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MOMENTS OF SOME STATISTICS OF PITMAN 

         SAMPLING FORMULA

                By 

Hajime YAMATO* and Masaaki SIBUYA1

                      Abstract 

   For Pitman sampling formula which is a distribution on all unordered 

partitions of a positive integer, we give the moments of the number of 
components of the random partition which are the descending factorial 

moments, the ascending factorial moments and the usual moments. Us-

ing them the asymptotic distribution of the number of components of the 

random partition is derived. The moments of Pitman sampling formula 

are also given. Using them we give the asymptotic distributions of the 

marginals and their functions.

    Key Words and Phrases: Random partition, Pitman sampling formula, Mittag-

Leffler distribution.

1. Introduction 

    Let Mn denote the set of all unordered partitions of a positive integer n, that is, 

Mn = {(ml, ..., Mn) : mi > 0 (i = 1, ..., n) and E jmj = n}. 
j=1 

  As a probability distribution on Mn, generalizing Ewens sampling formula Pitman 

(1995) derives the distribution given by 

        P((M1i...,Mn) = (m1,...,ma)) = n!e[k:a]"n((1 — a) D-1]---(1.1)                   8[n]=17 

where (mi, ..., mn) E Mn, x[j'a] = x(x + a) ... (x + (j — 1)a), x[j] = x[j'1], k = ET; 1 mi 
the number of components of the partition, and 0 < a < 1, 9 > —a. 

    In this paper we consider Pitman sampling formula corresponding to sampling 

from an infinite population. Since the case of a = 0 gives Ewens sampling formula, we 

consider only the case of 0 < a < 1. The distribution of Km =?1Mjis given by 
                                   ka 

P(Kn = k)=e[ [n]IC(n, k, a) I a—kk=1, 2,...,n, (1.2) 

                    O
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where I C(n, k, a) 1= (-1)n-kC(n, k, a) and C(n, k, a) is the generalized Stirling num-
bers (Pitman(1996b,1999), Yamato et al.(1999)). 

    In Section 2, we give the descending factorial moments of Kn. Since it is not 
easy to handle directly the moments based on the probability given by (2), we derive 
the descending factorial moments of Kn by using their recurrence relation . Using the 
descending factorial moments of Kn we give its usual moments and ascending facto-
rial moments. In case of 9 = 0, the ascending factorial moments are given by Pitman 

(1996b). 
    Propositions 4 and 6 of Pitman (1997) shows the almost sure convergence of Kn/na 
and Theorem 2.2 of Feng and Hoppe (1998) also gives it. Pitman (1996b) gives the al-
most sure convergence of Kn/na, its convergence in the pth mean and its asymptotic 
distribution. By evaluating C(n, k, a) asymptotically, Pitman (1999) obtains the asymp-

totic distribution of Kn/na. In Section 3 we shall show it using the method of moments. 
By taking the limits of the moments obtained in Section 2, we show the asymptotic 
distribution of Kn/na. 

    In Section 4, the asymptotic mean, variance, covariance and distribution for margi-
nals of Pitman sampling formula are given. For the number of components smaller than 
or equal to a fixed positive integer, we give its asymptotic distribution. By the property 
of the tails of the underlying distribution, these statistics also converge almost surely . 

    In Section 5 which is Appendix, we give the proofs of the usual moments and as-
cending factorial moments of Kn stated in Section 2.

2. Moments 

    We consider the sequence of random variables B1(- 1), B2, B3, ... such that for 

j=1,2,... and b1=1,b2i...,b3=0,1 

9+(bl+•+bi)a  P(B
3+1 = 1B1= b1, ..., Bi =1)3) =+ 9,(2.1) 

         P(B0 IBbB=b33) =- (bl++•eb; )a(2.2)            7+1 =1=1,— 

Then we can consider Kn = B1 + • • • + Bn for n = 1, 2, ..., and it holds that 

P(Bn+1=1I Kn=k)=8+ka,P(Bn+1=OIKn=k)=B+ka(2.3) 
The sequence of random variables {/3.31 is, for example, constructed from the sample 
from the two-parameter GEM distribution (Yamato et al.(1999)). Generally, for the 
sequence of random variables {Xn} subject to the two-parameter model with parameters 
0 < a < 1 and 8 > -a (Pitman (1995, 1996a)), we put B1 - 1. For j = 1, 2, ... we put 
Bi+1 = 1 if Xj+1 Xl, ..., X3 and B3+1 = 0 if Xj+1 is equal to any one of X1, 
This sequence of random variables 1133} satisfies the conditions (2.1) and (2.2). 
   Since Kn+1 = Kn + Bn+1 with Bn+1 = 0 or 1, we have Kn( +1 = (Kn + Bn+1)(') =
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47.) + rK~r-1)Bn+1 where x(r) = x(x — 1) • • • (x — r + 1). Then by (2.3) we have 
E[K,W1 Kn] = Kir) + rK,Cir-1)[8 + (r — 1)a + (Kn — r + 1)a]/(0 + n). Taking the 
expectations of this conditional expectation, we have the following recursive relation 

about the descending factorial moment EKTr). 

    Lemma 2.1 For r = 1, 2, ..., 

           EK(r) — (1+------ar )EK~r) +r[9 + (r —1)a]  EK~r-1)(2.4)       n+1
n+9nn+9n 

This relation can be also obtained from (14) of Pitman (1996b) with f(k) = k(r). For 
r = 1, we have 

EKn+1 = 
n+8+(1 +n+e)EKn 

((15) of Pitman (1996b)). Using this relation recursively, we have 

9 a 8 EK
n+1 =-----+(1+) +••• n+6 n+0 n-1+0 

                   +(1+ n+9)(1+n-1+8)..•(1+1+9)•1. 

The right hand side of the above is equal to (6/a)[{(6 + a)[n+1]/8[n+11 } — 1], which is 
easily verified by induction. Thus for n = 1, 2, ... we have 

                 EK1) = EKn =9a[(e +8[an])[n] — 1]. 

This is also given by (18) of Pitman (1996b) and can be read from a formula of Engen 
(1978) for the 2 parameter residual allocation model. In general, we have the following 
descending factorial moments given by (2.5) which is easily derived by induction on n 
and r using (2.4) . 

    Proposition 2.2 For n = 1, 2, ... and r = 1, 2, ..., the rth descending factorial 
moment of Kn is 

                       rar              EK~r)=e[.~(-E(-1r3r(9 + ja)[n](2.5) 
                      a9[n]                                      ; -o 

                (8)[r]r(-1)r-;r (9 + ja)[nl        a9[n] 

    Especially in case of r = 2, 

          EK~2) =9(9 + a){(8 + 2a)[n] — 2(9 + a)[n1+ e[nl } .               na20[n] 

Thus we have 

0(9 + a) (0 + 2a)[n] e2 ((0 + a)[n] 2 0 (0 + a)[n]     Var(Kn) = a29[n]—a2 9[n]—a 8[n])
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    For the ascending factorial moment EK,r], we note that EKCr+1 = E(KT + r - 1 + 
Bn+1)(T) = E(Kn + r - 1)(r) + rE[(Kn + r - 1)(r-1)(9 + Kna)/(9 + n)]. Thus we get 
the recursive relation 

EK~T+1 = (1 + ------ra )EKZ] +-----r9 E(Kn + 1)[r-1], 
             n+9 n+9 

which can be also obtained from (14) of Pitman (1996b) with f(k) = k[T]. In case of 
9 = 0, we have 

           EK[r] — (1 + ra)EK[r] and EK[r]=(r-1)!(ra)[n]         n+1
nnn(n - 1)!a 

which are given by Proposition 2 of Pitman (1996b). 

    For the usual moment EK ; , using the Stirling number of the second kind r 
i 

we can write EKn = Ei_o i EKCz) and by the relation (2.5) we have the following. 
    Corollary 2.3 For n = 1, 2, ... and r = 1, 2, ... 

              r T r-~9[j]0)(0  + ja + 1)[n-11            EKn=~(-1)(1+a)R(r,j,a(8+1)[n-1](2.6) 
j-o 

where R(r, j, A) is the unique function satisfying 

E y(i)R(r, j, A) = (y +(2.7) 
i-o 

for any y, A and r = 1, 2, .... 
This function R(r, j, A) is introduced by Carlitz (1980) and the relation (2.7) is (3.4) of 
Carlitz (1980). The moment (2.6) is shown in Appendix. For example, 

     2[2](9 + 2a + 1)[n-119 9 (8 +a+ 1)[n-1] 92   EKn=(1+a)(9+1n-1]-(1+a)(1+2 a) (9+1)[n-1]+(a). 

   Using the unsigned Stirling number of the first kind [] we can write EKr]= 

Ez o [  ]EK and by the relation (2.6), in case of 9 0, we have the following. 

    Corollary 2.4 For n = 1, 2, ... and r = 1, 2, ..., 
                                                                                         (,R'] 

       EK[r] =1r99+ ja)L            nE(-)r-3(j)(- a9)[j1(  e[n] , 9 � 0.(2.8) 
j-o 

This is also shown in Appendix. For example, 

          EK~2] = (9)[2}(9+2a)[n]—2(8)2(9+a)[n]+(8) (2) 
a9[n]a9[n]a•
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3. Asymptotic Distribution 

    The rth moment of  Kn given by (2.6) is written as 

           _9~~9F(9+ ja + n)F(0 + 1)         E[Knr]-E(-1)-(1+a)17(r,j, a)F(9+n)F(9+ja+1) 
                     ?-o 

By the property of F-function that is r(9+ ja + n)/F(9 + n) ni° and R(r, r, 9/a) = 1 
(see (3.12) of Carlitz (1980)), we have the following. 

    Lemma 3.1 

      µ', = lim E[(Ka)r]_ (1 +61)[r}  F(9 + 1) = (0)[r] F(8)          n-4co naF(9+ 1+ ra)aF(9 + ra) 

   Specially, 
                       K _F(9+ 1)                     liE[

n«]aF(9 + a)' 
Km F(9+ 1) 9+a F(9+1)             limoVar[n«]=a2{F(9+ 2a) [F(9 + a)]2}. 

   This 14, is the rth moment of the distribution whose density is given by 

                   F(8+ 1)  
                F(« + 1)xag«(x),(3.1) 

where g« is the density of the Mittag-Leffler distribution with parameter a. The density 

g« is the unique function that satisfies 

                         F(p + 1)  

Jxr9«(x)dx =F(pa + 1)'(3.2) 
0 for any real p > -1 (Pitman (1999), p.20-21). 

   Let L be the random variable which have the density given by (3.1). The relation 
of the moments with respect to the density given by (3.1) holds for any 9/a > -1. 
Therefore because of (3.2), the density given by (3.1) is determined uniquely by the 
moments. Thus, from the point of view of moment, we can get the following. 

    Proposition 3.2 (Pitman (1999)) Kn/na converges as n --^ co to the distribution 
with the density given by (3.1), that is, Kn/n« L. 

    We give alternative representations of the distribution whose density is given by 

(3.1) for some values of parameters. For parameters a and 9 satisfying 0 < a < 0.5, 
-a < 9 < 0 or 0.5 < a < 1, a - 1 < 9 < 0, let U and W be independent random 
variables such that W has the beta distribution Be(1 + (01a),--01a) and U has the 
generalized Mittag-Leffler distribution with parameters a, 9 + 1. 

   The generalized Mittag-Leffler distribution with parameters 0 < a < 1, j3(> a) is a
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distribution whose rth moment is given by F(/3)r!/F(13 + ra). The moments determine 
the distribution uniquely. (Schneider (1996)). 

    We write µr as 

(1 + «)[r] r(e + 1)r!  
r! r(9 + 1 + ra) 

If -1 < (9/a) < 0, then (1 + (0/a))[r]/r! is the rth moment of the beta distribution 
Be(1 + (0/a), -(0/a)). If 0 < a < 1, 0+ 1 > a, then r(0+ 1)r!/F(0 +1 + ra) is the rth 
moment of the generalized Mittag-Leffler distribution with parameters a, 0 + 1. Since 
0<a<l and 0>-a,if0<a<0.5,-a<0<Oor0.5<a<1,a-1<0<0,then 
µ'r = E[(WU)r]. 

   Thus if 0 < a < 0.5, -a < 0 < 0 or 0.5 < a < 1, a - 1 < 9 < 0, then the 
distribution with the density given by (3.1) is stochastically equivalent to WU. 

   If 0 < a = 0 < 1, then Air = r(a)r!/r(a + ra), which is the rth moment of the 
generalized Mittag-Leffler distribution with parameters a and a. Therefore, in this case, 
the distribution with the density given by (3.1) is stochastically equivalent to the gen-
eralized Mittag-Leffler distribution with parameters a and a.

4. Marginals of Pitman Sampling Formula 

   For Pitman sampling formula given by (1.1), the sum of the right-hand side over 
all nonnegative integers m1, m2, ..., mn satisfying Erl 1 jmi = n is equal to 1. Using 
this property we have for nonnegative integers r1, ..., rn, 

          E[11= 0['"](0 + ra)[n-3]n(s)rn(1 — a)[7-1]r'(4.1) 
     -1e[n] LIJ.  77 

        (0 + a)[r-l:a]r(0 + 1) .- ((1 — a)U-1] r) F(0 + ra + n — s)n(s) 
      F(0 + ra) , -1j!r(9+n) 

where r = r1 + • • • -+- rn, s = > 1 jr < n. From (4.1), for a fixed j(= 1, 2, ...) and 
any r(= 0, 1, 2, ...) we have 

        E [M(r)] —e[r:a]r(e)(1 - a)U-1]rF(0+ ra + n - jr)n(3r) r(9 
+ ra) j!r(9 + n) 

   By letting n tend to oo in the above, we get 

j!Mj r[r] r(9+ 1)  
          lioEall - a)[a-i(a)]na =1 + F(0 + 1 + ra) . 

    Using this relation with r = 1, 2, we have for j = 1, 2, ... 

M. _(1 — a)[i-1]r(9 + 1)  
              lioo na]j!r(9 + a)
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             M9+ a _ r(9 + 1) (1 - a)[3-1]2       lim
oVar[na]= F(6+1){F(9+ 2a) [F(6 + a)]2 }( j! ) . 

Especially, 
                         Mi _r(e+ 1)                     lim  E[

na]r(e + a)' 

Mi 6+a r(9+1)             limo Var[  na = F(0 + 1){ F(0 + 2a) [r(e + a)]2 }. 

    From (4.1), for a positive integer 1 and nonnegative integers r1, ..., ri we also have 

                          t 

        lim E[1-1( j!M3 r;(4.2) 
                   n—+ooa(1 -a)[~-i]na)—µTi+...+r[~ 

                            7 where µr is given by Lemma 3.1. Using this relation with ri = 1, ri = 1 for j, l(= 
1, 2, ..., j l), 

        M Mi9 + a r(9 + 1)(1 — cob-14i —41-1}li
mcov(na,na) = r(e+ 1){1'09 + 2a)—[r(9 + a)]2}j!l! 

    Since plr is the rth moment of L, by the relation (4.2) we have the following. 

    Proposition 4.1 For a positive integer 1, 

(M1 2!M2l!Mi  )~,(L,L,L)               ana'a(1 - a)[i]na'•'a(1 - a)[/-i]na,..., 

or 

          M1M2Mida(1 - a)[i]a(1 _a)[t-1]        ( — ~• • • —)—(aL,------------L,..., ----------------------------L). (4.3) na na na2!1! 
Especially, for a positive integer j, we have 

Mj  ar(j — a) L 
na r(1 — a)r(j + 1) 

For the random partition (M1, ..., Mn) having Pitman sampling formula, let Ki;n be the 
number of components smaller than or equal to 1 (1 = 1, 2, ...). That is, Ki;n = Mi+• . •+ 
MI. Let Si;n be 1xM1+2xMi •••+lxMI. Since E31=1 a(1-a)[i-1]/j! = 1-(1-a)[1]/l! 
and =1 a(1 - a)[i-1]/(j - 1)! = a(2 - a)[l-i]/(l - 1)!, by (4.3) we have the following. 

   Proposition 4.2 Let (M1, ..., Mn) have Pitman sampling formula given by (1.1) 
with 0<a<1, 9>-a. Fora fixedl(=1,2,...), 

Ki;n d(1 - a)[i] }L
'       nl! 

and 
Si;n d (2 - a)[t-1]aL

. 
na(l - 1)!
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    It was communicated personally from Prof. Pitman that the statistics of Propo-
sitions 4.1 and 4.2 converges almost surely (a.s.) by the reason stated as follows. As 
the underlying distribution for Pitman sampling formula, we shall consider the two-
parameter Poisson-Dirichlet distribution (V1, V2, ...). It has the tails such that n1/aVn 
converges to [L/F(1 - a)]1/a a.s. (Pitman (1997), Pitman and Yor (1997)), where L 
is the random variable having the density given by (3.1). Therefore by Rouault (1976, 
1978), for j = 1, 2, ... M3 /K, converges to aF(j — a)/[F(1 — a)F(j + 1)] a.s. On the 
other hand, Kn/na converges to L a.s. as stated in Section 1. Therefore Mj/na con-
verges to {aI'(j — a)/[F(1 — a)F(j + 1)1}L a.s. From this convergence we know that the 
convergences of statistics of Propositions 4.1 and 4.2 hold also almost surely.

5. Appendix 

    For the usual moment EK;, using the relation (2.5) we have for n = 1, 2, ... and 
r = 1,2, .. 

   r=E{:}~~)—r_j9~]9 (9 + ja + 1)[n-11  EEK    Knn=~(-1)(1+)T(r,j, a) (9 + 1)[n-1](5.1) 
   i=0j=0 

where 

T(r,j, A) = E(A + j)[i—;] a (-1)r+i( ). 
i=j 

For any y, 

r i 

      E y(3)T(r,j, A) = E{E(~)y(~)(A + i — 1)(i—j)}i(-1)r+i 
j=0i=0 j=0 

_ ~(y + a + i — 1)(z)(-1)i i (-1)r, 
i=0 

which is equal to Ei =0(—y — A)(i) i (-1)r = (—y — A)r(-1)r = (y + A)r. Thus we 

have for any y, 

E y(i)T(r,j, A) = (y + A)r 
3=0 

That is, T(r,j, A) satisfies the relation (2.7) and therefore T(r,j, A) is equal to the 
function R(r,j, A) of Carlitz (1980). Using this to (5.1) we have the moment given by 

(2.6). 
    For the ascending factorial, using the moment given by (2.6) we have for n = 1, 2, ... 

and r = 1, 2, ... 

ri =r-jeG7]e (e + ja)[n]        EK[r] =E[. ]EKn(-1)( a)I(r,7, a) e[n] , (5.2) 
        i=0j=0
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where 

 I(r,  j,  A) = E s(r, i)R(i, j, A) 
i=j 

and s(r, i) = (-1)r-i[  ] is the Stirling number of the first kind. 

For any a, 
r i 

E I(r,j, A)p(a) = E(E R(i, j, A)µ(j))s(r, i) 
j=0i=o j=o 

which is equal to Ei =o(A p)is(r, i) = (A+ p)(r) by (2.7) and the property of the Stirling 
number of the first kind s. Thus we have for any u, 

E I(r, j, A)µ(j) = (A + tt)(r). 
j-o 

Hence if A � 0 then we have I(r,j, A) = ( r )A(r-j). Using this to (5.2) we have the 

ascending factorial moment given by (2.8) for 9 � 0. Also when A = 0, I(r, j, 0) equals 
1 if j = r and 0 if j r. 

    For 9 = 0 the relation (5.2) is reduced to 

              [rJ(ja + 1)[n-1]                EK=E(-1)r-j j7I(r,j,0) (n-1)! 
j=o 

Hence we get EKdr] = (r —1)!(ra)[n]/(n —1)!a which is equal to the evaluation of EKlir] 
with 9 = 0 stated in Section 2.
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