given by Proposition 2 of Pitman (1996b).
For the usual moment EK7,, using the Stirling number of the second kind { : }

we can write EX] =377 { T } EK' and by the relation {2.5) we have the following,
i

Corollary 2.3 Forn=1,2,... andr=1,2,...

z i 0. . 8 (8+ja+1)n1]
r 1\ Zhl h X
EK;, _,2:0( ™1+ ) R4, @+ (2.6)
where R(r,j,X) is the unique function satisfying
> yOR(rG,A) = (y+ N (2.7)

7=0
foranyy, Aandr=1,2,....

This function R(r,#, A) is introduced by Carlitz {1980) and the relation {2.7) is (3.4) of
Carlitz (1980). The moment (2.6} is shown in Appendix. For example,

+ 20 + 1)»-1] é 8. 0+a+1)>-4 9,
@ -0+ Q0+ 2 e + Q)

EK2=(1+ g)[ﬂ @

Using the unsigned Stirling number of the first kind | : ] we can write EKY =

=0 : JEK}, and by the relation (2.8), in case of 8 # 0, we have the following.

Corollary 2.4 Forn=1,2,... andr=1,2,...,

* _ , , jar)lml
EKI! = Z(_I)r-—jr( ;' )(g)bl(g)(r—ﬂ%—, f#0. (2.8)
i=0

This is also shown in Appendix. For example,

8 .1 (0 + 2a)(") 8,8+ a)ln ]
(2] — (IR TS T o T T T
EK;; (a) o) 2(0) 2] +(a) .
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3. Asymptotic Distribution
The rth moment of K, given by (2.6) is written as

i 6 .0+ joa+n)[(@+1)
]'Z( a2 )bR(” )I‘(9+n)1"(9+1a+1)

j=0

By the property of [-function that is T'(@ + jo + n)/T(€ + n) &= n’* and R(r,r,0fa) =1
(see (3.12) of Carlitz (1980)), we have the following.

Lemma 3.1
= Jim EBay1 = 4 D TOED - G TO
pecialy @ +1)
Jim B[22 = o,
i Vorti = S o - s P

This y) is the rth moment of the distribution whose density is given by

r@e+1) 22

I‘(f;+1) %a{z), (3.1)

where g, is the density of the Mittag-Lefler distribution with parameter o. The density
Go i8 the unique function that satisfies

- _T(p+1)
fo zPg.(z}dx = Tipa + 1" (3.2)
for any real p > —1 (Pitman (1999), p.20-21).

Let L be the random variable which have the density given by (3.1). The relation
of the moments with respect to the density given by (3.1) holds for any 8/a > -1.
Therefore because of (3.2), the density given by (3.1) is determined uniquely by the
moments. Thus, from the point of view of moment, we can get the following,.

Proposition 3.2 (Pitman (1999)) K, /n® converges as n — oo to the distribution
with the density given by (3.1), that is, K, /n® 41

We give alternative representations of the distribution whose density is given by
(3.1) for some values of parameters. For parameters o and 8 satisfying 0 < o < 0.5,
—a<@<0orlS<a<]l,a—1<8<0,lei V and W be independeni. random
variables such that W has the beta distribution Be(l + (6/a}, ~8/a) and U has the
generalized Mittag-Leffer distribution with parameters &, § + 1.

The generalized Mittag-Lefller distribution with parameters0 < a < 1, §(> a) isa
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distribution whose rth moment is given by I'(8)r!/T(3 + ro). The moments determine
the distribution uniquely. (Schneider (1996)).
We write u!. as
A+ 4 TE+ 1)
Be =0 ‘TO+1+ra)

If -1 < (6/a) < 0, then (1 + (8/c))")/r! i5s the rth moment of the beta distribution
Be(l+(0/a),—(8/a)). HO<a <1,8+1 > a, then ['(#+ 1)rY/T(0 +1 + ra) is the rth
moment of the generalized Mittag-Lefller distribution with parameters @, 8 + 1. Since
0fa<land @ > —a, H0<a£05, —a<#<0or05<a<]l,a-1<£0 <0, then
w, = E(WUY].

Thus if 0 C ¢ < 08, —a< § < 0orli<ca<l,a-1<8 <0, then the
distribution with the density given by (3.1} is stochastically equivalent to WU,

HO < a =8 <1, then 4, = T'(a)!/T(a + ra), which is the rth moment of the
generalized Mittag-Lefler distribution with parameters & and o, Therefore, in this case,
the distribution with the density given by {3.1) is stochastically equivalent to the gen-
eralized Mittag-Leffler distribution with parameters  and .

4. Marginals of Pitmman Sampling Formula

For Pitman sampling formula given by {1.1}, the sum of the right-hand side over
all nonnegative integers my,ms, ..., my satisfying 37, jm; = n is equal to 1. Using
this property we have for nonnegative integers r4,...,7,

i [r:a] [n—slpts) ™ —a)F-N"
(v _ 07O+ ra) n (1-a)
E[H M = o) [! — {4.1)
= a=

_(@+a)rtelr+1) 7 (1 - a)b UN™ T8+ ra + n ~ s)nl®)
ghmm vcEr ! (5—) o

wherer =7+ +7,, 8= 2;;1 T S From (4.1}, for a fixed j(= 1,2,...) and
any r{=0,1,2,...) we have

[riar) —a)i-uy\" — jr)lin}
E[M}r}]=8 I ()] ((1 a) ) L@ +ra+n—jrinV _

(8 + ra) i F(6 +n)

By letting n tend to oo in the above, we get

. 3'M; T 8w TE+1)
dm E [-a(I_——— a)u—nna] =0+ Nerizray

Using this relation with r = 1,2, we have for j = 1,2, ...

—a)U-Ur@+1
Jim B[ =t ?1)1"(9+i) :
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f+a_ T@O+1) a)li-1

Jim V‘“’[_] =T+ 1){I‘(3+2a) T+ o) K= R
Especially,
pecaty _T(6+1)
n--aoo [ F(G+G)’
lim Var[——F—] =T8¢+ 1){ bra re+1) |2

A0 r@+2a) [T{6+a)?

From (4.1}, for a positive integer { and nonnegative integers r,...,7 we also have

jM L] —
Jim B ln(m] ] = By g (4.2)

where p; is given by Lemma 3.1. Using this relation with r; = 1, r; = 1 for j,{(=
2,..5#1D,

6+a  T(6+1) }(l—a)b U(t - a)li- 1]

lim Cov (_, 5"'— = T{6+1) i

n—co Ie+2a) [[(P+a)?
Since w! is the rth moment of L, by the relation {4.2) we have the following.

Propeosition 4.1 For a positive integer ,

M, AM, 1M,

d
(Gne’ a(l—a)llne a1 -a)ﬂ—lln.a) = Ly Ly L)
or M M M (1 - o)t (1-a)lt-1l
1 2 iy d all —o a(l — o)l
T R 5 L). (4.3)

Especially, for a positive integer §, we have

M; 4 al(j — )

n®  T(1—a)T(j +1)

For the random partition (M, ..., M,) having Pitman sampling formula, let K;., be the
number of components amaller than or equal to 1 (I =1,2, ). That is, Kj,, = My +-+-+
M. Let Sy be 1x My +2x My ---+ix M. Since T;_, a(1-a)li~1/j1 = 1-(1-a)l/11
and 2_:'=1 a1 — )b~y — 1)1 = a(2 —a)l=1 /(1 — 1)1, by (4.3) we have the following,

Proposition 4.2 Let {M;,...,M,)) have Pitman sampling formula given by (1.1)
withd< a<1,8>—a. Fora fixedl(=1,2,..),

Kf;n d (l - Q-)[I]
n* {1 i M,

and
Sin ¢ (2 —Ct)[l_"]af
_— - —

na -1
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It was communicated personally from Prof. Pitman that the statistics of Propo-
sitions 4.1 and 4.2 converges almost surely (a.s.) by the reason stated as follows. As
the underlying distribution for Pitman sampling formula, we shall consider the two-
parameter Poisson-Dirichlet distribution (V;,V3,...). It has the tails such that al/eV,
converges to [L/T'(1 — a)j*/® a.s. (Pitman (1997), Pitman and Yor (1997)), where L
is the random variable having the density given by (3.1). Therefore by Rouault (1976,
1978), for j = 1,2,... M; /K, converges to al'(j — a)/[[(1 — «)T{j + 1)] a.s. On the
other hand, K./n® converges to L as. as siated in Section 1. Therefore M;/n* con-
verges to {al'(j — a)/[['(1 — a)T'(j + 1)]}L a.s. From this convergence we know that the
convergences of statistics of Propositions 4.1 and 4.2 hold also almost surely,

5. Appendix

For the usual moment EKT, using the relation (2.5) we have for n = 1,2, ... and
r=12..

T

1]
EK:;:‘;{ }EK(}_Z( 1)7-3(1 + )Lf]T(”z)(ﬂz;}J:;;[:)_” L (5.1)

where
73,0 = 30+ T L,
i=j
For any g,

S T3, = S0 w0 - e {7}

i=0 i=0 j5=0

= Ywerri-n0ey{ T e,

i=0

which is equal to 3°7_o(—y — AP { }( 1) =(—y—A)(-1)" =(y+ AY. Thus we

have for any y,

r

3 y9T(r G, ) = (y+ A

i=0
That is, T(r,j, A) satisfies the relation (2.7) and therefore T(7,j, A) is equal to the
function R(r,j,A) of Carlitz (1980). Using this to (5.1) we have the moment given by
(2.6).

For the ascending factorial, using the moment given by (2.6) we have forn = 1,2, ...

andr=1,2,...

[n
EKE = 31 T JEK = Y -1y, 5, HENT gy

i=0 =0
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where

™

I(r,3,3) = 3 s(r,i)R(i, 5, 3)

i=g

and s(r,%) = (-1 : ] is the Stirling number of the first kind.
For any g,

3 Itr, 5, 06D =3 (3 R, 5, Au)s(r, )

=0 i=0 =0
which is equal to 3°0_,(A+#)%s(r,i) = (A+#)(" by (2.7) and the property of the Stirling
number of the first kind s. Thus we have for any p,

3 IG5, D = (A ).

=0

Hence if A # 0 then we bave I(r, 7, ) = ( ; YM7=3}. Using this to (5.2) we have the

ascending factorial moment given by (2.8) for & # 0. Also when A = 0, I{r, j,0) equals
1ifj=rand 0if j £ 7.
For 8 = 0 the relation (5.2} is reduced to

. . . [n~1]
EK =3 (-1 (s, j, 0)%
=0 '

Hence we get BKl = {(r ~1)Y(ra)["] /(n = 1)1 which is equal to the evaluation of EK,[:]
with & = 0 stated in Section 2,
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