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VERSATILE TESTS FOR NON-LINEAR DATA 

           IN 2 x k TABLES

                             By 

Leslie JAYASEKARA , Harutoshi NISHIYAMA T. and Takashi YANAGAWA

                       Abstract 

   Properties of the Qt-test which was proposed in Jayasekara and 
Yanagawa (1995) for detecting non-linear differences of two populations 
in an ordinal categorical table are further studied in this paper under 
different asymptotic framework. It is assumed in this paper that each 
marginal sum relative to the gland total tends to constant which is away 
from zero when the gland total tends to infinitive. The asymptotic dis-
tributions of the test statistics are obtained under null and contigious 
alternatives. It is shown that single test statistic, or combinatin of sev-
eral test statistics have high powers for detecting various patterns of 
non-linear responses.

Key Words and Phrases: location-dispersion test; \ 'ilcoxon test; Nair's dispersion test; 
Mantel's extended test; Gram-Schmidit orthonormalization; cumulative chi-squared test. 

1. Introduction 

    Conventionally, the \Vilcoxon test(1945). or equivalently Mantel's extended test(19 
63), which are often called the ti-test, has been applied for testing diference of two popu-
lations in ordered categorical data in 2 x k tables. The test has high powers for detecting 
linear, or log linear responses, but poorly behaves for detecting non-linear response which 
we are interested in in this paper. The cumulative chi-square test (Takeuchi and Hi-
rotsu. 1982; Hirotsu, 1983; Nair, 1987) and Nair's test (1986) have been developed for 
non-linear responses. The former test is an omnibus test developed for a wider class of 
responses and the latter test was, in particular. designed to detect the dispersion alter-
natives. Jayasekara, Yanagawa and Tsujitani (1994) developed a location-dispersion test 
and Jayasekara and Yanagawa(1995) extended it for detecting location, dispersion and 

higher order differences of two populations. The test is called the Qt-test and its useful-
ness was shown in their paper for such 2 x k tables that one marginal sum dominates all 

the the others. The test statistics of the Qt-test is defined as partial sum of test statistics 
that are systematically constructed by applying the Gram-Schmidit orthonormalization 
to the ` 'ilcoxon score vector. We show in this paper further properties of the test statis-
tics under the different asymptotic framework from that considered in Jayasekara and 
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Yanagawa(1995). That is. it is assumed in this paper that each marginal sum relative 
to the gland total tends to constant which is away from zero when the gland total tends 
to infinitive. The asymptotic distributions of the test statistics are obtained under null 

and contigious alternatives. It is suggested that single component of Qt-test statistic, or 
combinatin of several components might have high powers for detecting various patterns 
of non-linear responses.

2. The Test Statistics 

2.1. Statistics based on the Wilcoxon score 

    Consider 2 x k table given in Table 1. and suppose that Y1 = (Y11• Y12, • • • , Yik)' 
and Y2=(Y21, Y22- • • • , Y2k)1 are independently distributed multinomial random vectors 
with parameters nl.(Pll, plk) and n2; (p21. P2k). respectively. We consider the 

following null hypothesis: 
Ho:Y1 and Y2 are identically distributed.

    Table 1: 2 x k contingency table. 

           Ordered Categories Total 

Group 1 Y11 Y12Yik nl 

Group 2 Y21 Y22Y2 n2  

Total Tl T2Tk N

    To obtain test statistics for Ho against non-linear alternatives, the following or-
thonormal scores based on the Wilcoxon score was introduced in Jayasekara and Yana-

gawa (1995). Let ci be the Wilcoxon Score defined by 

i-1 

Ci = E, + (Ti - N)/2, (i = 1, 2, • • • , k) 
                                   =1 

so that Ek=1 Tici = 0. For k dimensional vectors a = (ai, a2i • • • , ak)' and b = 
(b1, b2i - , bk)' the inner product of a and b is defined by 

                        (a, b) = E Tiaibi 
i=1 

and the norm by 1142 = (a, a). 
    Let cji be the i-th power of ci, j = 1, 2, • , k and put 

ci = (c G2 .. , ck)', i = 0, 1, 2, .. , k — 1. 

In particulra, co = (1, 1, • • • , 1). It is obvious that co, cl, • , ck_1 are linearly indepen-
dent. Let ao, a1, • , ak_i be orthonormal score vectors which are obtained by applying 
Gram-Schmidit orthonormalization to these vectors: that is.
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 ao = co/HHcoUU and ar = dr/IHdr11, r = 1, 2.... k — 1. 

where 

r-1 
                             dr = cr — L .(cr, al)ai. 

t-o 

We have, 

       =0 if j, (a2, aj)
1 if i —(2.1) 

Representing the components of ar by ar = (arli ar2, • • • ,ark)', Jayasekara and Yana-

gawa (1995) considered 

           Ur = E aTi 2i/Vnin2/N(N — 1), for r = 1, 2, • •, k — 1. 
                        —1 

2.2. Characteristic of the statistics 

    Now we consider the characteritic of Ur. We first remind that, under H0, the 
conditional distribution of Y2 conditioned on C = {n1, n2, T1, • , Tk } is multiple hyper-

geometric with 

E[Y2, = n2 T.] /N(2.2) 
Cov[Y2j,Y2j'1C] = N2(N2 1)TJ(6 —Tj,), for ,j' = 1,2,.• •,k 

where = 1 if j = j' and 0 otherwise. 

    Put Y2=(Y21,Y22.....Y2k)' and 

AY(
2.3) V

n1n2/N (N — 1) 

where A = (ctn.)) is the t x k matrix. 
    We have the following theorems. 

    THEOREM 2.1. Under Ho, Ur, r = 1, 2, • • • , t, are uncorrelated with zero mean and 
unit variance. 

    PROOF. From (2.1) we have 

A(71 ... Tk)' = 0(2.4) 

l T1 

      A 
0A' = It(2.5) 

Tk
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Using (2.2) and (2.3) we have. 

      E[U] =AE[Y2] 
Vnin2/N(N — 1) 

n2/N, ----------------------A(
Tl,.••'TO V

nin2/N(N — 1) 
                      = 0 . 

From (2.3) and (2.4) covariance matrix of U is 

              ACov(Y2)A'     C
ov(U) = 

nin2/N(N — 1) 

T1 

    = A0A(71, 
0• 
                                        Tk 

             = It . 

    The proofs of the following theorems will be given in Section 3. Note that the 
limiting condition considered in Jayasekara and Yanagawa (1995) was ni/N --4 0 for 

i = 2,3, ... ,k when N —* no. 

    THEOREM 2.2. Suppose that N1/2(ni/N — -yi) — 0, (0 < < 1; i = 1,2) and 
N1/2(7i/_N — p j ) —> 0 (0 < pj < 1; j = 1, 2, • • , k) as N -f no. Then under Ho U 

follows asymptotically t dimensional normal distribution with mean vector 0 and identity 
covariance matrix as N 

    Putting = /P2iPii (j = 1, 2, • • • , k) so that '01 = 1, the asymptotic 
distribution of U under alternative hypothesis 

=1+Aj/N1/2 , j=2,3,•• ,k 

is given in the following theorem, where A is a constant. 

    THEOREM 2.3. Assume the same condition as Theorem 2.2, then under H1 U fol-

lows asymptotically t dimensional normal distribution with mean vector 6 and identity 
covariance matrix as N — oc, where the r-th component of 6 is given by 

                            (N — 1)nin2 1/2 ,,/• 

where wk)' and 1 = (1,•••,1)'. 

    Since log ci 's — 1 when wi is close to 1 and inner product (ar, log ) is maxi-
mized when log IP = 3ar we have the following corollary.
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    COROLLARY 2.4. The asymptotic power of the test based on statistic  Ur is maxi-
mized when log b = 3ar, where 3 is a scalar constant. 

    We also have the following theorem. 

    THEOREM 2.5. 
k12 k(p _E)2 

         L-2 = -------E 
r=1i=1 j=1 

where 0 = Yi j and E = niT1 /N; that is Er=1 U2 is equivalent to the Pearson chi-squared 
test statistic (1990) except for constant (N — 1)/N. 

    PROOF. Note first that 
             2 k .7\-2(O — E)21Tn 

      EE                   E—nin2ETj(Y2j— N2)2.(2.6) 
i=1 j=1 

Now put r=(7-1,....., Tk)', then since AY2 = A(Y2 — rn2/N) we have 

(AY2)'AY2 = (A(Y2 — -rn2/N))'A(Y2 — rn2/N) 

/ 1/Ti 

         = (Y2 —77/2/N)/0(Y2 — rn2/N). 

1/Tk

2.3. Detecting for non-linear response 

    Figure 1(1)shows the patterns of log IP that provide the maximum asymptotic pow-
ers to statistics U1, U2, U3, U4, and U5, obtained from the corollary, when k = 5 and 
T1 = 7-2 = ... = 75 = 10. Reflecting prior experience on response pattern one may select 

one of Ur's for powerful detection of difference. However, the patterns depend on the 
values of T's; for example, see Figure 1(2) which shows substantially different patterns 

from Figure 1(1). If this is the case omnibus test such as 

                              Qt=Lr2               - 
r 

r=1 

( Jayasekara and Yanagawa, 1995 ), or multiple comparison test such as 

Aft = max {1Ul1, 1U21, .. , gUtl} 

for each t E {1, 2, • • , k — 1} might be useful. 
    Theorem 2.5 shows that if t is close to k Qt-test behaves like the Pearson chi-squared 

test. Furthermore, it is not clear against which pattern of non-linear responses the Qt-
test is powerful. On the other hand Mt-test is a multiple comparison test, comparing t 
hypotheses
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Figure 1: Patterns of Score Vectors

Ho: log =(1,1 ..,1)',Hi: log i =,3a1 (/3 � 0), ..., Ht: logIP = i3at (3 � 0). 

    Thus if rejected by the Aft-test we may know which patterns of response is re-
sponsible for the rejection. By Theorem 2.2 it is straightfoward to obtain approximate 
critical points of the Aft-test. Those selected values are listed in Table 2.

Table 2: Selected Critical Points for the Aft-test (two-sided) 

a 

             t 0.10 0.05 0.01 

             1 1.644 1.960 2.576 

             2 1.948 2.235 2.807 

             3 2.113 2.387 2.929 

             4 2.226 2.489 3.011 

              5 2.312 2.569 3.039

2.4. An application 

   Table 3 lists the efficacy of certain drug obtained at Phase III randomized clinical 
trial from 72 patients (Study 1) and that of the same drug obtained at a post market 

study from 73 patients (Study 2). CR, PR, MR. NR, and PD stand for completely 
recovered, partially recovered, moderately recovered, no recovered, and progressive of
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disease. respectively. The score vectors and values of U.s which are computed from the 
table are as follows: 

      ai=(-0.097, 0.026. 0.097. 0.125. 0.151), a2=(0.047. -0.091. 0.022. 0.108. 0.204), 
a3=(-0.005, 0.022, -0.258. -0.039. 0.423). a4=(0.001. -0.006, 0.289, -0.108. 

0.288), 
       U1=-1.52, U2=-1.97. U3=2.11, and U4=0.27. 

    Figure 1(2) shows the patterns of the score vectors. It is shown from Table 2 that 
when t = 1, the Mt-test results in no significance at 10% level: when t=2 the test detects 

such pattern of the log odds ratio as illustrated by the broken line in Figure 1(2) at 10% 
level: and when t=3 the Mt-test almost detects such pattern of the log odds ratio as 
illustrated by the dotted line in Figure 1(2) at 10% significant level. On the other hand 
the values of the Qt statistics and their p-values are 

      Qi=2.32 (p=0.128). Q2=6.21 (p=0.045), Q3=10.67 (p=0.014) 
and Qt-test detects non-linearlity difference better than Alt-test in the present example, 

but keeping silent about what pattern of non-linear response it detected.

Table 3: Efficacy of a Drug between Phase III and Post Market Studies 

             CR PR MR NR PD Total 

      Group 1 1 16 5 25 26 72 

Group 2 2 5 1 36 28 73  

      Total 3 21 6 61 54 145

3. Proofs of Theorems 2.2 and 2.3 

    We use the normal approximation of a multiple hypergeometric distribution dis-
cussed in Plackett (1981), and briefly skech it in the next subsection. 

3.1. The normal approximation of multiple hypergeometric distribution 

    When Y1 and Y2 are independently distributed multinomial random vectors with 

the parameters nl,(pii. ,Plk) and n2,(P21, • • • ,P2k), respectively, we have, 

                                     yziyzk                                                                k                                   1'k/11z2_1 11 1 yii  P
r[(Y21,...,}2k) = (y21,...,y2k)l ] =r 2~r2eTT2k                                            ~

r21+•••+r2k=n2'°1• • •wk-/11i-1 1=1 ri7 
                                                        (3.1) 

where 'oj is the odds ratio of j-th category with respect to category 1, i.e. 

=P11P21/P21P1j, (j=1,2,•••,k).
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Note that u1 - 1. We use the following assumption. 
    Assumption (Al) As N — x, ni/N ---+ ~;i0 < < 1. for i = 1.2. arid 

Tj pi. 0< < 1. for j=1,2,•••.k. 

   LEMMA 3.1. (Sinkhorn(1967)) If {m,1} satisfy E~ mij = ni, for i = 1.2: Ei 
mij = Tj; and (m11m2j)/(m2i nij) = tj for j = 1, 2, • • k, then {mu} are uniquely 
determined by the following algorithm: 

                    (1)n= 
, j = 1. 2, .. , k, 

(1) _ 712 M21 
k[1 + EJ -2(?aJ — 1)/k] 

          (1)_ n2j'•r ~=2
,• •,k,               m2~

k[1 + Ej=2(1j - 1)/k] 
                            (1) m

ij)Tj = 
m(1) 

(2) 
                 (3) nijni               m

ij = 
m(2) 

                                                                                     2. 

                                  (2h-1) 
(2h)m1-1 Ti  m
ij_— 

m(2h-1) 

                        (                               m2h)n
i                m~jh+1) 

m(2h)-----------; h = 12..• 
                                                             i. 

THEOREM 3.2. (Plackett(1981)) Suppose (A1), then the conditional distribution 
of Y = (122, • • • ,1"2k)' conditioned on C converges in distribution to Nk_1(m2i E) as 
N —' oc, where m2 = (m22, ... , m2k)' and E-1 = (ai1), and aij = M111 +m21 + (mljl 
m2—i1)60,    i, j = 2. • • • , k, where mij 's are quantities determined in Lemma 3.1. 

3.2. Evaluation of the scores 

We need several lemmas to evaluate the convergent order of scores. We define 
N—rcri = 0(1) if and only if N—rcri tends to a constant as N oc. 

    LEMMA 3.3. If (A1) is satisfied, then 
'c ri = 0(1). (i = 1, 2, ... k), 

where Cri = cir, is the r-th power of the i-th Wilcoxon score. 

    PROOF. The lemma is proved if we may show N—Ici = 0(1). But since ci = 
~~—i Tj + (Ti - N)/2 we get N—Ici = 0(1) easily from (Al).^
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LENINIA 3.4. If (Al) is satisfied, then 

_A-_r(c,,ao)aoL=0(1). r=1.2.- .k-1, i=1.2,• .k. 

    PROOF. From the definition of ao aoi = 1/N1/2 for all i. So by Lemma 3.3 we 
obtain N-(r+1/2)(cr, ao)=0(1). Hence, the desired result follows. ^ 

   LEMMA 3.5. If (Al) is satisfied, then 

`_rdri=0(1), r=1.2,•• •,k-1, i=1,2,••• ,k. 

    PROOF. To prove this result we use induction on r. 
In case of r = 1, 

d1i = c1i - (c1, ao)aoi, for i = 1, 2, • • • , k. 

Applying Lemma 3.3 and 3.4, it follows that 

N-ldli = 0(1), for i = 2, 3, • • • , k. 

Suppose that the result is true for r = 1, 2, • • ,m - 1. We have 

m-1 
                  dm = Cm -E (cm, ac)ai, 

                                           c=0 

m-1d 

                    = Cm - (cm,,ao)ao -E (Cm,dc)Ildllll2 , 

it follows that AT—men—Li = 0(1) from Lemma 3.3, and N-m((cm,ao)ao = 0(1) from 
Lemma 3.4. Furthermore, since by the assumption of induction and Lemma 3.4 AT-m-4 

(cm, d1) = 0(1) for 1 = 1, 2, • ,m - 1, and also from the assumption of induction we 
have Ncdi/Ildc Il2 = 0(1) for l = 1, 2, • • ,m - 1. Therefore 

                       Ar-m(Cm, di)ddc2= 0(1).                      II 
cII 

So the result is true for r = m. By the induction the proof is completed. ^ 

Using these lemmas we may easily show 

LEMMA 3.6. 1y1/2ari = 0(1), for i= 1, 2, • • , k, r = 1,2,—,      k - 1. 

3.3. Proof of Theorem 2.2 

LEMMA 3.7. Assume (Al), then under Ho the conditional distribution of N-112(Y-
N72p) conditioned on C converges in distribution to Nk_1(0, Eo) as N -> oc, where 

P = (P2, ... 'PO' and E0-1 = (u,i0) with aiJo = [61 + bi~Pi 1~/Yl Y2, i.j = 2, • • • , k.
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    PROOF. Under Ho, mij = .V-/zpj. for i = 1.2, and j = 1. • • • . k. Thus from 
Theorem 3.2 we have the desired result.^ 

Now assuming stronger assumption than (Al) 

Assumption (A2) N1/2(ni/N-7z) — 0, (0 < < 1; i = 1.2) and N1/2(7j/N-pj) --* 
0(0<pj<1;j=1,2.• •,k)asN~ 
we prove Theorem 2.2. Put B = (ar j - and, r = 1, 2, • • • , t. and j = 2, 3, • • • , k. Then 

from (2.3) and (A2) we may represent 

     U- AY2 
Vnin2/N(N - 1) 

           = B(Y - N%2P)/Vnin2/N(N - 1) + o(1) 

(N1i2B)A -112(Y - A72P)/Vnin2/N(N - 1) + o(1) 

Thus from Lemma 3.6 and Lemma 3.7 U converges in distribution to a multivariate 
normal distribution. Finally from Theorem 2.1 it follows that U has mean vector 0 and 
identity covariance matrix. This completes the proof of Theorem 2.2. 

    Remark: As a by-product of the above proof it follows that 

BEoB'/{nin2/N2(N - 1)} = It + o(1). 

3.4. Proof of Theorem 2.3 

    Recall that the alternative hypothesis we consider is 

                      H1 :j = 1+Aj/N1/2,j =2,•••,k. 

LEMMA 3.8. Under H1, the quantities in Theorem 3.2 are given by 

      m(1)=nl              k 

m(1) _[1-(~~1)+ o(N-1/2)] 
                            j=2 

     m(2~)_[~,(j1)(N                                    +o-1/2)]j'2, 3, ... kk 
                              j=2 

k ~ 

      mii~= AT'yiP1+(-1)i+'N7i'Y2P1 k~1) + o(Ni/2), 
j=2 

k 

mzCj2. = N' + (-1)zi 71 72Pj' [41).j' - 1 - E  k 1] + o(N112), 
j=2 

711(') = N7iPj + N1/27iij + (01/2),
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for = 3.4.•• , where 

ilzi = (-1)ti+1A 1/2'i1T/2P1 E(t1 — 1)193 
j=2 

pzj, = (-1)iN127y1 i2Pjt [~j' — 1 — E(7)_) 1)P3]. (~' = 2, 3, .... k). 
j=2 

    PROOF. Substituting wj = 1+ Al /N1/2 to the algorithm which is given in Lemma 

3.1 and using the Taylor expansion we easily have the expressions for112(2,31,,m(21) ,m2.1) 
mil mij . Similarly substituting ?:)j and using mathematical induction on 1, the 
final expansions can be obtained. 

    From Lemma 3.8 we may represent m2 j under H1 by 

rnij =  1iPj + Ni/27.173 + o(N1 /2) 

for i = 1, 2 and j = 1, 2. • • • , k. It follows that the conditional distribution of N-1/2(Y — 
N-y2 p) conditioned on C coverges in distribution to Nk_1(172, E0) as N —+ oo under H1, 
where 7l2 = (r)22, • • • , 712k)'. Now since 

          U = (N1/2B)N 1/2(Y — Nry2p)/Vnin2/N(N — 1) + o(1), 

the conditional distribution of U conditioned on C converged in distribution to Nt (Bri2 
Vnin2/N2(N — 1), BE0B'Rnin2/N2(N — 1)}). From the remark at the end of the 
previous subsection we have 

                  lim BEoB'/{nin2/N2(N — 1)} — It. 
               N x 

Furthermore, since 
    kk 

E arjpj = 0, and E pj = 1 
j=1j=i 

the r-th element of Br/2 is simply represented by 

  kk 

              Sr = E(arj — ari)172j = N' 2'Y17 arjpj( 'j — 1). 
j=1j=1 

This completes the proof of Theorem 2.3. 
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