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Abstract

Properties of the Qs-test which was proposed in Jayasekara and
Yanagawa (1995) for detecting non-linear differences of two populations
in an ordinal categorical tabie are further studied in this paper under
different asymptotic framework. It is assumed in this paper that each
marginal sum relative to the gland total tends to constant which is away
from zero when the gland total tends to infinitive. The asymptotic dis-
tributions of the test statistics are obtained under null and contigious
alternatives. It is shown that single test statistic, or combinatin of sev-
eral test stalistics have high powers for detecting various patterns of
non-linear responses.
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1. Introduction

Conventionally, the Wilcoxon test(1945). or equivalently Mantel’s extended test{19
63), which are often called the U-test, has been applied for testing diference of two popu-
lations in ordered categorical data in 2 x k tables. The test has high powers for detecting
linear. or log linear responses, but poorly behaves for detecting non-linear response which
we are interested in in this paper. The cumulative chi-square test (Takeuchi and Hi-
rotsu, 1982; Hirotsu, 1983; Nair, 1987) and Nair's test (1986) have been developed for
non-linear responses. The former test is an omnibus test developed for a wider class of
responses and the latter test was, in particular, designed to detect the dispersion alter-
natives. Jayasekara, Yanagawa and Tsujitani (1994) developed a location-dispersion test
and Jayasekara and Yanagawa(1995) extended it for detecting location, dispersion and
higher order differences of two populations. The test is called the Q-test and its useful-
ness was shown in their paper for such 2 x k tables that one marginal sum dominates all
the the others. The test statistics of the Q;-test is defined as partial sum of test statistics
that are systematically constructed by applying the Gram-Schmidit orthencrmalization
to the Wilcoxon score vector. We show in this paper further properties of the test statis-
tics under the different asymptotic framework from that considered in Jayasekara and
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Yanagawa{1995}. That is, it is assumed in this paper that each marginal sum relative
to the gland total tends to constant which is away from zero when the gland total tends
to infinitive. The asymptotic distributions of the test statistics are obtained under null
and contigious alternatives. It is suggested that single component of Q,-test statistic. or
combinatin of several components might have high powers for detecting various patterns

of non-linear responses.

2. The Test Statistics
2.1. Statistics based on the Wilcoxon score

Consider 2 x k table given in Table 1, and suppose that Yy = (Y11, ¥12,---. Y1)
and Yy = (¥5;, Yag, -+, Y3t ) are independently distributed multinomial random vectors
with parameters ny, (p11,---.p1z) and no, {pe1.---.p2s ). respectively. We consider the
following null hypothesis:

Hy: Y, and Yy are identically distributed.

Table 1: 2 x k contingency table.

Ordered Categories Total
Group 1 Yu le . . . Ylk i
Group2 | Yoy Yoo . . . Yo Tug
Total n T . . . Tk N

To obtain test statistics for Hy against non-linear alternatives, the following or-
thonormal scores based on the Wilcoxon score was introduced in Jayasekara and Yana-
gawa (1995). Let ¢; be the Wilcoxon Score defined by

i—1
¢ =ZTJ‘ +(—-N)/2, (i=12- k)
J=1

so that ELI ric; = 0. For k dimensional vectors a = (a;,az,---,68¢) and b =
{b1,b2,---,b;) the inner product of a and b is defined by

k
(aa b) = ZTiaibi
i=1
and the norm by ||a[l® = (a,a).
Let ¢} be the i-th power of ¢;,j =1,2,---,k and put
c, = (Ci,ﬂéu“-,ci)’, i=0,1,2,- . k—1.

In particulra, ¢o = (1,1,---,1). [t is obvious that ¢g,¢1,- -+, cx—1 are linearly indepen-
dent. Let ag,a;,---.a,—; be orthonormal score vectors which are obtained by applyving
Gram-5chmidit orthonormalization to these vectors; that is,
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30:60/“00" and ar:df"/ndr'nt r=1}29"'9k"‘1:

where
r—1
d.=¢, - Z{cr,ag)a;-
t=0
We have,
0 ifi#j,
18] = ap - . 2.1
@a={ ] 2% (21)
Representing the components of a, by a, = {a,;,ar, -+, a,), Jayasekara and Yana-

gawa (1995) considered
&
Ur =Y anYaify/mn/N(N =1), forr=1,2,---,k—-1.
i=1

2.2. Characteristic of the statistics

Now we consider the characteritic of U/;. We first remind that, under H,, the
conditional distribution of Y, conditioned on C = {n;,n3,7, -, 7} is multiple hyper-
geometric with

E[Y3|C] = ner/N (2.2)
nn L
CO”[Y2J'1 )@Jllc] = mTj(é‘jle - Tjt)’ for J,j' = l_‘ 2? e k,

where &;;; = 1if j = ' and 0 otherwise,

Put Yg = (1’21, YQQ, ey }fgk)' and

U= (U,Us,....U0) = AY: , (2.3)
\/nan/N(N - 1)
where A = (a,;} is the ¢ x k matrix.
We have the following theorems.
THEOREM 2.1, Under Hy, U,,r = 1,2, --,¢t, are uncorrelated with zero mean and
unit variance.
ProoF. From {2.1) we have
A(T],'“,Tk)’=0 [2.4)
Ti
A o 0 A = L (2.5)

%
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Using (2.2) and (2.3} we have,

A
E[U} = ————E[Y}]
Vi /NN - 1)
N
= g, n
Vinag /NN - 1)
= 0.
From {2.3) and (2.4) covariance matrix of U is
ACou(Y2)A'
Cov(U) rina /NN — 1)
T
= A -0 Ah—iA(T e ) (T, ) A
- 0 A N L. Tk 11 -
Tk
= I:.

O

The proofs of the following theorems will be given in Section 3. Note that the
limiting condition considered in Jayasekara and Yanagawa {1995) was n;/N — 0 for
t=2,3,...,k when N — 2.

THEOREM 2.2. Suppose that N*2(n;/N —v) = 0, (0 < v < 1; i = 1,2) and
NV /N—p) = 0(0<p; <1;§=1,2,--+,k) as N = cc. Then under Hy, U
follows asymptotically t dimensional normal distribution with mean vector 0 end identity
covariance matrir as N — co.

Putting ¥; = pupei/pnp; (J = 1,2,---,k) so that & = 1, the asymptotic
distribution of U under alternative hypothesis
Hiowy=1+A;/NV? =23k
is given in the following theorem, where A; is a constant.
THEOREM 2.3. Assume the same condition as Theorem 2.2, then under Hy U fol-

lows asymptotically t dimensional normal distribution with mean vector § and identify
covariance matriz as N — oc, where the r-th component of § is given by

W=ty g - )

5=
where P =(Vy, ¥, -+, ¥%) and 1 = (1,---,1).

Since log v; ~ 17; — 1 when ©; is close to 1 and inner product (a,,log4) is maxi-
mized when log4y = Ja. we have the following corollary.
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COROLLARY 2.4. The asymptotic power of the test based on statistic U is maxi-
mized when logy = 3a,, where 3 is ¢ scalor constent.
We also have the following theorem.

THEOREM 2.5.
S

., N-1g O - E)?
QU= N ZZ( E

r=1 i=1 j=1

where O = Y;; and B = n;7; /N that is Z’:ﬂ U? is equivalent to the Pearson chi-squared
test statistic (1990) except for constant (N —1)/N.

ProoF. Note first that

2 & .
(O-—'E-'}2 _ A’Q l __Tjnz 2
2 = E 7 nne > T Yoy == )~ (28)

1=1 j=1

Now put 7=(7(,...,T¢). then since AY: = A(Y; — rng/N) we have

(AYQ)’AYQ = (A{Y2 — Tﬂg/f\lr))’A(Yg - THQ/N)
1/1"1

(Y — mnp/NY 0

(Yg — Tﬂg/N).

1/7

2.3. Detecting for non-linear response

Figure 1(1)shows the patterns of log 4 that provide the maximum asymptotic pow-
ers to statistics Uy, Us, Us, U,, and Us, obtained from the corollary, when & = & and
71 =1 =..= 75 = 10. Reflecting prior experience on response pattern one may select
one of U,'s for powerful detection of difference. However, the patterns depend on the
values of 7’s; for example, see Figure 1(2) which shows substantially different patterns
from Figure 1(1). If this is the case omnibus test such as

4
Q=3 UL
r=1

( Jayasekara and Yanagawa, 1995 }, or multiple comparison test such as
Mt = max{|U1|, |D-2|, Lt l[;tl}

for each £ € {1.2,---,k — 1} might be useful.

Theorem 2.5 shows that if t is close to k @;-test behaves like the Pearson chi-squared
test. Furthermore, it is not clear against which pattern of non-linear responses the ¢4~
test is powerful. On the other hand Af;-test is a multiple comparison test, comparing ¢
hypotheses
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Figure 1: Patterns of Score Vectors

(1) Whent, =---=7=10 (2) For data given in Table 3.
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Thus if rejected by the Af;-test we may know which patterns of response is re-
sponsible for the rejection. By Theorem 2.2 it is straightfoward to obtain approximate
critical points of the M;-test. Those selected values are listed in Table 2.

Table 2: Selected Critical Points for the M;-test (two-sided)

o

010 005 001
1.644 1.960 2.576
1.948 2,235 2.807
2113 2387 2.929
2226 2489 3.011
2,312 2569 3.039

G L b

2.4. An application

Table 3 lists the efficacy of certain drug obtained at Phase IIT randomized clinical
trial from 72 patients {Study 1) and that of the same drug obtained at a post market
study from 73 patients (Study 2). CR, PR, MR. NR, and PD stand for completely
recovered, partially recovered. moderately recovered. no recovered, and progressive of
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disease, respectively. The score vectors and values of L'’s which are computed from the
table are as follows:

a;=(-0.097, 0.026, 0.097. 0.125, 0.151), a,=(0.047. -0.091. 0.022, 0.108, 0.204},

a;=(-0.003, 0.022, -0.258, -0.039, 0.423).  a;==(0.001, -0.006, 0.289, -0.108.
0.288),

U1=-1.52, [o=-1.97, L3=2.11, and U/;=0.27.

Figure 1{2) shows the patterns of the score vectors. It is shown from Table 2 that
when t = 1, the Af;-test results in no significance at 10% level: when t=2 the test detects
such pattern of the log odds ratio as illustrated by the broken line in Figure 1(2) at 10%
level; and when t=3 the Mj-test almost detects such pattern of the log odds ratio as
illustrated by the dotted line in Figure 1(2) at 10% significant level. On the other hand
the values of the @, statistics and their p-values are

Q,=2.32 {(p=0.128), Q.=6.21 (p=0.043), Q3=10.67 (p=0.014)
and @Q,-test detects non-linearlity difference better than M;-test in the present example,
but keeping silent about what pattern of non-linear response it detected.

Table 3: Efficacy of a Drug between Phase III and Post Market Studies

CR PR MR NR PD | Total
Goup 1 | 1 16 5 25 26 72
Group 2 | 2 5 1 36 28 73
Tatal 3 21 6 61 54 145

3. Proofs of Theorems 2.2 and 2.3

We use the normal approximation of a multiple hypergeometric distribution dis-
cussed in Plackett (1981), and briefly skech it in the next subsection.

3.1. The normal approximation of multiple hypergeometric distribution

When Y; and Y, are independently distributed multinomial random vectors with
the parameters n;,(p11, -+, p1x) and na,{p21,- - -, P2r ), Tespectively, we have,

2 k
1'{)1"21 e szk / H{:l HJ:] ylj!

; . 2 k ¥
Zr21+w-+rgk=n3 w;‘n e T‘bEZL /Hizl Hj:]. Tij!

(3.1)

Pr[(Ypy,+ -+, Yar) = (y21. -, y2)|C] =

where ¥, is the odds ratio of j-th category with respect to category 1. Le.

t; = pupzi/onm;, =12k}
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Nate that vy = 1. We use the following assumption.
Assumption (Al) As NV — o6, /N =, 0<~ <L fori=1,2, and
TN - p; 0<p; <l forj=1.2,--- .k

LEMMA 3.1. (Sinkhorn(1967)) If {m,;} satisfy ZLI my; =n;, fori=12; Zle
m;; = 15 end (muma;)/(maimy;) = vy for j = 1,2,--- k., then {m,;} are uniquely
determined by the following algorithm;

iy B
mlj - T:J_]-121"'9k$
(1 _ 2
Moy = A k . k
1 2y :
(2}., = 3 JI g]r=21"'1ka
’C[l + z_f:z("v"’j - l)lk]
{1)
2y _ My Ty
my = i
™,
(2)
w3 = T
i mg_?) ’
(2h—1)
e = My T
Q5 -_— —_ b
ij m(JZh i)
m('zh]n’
(26+1)  _ i Mo
(2 = b= L2
m;’

1

THECREM 3.2. (Plackett{1981)) Suppose (Al), then the conditional distribution
of Y = (Ya3,---, Yur)' conditioned on C converges in distribution to Ni_;(ms, X} as
N — co, where mg = (maz, -, ma) and T7' = (0y;), and oy; = ml_ll +m?—l1 +(m1_j1 +
mz__,-1 Yij, 0.3 = 2,---, k, where my;’s are quantities determined in Lemma 3.1.

3.2. Evaluation of the scores

We need several lemmas to evaluate the convergent order of scores. We define
N-7¢,; = O(1) if and only if N~"¢,; tends to a constant as N — oo,

LEMMA 3.3, If (A1) i3 satisfied, then
N7e; =0{1),{i=1,2,---.k),
where c,; = ¢;”, is the r-th power of the i-th Wilcozon score.

ProoF. The lemma is proved il we may show N~l¢; = O(1). But since ¢ =

Z;ll 75+ (1 — N)/2 we get ¥ ~le; = O(1) easily from (Al). O
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LeEMxA 3.4, If A1) is satisfied, then
N (er.apdag, =0(1), r=1.2--- k-1, i=12.-- .k

PROOF. From the definition of ag ao; = 1/N¥/? for all 4. So by Lemma 3.3 we
obtain N—("+1/2)(¢, ay) = O(1). Hence, the desired result follows. a

LEMMA 3.5. If (A1) is satisfied, then
J\J‘_rdr‘i :0(1)- r =1:2!"'9k_1} i= 132!"'3k'

ProoF. To prove this result we use induction on ».
In case of r =1,
dy; = ¢ — (o1, a9)aq;, fori=1,2.-. k.

Applying Lemma 3.3 and 3.4, it follows that
N-ld); = O(1),for i = 2,3, .-, k.

Suppose that the result is true for »r = 1,2,---,m — 1. We have

m--1
d,., = c¢m— Z(cmaa()ale
=0
m—1
Cm — (€m,a9)ag — Z(cmadf)
=1

d;
lid.il?’

it follows that N~™cp,; = O(1) from Lemma 3.3, and N~™ (¢, a5)aq = O(1) from
Lemma 3.4. Furthermore, since by the assumption of induction and Lemma 3.4 N—™~
(em.dy) = Of1) for t = 1,2,---.m — 1, and also from the assumption of induction we

have N'd,/||d;]|? = O(1) for I = 1,2,---,m — 1. Therefore

d;
N (cp,df) == = O(1).
(6o ) gz = 1
So the result is true for r = m. By the induction the proof is completed. a

Using these lemmas we may easily show

LEMMA3.6. NY2a,,=0(1), for i=1,2,--- .k, r=1,2,---,k—1.

3.3. Proof of Theorem 2.2

LEMMA 3.7. Assume (A1), then under Hy the conditional distribution of N~1/2(Y —
Nvap) conditioned on C converges in distribution te Np_1(0,X5) as N — oo, where
p=1(p2, - px) and Bg~! = (04j0) with ayjo = [p7" + 6£jP_,'_1]/71721 iLj=2,---,k
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Proof. Under Hy, mi; = Nvp;, for i = 1,2, and § = 1,---, k. Thus from
Theorem 3.2 we have the desired result. O

Now assuming stronger assumption than (Al}

Assumption (A2) N/ (n;/N-~)—0,(0 <=~ < 1;i=1.2) and NV?(r;/N—p;) —
0{<p<l;7=1,2,---,k)as N = ¢

we prove Theorem 2.2, Put B = {a,;, —a.). r=1,2,---,t,and j = 2,3,---,k. Then
from (2.3) and (A2) we may represent

AY,
\fnlng/f\’(N — 1)
= B(Y ~ Nvup)/v/rnina /NN —1) + (1)
(NVZB)NTVAY ~ Ny2p)/ v/rune [N(N = 1) + o(1)

U =

Thus from Lemma 3.6 and Lemma 3.7 U converges in distribution to a multivariate
notrmal distribution. Finally from Theorem 2.1 it follows that U has mean vector 0 and
identity covariance matrix. This completes the proof of Theorem 2.2.

Remark: As a by-product of the above proof it follows that
BEIyB'/{nine/NY (N — 1)} = L + 0(1).
3.4. Proof of Theorem 2.3
Recall that the alternative hypothesis we consider is
Hyty =14+ 4;/N? =2,k

LEMMA 3.8. Under H,, the quantitics in Theorem 3.2 are given by

n _ M
mlj = -’;—
k
n2 (¥; — 1) _
my = T[I_Z—Jk +o(N7H3)
=2
ko,
mfl] — n_z[;__z(wj_l)_l_o(v\r—lﬂ)] =923 .. k
2}_’ — k "r’;’ —k 4 4 j - y =y y Ty
—
3
. il P —1
m¥ = Nyp+(-1) +1N’71“f2p1z—( Jk )+0(N”2),
=2
k
inr P — 1 ,
mif-,’ = Nvpy +(-1) N‘?Wzﬂjf{l.bj*—1—ZJT]+O(J‘V”2)=
=2

m(-l-) = N’Yipj + .N”zmj + O(N'”z)a
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fori=3.4.---, where

k

m = (—)HN g Z(U‘j - Doy,
j=2
] &
Nijt = (—1)‘;\’71/2‘?1'}’29“1’ [1;‘;'_;" -1- Z(L"J - l)p}]$ (J’ =2,3,- k}
y=2

PROOF. Substituting v; = 1+ A;/N'/? to the algorithm which is given in Lemma

3.1 and using the Taylor expansion we easily have the expressions for m(-l-),m(gll] .,m{zi-?,

iy
mff) and m?). Similarly substituting ¥; and using mathematical induction on I, the

final expansions can be obtained. m]
From Lemma 3.8 we may represent m;; under Hy by
mi; = Nvip; + Nlmn,j + o( N1/?)

fori=1,2and j =1,2,--, k. It follows that the conditional distribution of N-VY -
N+gp) conditioned on C coverges in distribution to Nx_1(n2. 3o) as N — oo under H),
where 1 = (122, - - -, =)’ . Now since

U = (NY2B)N"V(Y — Nywp)/ V/rna /N(N — 1) + o(1),

the conditional distribution of U conditioned on € converged in distribution to N;(Br,
Vmne [N (N - 1), BXoB'/{ninz/N*(N — 1}}). From the remark at the end of the
previous subsection we have

Jim BXoB'/{nine/N* (N - 1)} = L.

Furthermore, since
k k

Za,_,-pj=0, and ij=1

=1 i=1
the r-th element of B, is simply represented by

K k
6= (ar; —an)ne; = NPy > arips (45 - 1).
=1

j=1

This completes the proof of Theorem 2.3.
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