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ASSOCIATIVE SHORTEST AND LONGEST 

         PATH PROBLEMS

        By 

Yukihiro MARUYAMA *

                       Abstract 

   In the paper we consider a wide class of shortest path problems where 

the length of a path is defined through various associative binary op-

erations. Solving a system of two interrelated recursive equations, we 

simultaneously find both shortest and longest path lengths. We show 

the existence and uniqueness of the solution of the system. Further, we 

propose an algorithm which solves the class of shortest path problems.

1. Introduction 

    In the so-called shortest path problem, the objective is to find a path of minimum 
length from an origin node 1 to a destination node N in a network G(V, A); V and A are 
finite sets of nodes numbered 1, 2, .... N and of directed arcs, respectively. With each 
arc (i, j) E A an arc length (or cost, ...) is associated. Many authors have studied 
the problem in which the length of a path is the sum of its arc lengths (Dreyfus (1969), 
Bellman, Esogbue and Nabeshima (1982)): additive problem. They solved the additive 

problem by using the recursive equation 

f~= min [t,, ±f,], i� N. f1v=0,(1.1) 
3ED(z) 

where

fz = min[tz; + tjk + ... + tn,v], p = (i, j, k,.....,m, N), D(i) = {j E VI(i,j) E A}. 

p Since the addition + satisfies the monotonicity condition (nondecreasingness with re-

spect to the second variable) on R', the recursive equation (1.1) holds even if to may 
be negative. 

    Some authors considered the problem where the length of a path is the multiplica-
tion of its arc lengths (Iwamoto (1987), Smith (1991), Sniedovich(1992)): multiplicative 

problem. They have solved the multiplicative problem under the restriction that each 
arc length takes the nonnegative value (to > 0). Since the restriction implies the mono-

tonicity in the operation o = x , the multiplicative problem can be also solved by the 
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single recursive equation 

fi = min [to x fj]; i N, fN = 1.(1.2) 
jED(i) 

where 

f,= min[tij x tjk x • • x tmN], p= (i, j, k,....., m, N). 

P But for the case some to < 0, the equation (1.2) does not necessarily hold (see Remark 
in Section 2). Recently, Iwamoto (1993) has proposed bynamic programming which 
contains the multiplicative programming and the multiplicatively additive one. So, 
through the bynamic programming, Maruyama (1996) has solved the multiplicatively 
additive shortest path problem, where a pair of arc length and discount rate is associated 
with each arc. The shortest path problem involves the multiplicative shortest path 

problem with a negative arc length as a speial case. However, these papers (Iwamoto 
(1993), Maruyama (1996)) treated only the optimization problems for objective functions 
with the multiplicatively additive value and the multiplicative one. 

    In this paper, we consider a wide class of shortest path problems (called associative 
shortest path problem (ASP) ) with the length 

tij o tjk 0 ... 0 tmN,(1.3) 

for a path p = (i, j, k ,....., m, N) where 0 : R x R —> R is an associative binary operation: 
(x o y) o z = x o (y o z). The problem (ASP) includes not only the multiplicative prob-
lem with a negative arc length but also many other problems, for example, maximum 

problem, multiplicative-additive problem, fractional problem and so on, which were not 
studied in Iwamoto (1993) or Maruyama (1996). On the other hand, Frieze (1977) con-
sidered a wider class of shortest path problems where path length is defined as a real 
valued function defined on paths; the class contains the additive problem, the maximum 

problem and problem with time dependent arc lengths. Under certain monotonicity 
condition, the class of problems was solved by using some single recursive equation. 
Further, in Maruyama (1997), we derived a necessary and sufficient condition for the 
associative shortest path problem (ASP) to admit the single recursive equation 

fi = min [tij o fi], i N, fN = R(o),(1.4) 
jED(i) 

where 

fi = min[tij 0 tjk 0 • • • 0 tnNi 

p and R(o) is a right identity: a 0 R(o) = a Va E S and solved the problem (ASP) by 
the Ford's procedure under the necessary and sufficient condition; of course, (1.4) does 
not hold for (ASP) which does not satisfy the condition, (see Remark and Examples in 

Section 2). 
    In the present paper, we will solve the problem (ASP) without the monotonicity 

conditions but with a more generalized monotonicity (bitonicity) on the associative op-
eration o. We derive a system of two interrelated recursive equations in place of (1.4);
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the system holds for the problem which does not admit the single recursive equation 

(1.4), that is, the problem excluded in Maruvama (1997). Solving the system. we find 
both shortest and longest path lengths. Though this approach is also based on by-

namic programming, it is different from one in Maruvama (1996). Using an algebraic 
structure (semigroup) with bitonicity with respect to the binary operations, we give a 
bynamic programming formulaion for the wide class of problems: however, in Maruyama 

(1996), the formulation was obtained only for the specific case (multiplicatively additive 
problem). 

    In Section 2, we discuss the uniqueness of a system of two recursive equations in 

the problem (ASP). Furthermore, we give several examples of the problem (ASP): max-
imum problem, multiplicative problem, multiplicative-additive problem and two types 
of fractional problems. It is shown that the maximum problem can be solved through 
the single recursive equation (1.4). On the other hand, the multiplicative problem with 
negative arc lengths, the multiplicative-additive problem and the fractional problems 
admit a system of two recursive equations but, in general, not the single one. 

    In Section 3, we present an algorithm (bidecision algorithm) which solves the prob-

lem (ASP) with the bitonicity conditions; the algorithm is applicable to the problem 
which can not be solved by the Ford's procedure. Moreover, we investigate the com-

plexity of the algorithm for each type of problem.

2. Existence and Uniqueness 

    In this section we derive a system of interrelated recursive equations through by-
namic programming (Iwamoto (1993)). Moreover we show the existence and uniqueness 
of the solution to the system, which was proved by Bellman, Esogbue and Nabeshima 

(1982) for the additive problem (for the multiplicative problem, see Maruyama (1996)). 
    Throughout this paper we assume the following: 

  (HO) network G(V, A) contains no cycles; 

(HI) each to belongs to a nonempty set S C R, where (S, o) is a semigroup: 
o: S x S-* S is an associative operation; 

(H2) there exists an element R(o) E S, called a right identity: 

aoR(o) =a `da E S; 

(113) the associative operation 0 : S x S -* S satisfies bitonicity: 

          (a) S is the disjoint union of A+, A- : S = A+ + A-, 

           (b) a E A+,ai,a2 E S, al <a2 ---> aoai <aoa2, 

           (c) a E A-, a1, a2 E S. al < a2 ----> a 0 al > a o a2. 

    To solve the original problem (ASP): 

min[tii o to o ... o tm,N], p = (1, i, j, ... , m, N), 

P we imbed it into the following family of problems of finding both the shortest and longest
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path from i(� N) to N : 

fi=min[tijotjko.••ot,,,A']. (2.1) 

P Fi = Max[tij o tjk o • • • o N.i N, (2.2) 

P fN = FN = R(o),(2.3) 

where p is a path from i to N : 

p = (i, j, k,.....m, N) 

Then we have a system of two interrelated recursive equations. 

   THEOREM 2.1. Under the assumptions (HO) — (113), it holds that 

                 fi = min .[tijo f1] A min[tijo F1], (2.4) 
                     ieD+(Z)JED(i) 

Fi = Max [ti j o Fj ] V Max [ti j o fj],  i N.(2.5) 
jED+(i)jED-(i) 

f = FN = R(o),(2.6) 

where 

D+(i) = {j E D(i) tij E A+}, 
D—(i) = {j E D(i) tij E Al. 

    PROOF. It suffices to show only (2.4). Similarly, (2.5) is proved. 
   Let i(� N) be given but arbitrary. Put 

min [tij o fj] A min [to o Fj] = gi. 
                  jED+(i)jED-(i) 

Moreover, suppose that there exists a path (i, j, k,... , n, N) satisfying that 

                    gi > tij 0 tjk 0 ... 0 tnN.(2.7) 

Ifti1EA+,then 
to o fj >min[tij° fj] > gi.(2.8) 

                               jED+(i) 

From this and (2.7), it follows that 

to 0 fj > to j o tjk 0 .. • tnN. 

From (143), we have 

fj > tjk 0 ••• o tnN, 

which contradicts the definition of fj.  Similarly, in case to j E A—, we obtain 

Fj < tjk o...otnN,
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which contradicts the definition of F. Consequently. we see that 

g, <min[toot;.o• •at0 ]=(2.9) 

P 

    On the other hand, the reverse inequality to (2.9) follows from the definitions of 
gi. fi and Fi . 

    Solving two recursive equations (2.4), (2.5) with (2.6), simultaneously we find both 
shortest and longest path lengths from i(� N) to N. In this sense we can also refer 
to the problem (ASP) solved by using (2.4), (2.5), (2.6) as the associative shortest and 
longest path problem. 

   From Theorem 2.1, we see that { fi, Fi I i = 1, 2, ... , N} defined by (2.1), (2.2), (2.3) 
is one solution of the system of eqs. (2.4), (2.5) with (2.6). Hence the existence of the 
solution of the system has already been proved. Next we will show the uniqueness of 
the solution of the system. 

    Since the following lemma is proved in Maruyama (1996), we omit the proof. 

LEMMA 2.2. Let {x;}  {y;}  {u;} - {v;} _ C R, and put a = n~~ i x;, b = 
n31Y_ 1 y; , c =V~_ad = V  v; . Then there exists an index j E { 1, 2, ... , N} such that 

a — bl V c — dl <'z; — w; I ,(2.10) 

where 
z; — w; = x; — y; or u; — v; . 

    THEOREM 2.3 (UNIQUENESS). The system of eqs. (2.4), (2.5) with (2.6) possesses 
a unique solution. 

    PROOF. We suppose that { fi, Fi I i = 1, 2, ... , N}, {gi, Gi I i = 1, 2, ... , N} are two 
solutions of the system of eqs. (2.4), (2.5) with (2.6). Let i be an arbitrary but fixed 
node of V and put 

       _ti;ofj if j E D+(i),_ti;ogj if j E D+(i), x~t i1 o F; if j E D— (i),Y3to o G; if j E D— (i), 

     u—ti;oF; if j E D± (i),z—ti;oG1 if j E D+(i), 
ti; o f; if j E D— (i), ti; o g1 if j E D— (i). 

Then from Lemma 2.2, it follows that there exists j E D(i) such that (i, j) E A and 

Ifi — gij V I Fi — Gil < Iz; — w;I,(2.11) 

where z;—w;=ti;o f1—ti;og;or ti;oF;—ti;oG;. 
Since 

Iz; —w;I <Iti;o f;—ti;ag;IV Ito aF;—ti;aG;I, 
it follows from (2.11) that 

Ifi —gilvlFi—GiI <Iti;a f1—ti;ag;Ivlti;aF1—ti;aG11.(2.12)
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    Let io E V be an arbitrary node. Then we consider the following algorithm: 
   Initialize Set i = i0(0 N). Go to step 1. 

Step1. Find j E D(i) s.t. 

Ifz— gil V —Gil < Ito o fj — toogiIV ti.joFj — tooGil. 

           Go to step 2. 
    Step2. If j = N, then stop; we obtain fi = gi, = Gi. Else go to step 3. 

    Step3. Set i = j. Go to step 1. 
    Since G(V, A) contains no cycles, j = N for a finite number of repetition. Hence 

we conclude that 

Lo = F0 = Gro. 

Moreover 

fN=gN=FAT=GN=R(o). 

Consequently, the two solutions are in fact identical. 

   Through the equations (2.4), (2.5) with (2.6), we can define the minimum decision 
function and the maximum decision function a as follows: 

7r(i) = the node j E V which attains the minimum of r.h.s. of (2.4), 

a(i) = the node j E V which attains the maximum of r.h.s. of (2.5). 

Hence both optimal decision functions 7(•) and a(.) generate both a shortest path 
k, 1, ... = N and a longest path (i, j*, k*,1*, .. , m*, n*, N); o* = N as 

follows: 

j=~r(i)k= 7(j),ifj E D+(z), a(j), if j E D- (i), 

r(k), if k E D+ (j), k = 7(3), 

l _ a(k), if k E D+(j),k=a(j), 
a(k), if k E D-(j), k = 7r(j), 
7(k), if k E D-(j), k = u(j), 

7r(n), if n E D+(rn), n = 71(m), 

             N—a(n),if n E D+ (hi),n=(m), 
a(n), if n E D- (m), n = r(m), 
7r(n), if n E D-(m,), h = tT(rn), 

and 

j* = a(i), k* _ a(j*), if .r E D+ (i), r(j*), if j* E D- (i), 

a(k*), if k* E D+(j*), k* = a(j*), 

1* _                     ~r(k*), if k* E D+ (j*), k* =r(j*), 
7(k*), if k* E D-(j*), k* = a(j*) 
a(k*), if k* E D- (j*), k* = 71(j*),
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 a(n*), if n- E D+(m"), n" = a(m -). 
7r(n*). if n* E D+ (m'), n* = T(in`). 

(n*).if n* E D—(m*), n* = a(m-).. 
a(n*), if n* E D—(m*), n* = 7(m*). 

    Now we derive the system of two recursive equations for each type of problem. 

    EXAMPLE 2.4 ( IAxIMuM.l PROBLEM). Let us consider the case o = V. Take S = 

[a, b]. Then, since D— (i)= 0, D+(i) = D(i), the system of eqs. (2.4), (2.5) with (2.6) is 

fi = min [tij V fj],(2.13) 
1ED(i) 

Fi = Max [ti; V Fj], i N,(2.14) 
jED(i) 

fN = FN = a = R(o)•(2.15) 

In this case, two optimal value functions fi, Fi are quite separate. Therefore, in this 
problem it suffices to solve the single recursive equation (2.13) or (2.14) with (2.15) as 
well as in the additive problem and in the multiplicative problem with nonnegative arc 
lengths. 
    The maximum problem has the following practical meaning: The traveller whose 
heart is weak wants to go to the destination. Unfortunately, he must walk up an uphill 
road. So, in order to lighten a burden on his heart, he will select a gentler slope rather 
than a shorter road. For example, the traveller wants to go from the starting point 1 
to the terminal point N, where roads are uphill all the way. With each arc (i, j), a 
real number tij = so is associated, where aij denotes the angle of elevation of j from 
i. Then, the number tiJ is considered to be a degree of steepness of a slope. In this 

problem, it is absolutely appropriate that the length (measure) of a road p from 1 to N 
is defined by 

tiiVtoV...Vt,N, p=(1,i,j,...,m,N) 

and the traveller's objective is to find a path from 1 to N which has a minimum length. 

    REMARK. As can be seen from Example 2.4, if the associative operation o is mono-
tone on S : 

                   <R0> a,b,cES, b<c ---->aob<aoc. 

then, the single recursive equation (1.4) holds for the problem (ASP) because S = 
A+, D+(i) = D(i). However, the monotonicity condition < Ro > is not a necessary and 
sufficient one for the problem (ASP) to admit the recursive equation; it is a sufficient 
condition. In fact. we have the following example. Let us consider the multiplicative 
shortest path problem (aob = ab) on a network given in Fig. 1. Since there exist negative 
arcs (t23 = —2. t24 = —1), in this problem the operation o = x is not monotone. But we 

can verify that the single recursive equation (1.2) holds for the problem. In Maruyama
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Figure 1: Multiplicative shortest path problem a o b = ab

(1997) it was shown that the problem (ASP) admits the single recursive equation (1.4) 
if and only if (ASP) satisfies the condition: 

      < R1 > min [tij o fj] < min{tij E A3} Vj E D(i), `di ~ N, 
jED(i) 

where 

Aj = {tjk 0 • 0 tmN (j, k, ... , in, N) : path} 

for j N and AN = {R(o)}. The multiplicative problem stated above is sure to satisfy 
the condition < R1 > . In fact, it is clear that 

min [ti1 x f1] = min{tij x E A3} for all j E D(i), i = 2,3,4. 
jED(i) 

Moreover, since A2 = {-6, —5,41, f2 = —6, it holds that 

min [t'j x fj] = 2 x (-6) = —12 = min{-12, —10, 8} = min{t12 x E A2}. 
jED(i) 

    On the other hand, replacing only the arc length t12 with —2 in Fig.1, we see that 

the multiplicative problem does not satisfy < R1 >; hence the problem does not admit 

the single recursive equation. For this problem, the system of recursive equations 

fi = min [tij x f j] A min [tij x Fj],(2.16) 
t;, >0t,~ <0
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F, = Max[t2~x F,]VMax[t2, xf~],i�.~.(2.17) 
t,, >ot; <o 

fyV =FA-=1=R(x)(2.18) 

holds. In fact. the case i 1 is clear. Further, we have 

f1 =-8=t12 xF2, F1 =12=t12 x f2. 

The above system, which was given in Marui-ama (1996), is also derived from (2.4), (2.5) 
with (2.6) since to E R= S and A+ = [0, +oe), A— = (—oc, 0). 

    It is noted that by using the system of two recursive equations (2.4), (2.5) with 

(2.6), we can solve not only the multiplicative problem with negative arcs but also other 
associative problems which do not satisfy < R1 > as far as we are concerned with the 

problems satisfying the bitonicity condition (113), (see Examples 2.5,-2.7). 

EXAMIPLE2.5 (MULTIPLICATIVE-ADDITIVE PROBLEM). Let us consider the prob-

lem in which a o b = a+ b— ab and to E R= S. For example, we consider the problem 
on a network given in Fig.2. Since

Figure 2: Multiplicative-additive problem a o b = a + b — ab

         f2 = (104)A(3o4o4)A(3o3)=1A2A3=1. 
f3 = 1A(-2)A gA 2 = —2, 

we have 

min [ti, o fj] = min{301, 4 0 (-2)} = 1 > —2 = min{l.—2,—3} = min{t12 oak/E A2}. 
iED(1) 

Hence this problem does not satisfy the condition < R1 >, which implies that it does 

not admit the single recursive equation.
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    On the other hand, since the operation o satisfies the bitonicity for S (A+ = 
(—Dc. 1]. A— = (1. +oc]) we can solve the problem by using the system of eqs. 

fi =min [t~~+f~— t~3f~] A min [t2j +F;— tz,F],(2.19) 
         t;; <1t;; >1 

Fz = Max[tzi + Fj — tijF] V Max[ttj + fj — tij fi], for i N. (2.20) 
t;, <1t;, >1 

   fN = FN = 0:(2.21) 

this system will be solved in Example 3.2. 

    EXAMPLE 2.6 (FRACTIONAL PROBLEM I). Let us consider the case a o b = (a + 
b)/(1 + ab) and S = [0, +oo). For example, we consider the problem on a network given 
in Fig.3. In the same way as in Example 2.5, we have

               Figure 3: Fractional problem I a o b= l+ b 

9 

               min [tij o fj] = 1 >1
1= min{t12oa~aE A2}, 

which implies that this problem does not admit the single recursive equation. 
   But, since the operation a satisfies the bitonicity for S (A+ = [0, 1), A— = [1, +oo]) ,, 

we can solve the problem by using the system of eqs. 

            tij  tij+F~      f
z= minA min(2.22) 0<t;;<1 1+ ti; fjt;1>1 1+tz~F3 

F~ = Max                    [tij+ F~VMaxt~~+f~ i N. (2.23) o<t;; <i 1 + t;; >1 1 + 

       fN = FN = 0 E [0, +oc);(2.24) 

this system will be solved in Example 3.3.
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EXAMPLE 2.7 (FRACTIONAL PROBLEM II). Let us consider the case aob = ab/(1+ 
(1 — a)(1 — b)) and S = (—oc. 1]. For example. we are concerned with the problem on a 
network given in Fig.4. Since we have

             Figure 4: Fractional problem II a o b = 1+1a1_b 
                                       ()() 

2 1 
min [tljofj]= --29  > --7  = min{t13 o ala E A3}, 

jED(1) 

this problem can not be also solved by the single recursive equation. However, since 
the operation o satisfies the bitonicity for S (A+ = (0, 1], A— = (—oc.0]), the problem 
admits the system of eqs. 

          __ t2jfj min 
o<t;;<11 + (1 — t2j)(1 — fj)  

tz~F~(2
.25)                       ~t<<o 1+(1—to)(1—Fj) 

F2 = 1\Iax t23Fj  o<t,,<1 1 + (1 — to)(1 — Fj) 

V Max tzjfiN, (2.26) 
t;;<o 1 + (1 — tii)(1 — f1) 

fly = FN = 1 E (—oc, 1];(2.27) 

this system will be solved in Example 3.4. 

    REMARK. Each of the operations aob = a x b, a a b = ab/(1 + (1 — a)(1 — b)) 
is called triangular norm (t.-norm), when a, b E [0, 1]. On the other hand, each of the 
operations aob = a + b — ab, a a b = (a + b)/(1 + ab) is known as triangular conorm 

(t-conorm), when a, b E [0, 1] (see Butnariu and Klement (1993)).



 

1  :>8\. \IArlt-\AM.\

3. Bidecision Algorithm 

    In this section we constitute an algorithm which solves the associative shortest 

and longest path problem (ASP). We generate a sequence {(f (k), Fi(k))1i E V}, k = 
0, 1.2,....., which converges to the solution {(fi. E V} of the system of eqs. (2.4), 
(2.5) with (2.6). The desired minimal and maximal path lengths form one solution of the 
system. Moreover, the uniqueness of the solution of the system was shown in Theorem 
2.3. Therefore, using the sequence which converges to the solution, we can find the 
desired minimal and maximal path lengths. 

   Bidecision algorithm 
    Step 1. Initialization. Set 

f) = min tij, i = 1, 2,.....N — 1, f (°) = R(o), (3.1) 
3ED(i) 

F(°) = Max tij, i = 1, 2,....., N — 1, FN = R(o). (3.2) 
jED(i) 

    Step 2. Iteration. Set 

f(k) = min [t1of(k-1)1 A min[tijoF(k->)~(3.3) 
jED+(i)jED-(i) 

        F(k) = Max [tooF(k-1)]V 1\1ax [tijof~k-1)] N. (3.4) 
           jED+(i)jED-(i) 

    fN) = FFk) = R(o).(3.5) 
    Step 3. Stopping rule. If 

f(k) = f(k-1) F(k) = F(k-1) i = 1; 2, ... , N, 

         then stop. Otherwise, set k = k + 1 and go to step 2. 

    THEOREM 3.1. The bidecision algorithm terminates in at most N — 1 iterations. 
Then we obtain the solution of the system of eqs. (2.4), (2.5) with (2.6). 

    PROOF. Let i N be a given but arbitrary node. Then from (3.3), (3.4) and 
Lemma 2.2, it follows that there exists j E D(i) satisfying that 

f(N-1) _ f(N-2)1 V 1F(N-1) - Fi(N-2)1 
o f(N-2) - Jtia f (N-3) j vJ ~tzo F(N-2)-tooF'(N-3) 7jj7~  

Hence, in the same way as in the proof of Theorem 2.3, we obtain 

f(N-1) = f(N-2) F(N-1) =2) i = l 2.....N — 1,(3.6) 

Furthermore, 
                    (*N-1) _ f (N-2) = F^(N-1) = F(N-2).(3.7)
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Therefore, the bidecision algorithm terminates in at most N - 1 iterations. 
Moreover, from  (3.3). (3.4), (3.6) and (3.7) we have 

           fi( N -i) = min [to o f~.N -2)] Amin [to o FiCN-2)] 
jED+(i)jED—(i) 

                  = min [ti jof(N i)]A min [too Fj(N-11 
jED+(i)JED-(i) 

           F(.v-1) = Max [tij o P-:N-2)] V Max [t~1 o f~N-2)] 
jED+(i)jED-(i) 

                  = Max [tooF~_—i1]V Max [to o f~N-1)]• 
jED+(i)jED—(i) 

f(1\'—r) = FN —r) = R(o). 

Consequently, {(f(N—i),F(N-1)E V} is the solution of the system of eqs. (2.4), (2.5) 
with (2.6). 

    REMARK. Meanings off i(k),F,(k)generated above are as follows: 

f(k) = the length (1.3) of the shortest path from node i to reachable node or to N 

         when k + 1 or fewer arcs are used, respectively. 

F(k) = the length (1.3) of the longest path from node i to reachable node or to N 
• when k + 1 or fewer arcs are used, respectively, 

i = 1,2,.... N - 1. 
Since these can be proved in the same way in remark 3 of Maruyama (1996), we omit 
the demonstration. 

    Let 
7r(k)(i) = the node j E V which attains the minimum 

           of r.h.s. of (3.3),(3.8) 

o-(k)(i) = the node j E V which attains the maximum 

           of r.h.s. of (3.4).(3.9) 

    Then in the same method as in Section 2 both optimal decision functions 7r(k)(.) 
and 0-(k)(•)  generate both the shortest and the longest path from node i to reachable 
node or N when k + 1 or fewer arcs used, respectively. 

    REMARK. In order to solve the problem (ASP) which admits the single recursive 
equation (1.4), we can use the following algorithm (Ford's Algorithm):
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    Step 1. Initialization. Set 

f °) = minttij,i = 1, 2, ....N — 1. f~x=R(o). (3.10) 
jED(i) 

    Step 2. Iteration. Set 

f(k) = min [t o f(k_1)] , i N, f(Nk) = R(o). (3.11) 
                     jED(i) 

    Step 3. Stopping rule. If 

                      f(k)(k)(k-1) i=1, 2.....N,                                  =— 

         then stop. Otherwise, set k = k + 1 and go to step 2. 

    REMARK. Let us compute the number of operations required by the bidecision 
algorithm for each type of problem. 

    The maximum problem can be solved by the Ford's algorithm. So, each iteration 
of the algorithm requires (N — 1)2 maximization (v) and (N — 1)(N — 2) comparisons. 
Since N — 1 iterations are required, for all iterations 2N3 — 7N2 + 8N — 3 operations 
are required; the number of operations is the same as that in the additive problem. 

    In the multiplicative problem, each iteration of the bidecision algorithm requires 
2(N — 1)2 multiplications and 2(N — 1)(N — 2) comparisons. Since N — 1 iterations are 
required, for all iterations 4N3 — 14N2 + 16N — 6 operations are required; the number 
is two times that in the additive problem. 

    In the multiplicative-additive problem, each iteration of the bidecision algorithm 
requires 6(N-1)2 operations (2(N-1)2 additions, 2(N-1)2 subtractions and 2(N — 1)2 

multiplications) and 2(N-1)(N-2) comparisons. Since N-1 iterations are required, for 
all iterations 8N3-26N2+28N-10 operations are required; the number is approximately 
four times that in the additive problem. 

    In the fractional problem I, each iteration of the bidecision algorithm requires 8(N-
1)2 operations (4(N — 1)2 additions, 2(N — 1)2 multiplications and 2(N — 1)2 fractions) 
and 2(N — 1)(N — 2) comparisons. Since N — 1 iterations are required, for all iterations 
10N3— 32N2 +34N —12 operations are required; the number is approximately five times 
that in the additive problem. 

    In the fractional problem II, each iteration of the bidecision algorithm requires 
12(N — 1)2 operations (2(N — 1)2 additions, 4(N — 1)2 multiplications and 4(N — 1)2 
subtractions and 2(N — 1)2 fractions) and 2(N — 1)(N — 2) comparisons. Since N — 1 
iterations are required, for all iterations 14N3 —44N2 +46N— 16 operations are required; 

the number is approximately seven times that in the additive problem. 
    Consequently, in all problems above, we obtain the running time of 0(N3) for all 

iterations.
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    EXAMPLE 3.2. We reconsider the multiplicative-additive problem (a  o  b  =  a  +  b  -

ab) on a network given in Fig.2. By applying the bidecision algorithm. the sequence 

{(fk),F~) }.k = 0, 1.2, ... can be computed successively as shown in Table 1. From 
this table, we can see that the shortest path length and the longest one from 1 to 6 are 
-1

89 and 10, respectively. The pairs of the node 77(k) (i) and the node 0-(k) (i) which are 
defined by (3.8) and (3.9). respectively are given in Table 2. Using the optimal decision 

functions 7r(k)(•), 0-(k)(.), we can find the shortest path (1, 3, 5, 4, 6) and the longest path 

(1, 3, 4, 6), simultaneously. We remark that since this problem does not admit the single 
recursive equation, it can not be solved by the Ford's algorithm.

  Table 1: Sequence in the multiplicative-additive problem (a o b = a + b - ab) 

Node (.f.2°), Fn (f(l), F(1)) (f ~2), F(2)) (fi 3), F(3)) (f (4), F(4)) = (fi, Fi) 
 1(3, 4)(-2, 2) (-11,2) (-11,10)(- V, 10) 

2 (1,1)(2, 3)(1, 2)(1, 2)(1,D 
 3(2 , 2)(4, 5)(-2, g) (-2, 8)(-2, V) 

4(4,4)(4,4)(4,4) (4,4)(4,4) 
5(4,3)(3, 4)(3, 4) (3' 4)(3, 4) 

 6(0,0)(0,0)(0,0) (0,0)(0,0)

Table 2: Sequence of optimal decision function in the multiplicative-additive problem 

  Node (7(1)(i),a(1)(i)) (7(2)(i),a(2)(i)) (7(3)(i),a(3)(i)) (7(4)(i),u(4)(i))  
  1 (3, 3)(3, 2)(3,3)(3, 3) 

  2 (5, 5)(4, 5)(4,5)(4, 5) 
  3 (4, 5)(4, 5)(4, 5)(4, 5) 

  4 (6, 6)(6, 6)(6, 6)(6, 6) 
  5 (6, 4)(6, 4)(6, 4)(6, 4)

   EXAMPLE 3.3. Let us reconsider the fractional problem I (a o b = (a + b)/(1 + ab)) 
on a network given in Fig.3. Since this problem does not admit the single recursive 
equation, we must use the bidecision algorithm. The sequence {(f (k), F(k))} can be 
computed successively as shown in Table 3. From Table 4, we can find the shortest 

paths (1, 3, 5, 6), (1, 2, 5. 6) and the longest path (1, 3, 4, 6) whose lengths are ii and 17, 
respectively.



162 V.  NI.artuvANI.v

    Table 3: Sequence in the fractional problem I (a o b = (a + b)I(1 + ab)) 

Node (f,C°). F(°') (fi 1), F")) (f,2), F12)) (fz 3), 4 ,3)) (f4). F(4)) = (fi, F) 
1 (2,3)(7, )(9,ii) (ii,17)(9.17) 
2 (2'1)17, 2)(1. 2) (1, g)(1' 8 ) 
3 (3,3)(5' 7)(7' 17) (7' 7)(7' 13) 

 4 (2, 2) (2, 2)(2.2) (2, 2)(2, 2) 
 5 (3,4)(5,4)(,4)(,4)(5,4) 

6 (0,0)(0,0)(0.0) (0,0)(0,0)

    Table 4: Sequence of optimal decision function in the fracrional problem I 

Node (r(1)(i), a(1)(i))(7(2)(i), a(2)(i))(7(3)(i), a(3)(i)) (7(4)(i), a(4)(i)) 

 1 (3, 2), (3, 3) (2, 2), (2, 3), (3, 2), (3.3)(2, 3), (3, 3) (2, 3), (3, 3) 
2(5.5)(4, 5)(4, 5)(4.5) 
3(3, 5)(4, 5)(4, 5)(4, 5) 
4(6, 6)(6, 6)(6, 6)(6, 6) 
5(4, 6)(4, 6)(4, 6)(4, 6)

   EXAMPLE 3.4. We review the fractional problem II (a o b = ab/(1 + (1 - a)(1 - b))) 
on a network given in Fig.4. The single recursive equation does not hold for this problem; 
hence we can not use the Ford's algorithm. So, by applying the bidecision algorithm, we 
can compute the sequence {(f (k), F(k))} successively as shown in Table 5. From Table 
6, we can find both the shortest path (1, 3, 2, 5, 6) and the longest path (1, 3, 4, 6) whose 
lengths are - 7 and 2 , respectively.

 Table 5: Sequence in the fractional problem II (a o b = ab/(1 + (1 - a) (1 - b)) ) 

Node (4°), F(o)) (f(1), Fp)) (4(21, F(2)) (f(3), F(3)) (f(4), F(4)) (fz, F) 
1 (-4, 3) (_ 7' 1)( 4' 8) (_ 7' 9)(_ 7' 29) 

 2 (-3,-2) (-5' 3)(-5' 13) (-5' 13)(-5' 3) 
3 (-1, 2) (-4' 8)(-4' 11) (-4' 11)(-4' 11) 
4 (2'2) (2'2) 12,2) (2'2)12'2) 
5 (-2, 4) (-2' ii)(-2, ii) (-2' li)(-2' ii) 

 6 (1, 1) (1, 1)(1, 1)(1, 1)(1, 1)
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 Table 6: Sequence of optimal decision function in the fractional problem II 

Node  (7(1)  (i)  ,  o-(1)  (i)) (7(2)(i).a(2)(i)) (70)(i),o-(3)(i)) (70)(i),u(4)(i)) 
1(3,3)(2, 3)(3,3)(3, 3) 

2 (4, 5)(4, 5)(4, 5)(4, 5) 
3 (4, 5)(4, 2)(4, 2)(4, 2) 
4 (6, 6)(6, 6)(6, 6)(6,6) 
5 (6, 4)(6,4)(6,4)(6,4)
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