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MULTI-VALUED OPTIMAL STOPPING 

 PROBLEM WITH MONOTONICITY*

      By 

Yoshio OHTSUBOf

                       Abstract 

We consider a multi-valued optimal stopping problem for indexed 

random sequences. We perform a scalarization of the random sequences 

and give characterization of optimal value process for scalarized problem. 

We also find optimal stopping time in the sense of Pareto optimality for 

original problem. We apply its result to monotone cases, in which it is 

given an explicit optimal stopping time. It is given sufficient conditions 
for our problem to be a monotone case. One of conditions is a kind of 

concavity with regard to time parameter.

1. Introduction 

We often happen to meet optimization problem with a lot of objectives. In this 
paper we formulate such a problem as optimal stopping problem for indexed random 
sequences and give a solution to the problem. 

   Let (Cl, , P) be a probability space and ( ,,,EN a filtration of .F, where N = 
{0,1, 2, • • •} is a discrete time space. Let T be an index set of objects in our problem. 
For each t in the index set T, let (Xnt)n,EN be a random sequence defined on (1l, .F, P) 
and adapted to (.F0) such that random variables supnEN suptET(Xn)+ and suptcT(Xf) 
are integrable with regard to P, where x+ = max(0, x) and x- _ (-x)+. We assume 
that the set UtETI Bt is .F0- measurable for any subset T1 of T and for any family 

{Bt : t E T1 } of .F0-measurable sets. This assumption is clearly satisfied if T is a 
countable set. For each Ti E N, we also denote by A1z the class of (Y0)-stopping times 
T such that n < T < oc almost surely. 
    Our aim is to maximize the expectation E[XT] with respect to T in A0 for every 
t E T. Especially, when the index set T consists of an element it is the classical optimal 
stopping problem (cf. Chow et al.(1971)), and when T = {1, 2, ... ,p} it is a multi-
objective stopping problem (cf. Gugerli(1987), Ohtsubo(1997)). 

    To accomplish our aim, we shall generalize the concept of Pareto optimality (cf. 

9ubin(1979, p.295), Yu(1985, p.22)). A Pareto optimal solution is also called an efficient 

 This work was partly supported by Grant-in-Aid for Scientific Research C-2-10640124 from Ministry 

  of Education, Science. Sports and Culture 

  Department of Mathematics, Faculty of Science, Kochi University, Kochi 780-8520, Japan 

  e-mail: ohtsubo@math.kochi-u.ac.jp



 138\ .O iiSI 10)

or noninferior solution in the literature (see. for example. Yu(1985)). For the sake of 

general discussion we define a conditional expectation of Xr at n E N by 

G, (T; t) = E[XT T,2] 

for each t E T and T E An. For n E N. > 0 and probability measure it on (T. 2T). 
we say that a stopping time T_ in An is (E. p.)-Pareto optimal at n, if there exists no 
stopping time T in An, such that almost surely 

Gn(T; t) > G„(T.: t) + 

for every t E To and 
Gn(T; t) > Gn(T_: t) + c 

for every t E T1, where To and T1 are some subsets of T satisfying p(To) = 1 and 
p(T1)>0. 
    When T is a finite set {ti, t2,....., t y }. and we define ,u to be probability measure 
such that p(tk) > 0 for every k. (0, p)-Pareto optimal stopping time T, at n satisfies the 
following condition: there exists no stopping time T in An such that almost surely 

Gr(T; t) > Gr t) 

for every t E T and 
Gn(T; t) > Gn(T. ; t) 

for some t E T. This means well-known Pareto optimal solution in mathematical pro-
gramming (cf. Aubin(1979), Yu(1985)). 

    Similarly we shall define weak Pareto optimal stopping time as follows : For n E N, 
 > 0 and probability measure it on (T, 27"), it is said for a stopping time T, in An to 

be (r, p)-weak Pareto optimal at n, if there exists no stopping time T in An such that 
almost surely 

Gn(T; t) > Gn(TE.; t) + r 

for every t E To, where To is some subset of T satisfying p(To) = 1. 
    We easily see that if T;. is (r, p)-Pareto optimal at n, it is (r. p)-weak Pareto optimal 

at n. In this paper we shall investigate only (r, p)-Pareto optimal stopping time. 
    For the sake of simplicity, without further comments we assume that all inequalities 

and equalities between random variables hold in the sense of "almost surely". 
    In the second section, we consider a scalarization of our problem, give fundamen-

tal properties of optimal value process for the scalarized problem and find an optimal 
stopping time on the scalarized problem. By the results of the scalarization we find an 

p)-Pareto optimal stopping time for the original problem. In the third section, we 
consider the classical monotone case on the scalarized problem as a special model and 
we prove that a one-step-look-ahead (OLA) stopping time is (0, p)-Pareto optimal. It 
is given sufficient conditions for the problem to be a monotone case. The first condition 
is a kind of concavity with regard to time parameter on the original process and the 
second is a generalization of classical stopping problem. Finally in Section 4 we give
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examples of monotone case. including economic model which is a withdrawal problem 
from a market. 

    Such a problem is a generalization of multi-objective stopping problem, which has 

been investigated in Hisano(1980). Gugerli(1987) and Ohtsubo(1997). Hisano has intro-
duce a partial order defined by a convex cone and give an existence theorem of optimal 
stopping time with regard to the order. Gugerli has considered such a problem for the 
class of all randomized stopping times on discrete time Markov chain and has character-

ized the set of all Pareto optimal stopping times. Ohtsubo(1997) has given a sufficient 
condition for multi-objective stopping problem to be a monotone case, and find 0—Pareto 
optimal stopping time which is OLA rule. This paper is not only a generalization of 
Ohtsubo(1997) but also contains many useful examples. In Stadje(1980), Preater(1993) 
and Gnedin(1994), multi-criteria best-choice problems have been investigated in different 
forms.

2. Scalarization and Pareto Optimality 

    In this section, we consider a scalarization of our problem with regard to probability 
measure on the set T, give fundamental properties of optimal value process for the 

scalarized problem and find an Pareto optimal stopping times on the original problem. 
    Let M denote the set of probability measures it on the measurable space (T, 2T ). 

This µ is called weighting function in mathematical programming. For it in M, we 
define a scalarized reward process (Xn (µ)) by 

Xn(p) _ IT 
                                    where Xn is integrable from the conditions given in Section 1, and define the conditional 

expectation by 

Gr(T; µ) = fGn(T; t)d,u(t) = E[XT(µ)~.T0]. 
                             T The last equality is obtained from the boundedness (from above) of XT on n x T and 

from Fubini's theorem for conditional expectation. The optimal value process (17,(µ)) 
for the scalarized problem is defined by 

Vn(p) = ess sup G0(7-; µ), n E 
TEA„ 

for a given it E *1. 
   For each n E N, e > 0 and it E M, we define a stopping time Tn(p) by 

Tn(µ) = inf{k > nlVk (µ) < X k(µ) + E}, 

where inf 4 = +oc. 
    The scalarized problem is one of classical stopping problems and hence it follows 

the theorem below, the proof of which refers to Theorems 4.1, 4.2 and 4.3 in Chow et 
al.(1971) or Proposition VI-1-2 and VI-1-3 in Neveu(1975).
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    PROPOSITION 2.1. Let p in *1 be arbitrary. 

 (i) The optimal value process 1-(p) _ (j'„(p)) satisfies the following recursive relation: 

In(p) = max(X„(p), E(i'n+i(µ)1.Pn]), n E N. 

 (ii) V(p) is the smallest supermartingale dominating the process X(p) = (Xn(p))• 

(iii) lim sup„ Vn(p) = urn sup„ Xn(p) 

(iv) For every n E N any > 0, the stopping time Tn(p) is (~, V (p))-optimal at n in 
    the sense that Vn(p) < Gn('r, (p); p) + r. If the stopping time T°(p) is a.s. finite, 

    T°(p) is (0, V(p))-optimal at n. 

    The general lemma below is an important result and an optimal stopping version 
of a well-known result in multi-objective problem on mathematical programming (cf. 
Proposition 3 in Aubin(1979. p.297)). 

    LEMMA 2.2. Let n E N, r > 0 and p E M be arbitrary. If a stopping time T- in A„ 
satisfies inequality Vn(p) < Gn(T,; p) + c, then T- is (F. p)-Pareto optimal at n. 

    PROOF. We suppose that the stopping time T. is not (r, p)-Pareto optimal at n. 
Then there exists a stopping time T in An such that Gn (T; t) > G„ (T, : t) + for every 
t E To and Gn(T; t) > Gn(TE; t) + e for every t E T1 where To and T1 satisfy p(To) = 1 
and p(Ti) > 0. Thus since (T - Ti) n To C To, p(T - (To U Ti)) = 0 and p(To U Ti) = 1, 
we have 

Gn(T; p) =Gn,(T; t)dp(t) IT 
= fGn(T; t)dp(t) +fGn(T; t)dp(t) +fGn(T; t)dp(t) 

       Ti(TTi)nT0T(T(uTi) 

       > fG,(7,; t)dp(t) +~p(ToUT1) 

               T 

           = Gner,;p) +-` . 

and hence V„(p) > Gn(TE; p) + which is a contradiction. Hence the stopping time T., 
is (r, p)-Pareto optimal at n. 

    Proposition 2.1 and Lemma 2.2 immediately imply the following theorem. 

    THEOREM 2.3. Let n E N and p E M be arbitrary. 

 (i) For each r > 0, the stopping time Tn(p) is (e. p)-Pareto optimal at n. 

 (ii) If the stopping time T°(p) is a.s. finite, T°(p) is (0. p)-Pareto optimal at n.
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3. Monotone Case 

    For the scalarized reward process (Xn(p)) defined in Section 2 where p E .~t, we 
define subsets An(p) of Q by 

An(p) = {Xn(p) > E[Xn+1(p)LYn]}. n E N, 

and define a stopping time o-n(p) by 

Qn(p) = inf{k > nlXk(p) ? n E N, 

that is, 
a0(p)(w)=inf{k> EAk(p)}, wES2,nE1'~r. 

where inf ¢ = +oo. Qn(p) is called one-step-look-ahead (OLA) rule or myopic rule. 
    For each p in M, we introduce the following condition : 

CONDITION C(p). For every n E N, An(p) C An-F1(p) and limn~ P(An(p)) = 1. 

When the condition C(p) is satisfied for a given p E M, the scalarized stopping 
problem corresponding to p is in a well-known monotone case (cf. Chow et al.(1971, 
p.54)). 

THEOREM 3.1. Suppose that Condition C(p) is satisfied for a given p in M. Then 
for each n E N an (p)is a.s. equal to T°(p) and is a.s. finite, and hence an(p) is (0, p)-
Pareto optimal at n. 

    PROOF. The first part : on(p) = T°(p) < no a.s. is proved similarly to Theorem 
3.3 in Chow et al.(1971). Hence Theorem 2.3 implies that on(p) is (0, p)-Pareto optimal 
at n. 

    Next we shall give two sufficient conditions for Condition C(p) to be satisfied. For 
each n E N and t E T. we define a stochastic process (Y,ti) by 

                         ynt-Xn-ELK, +11.Fn] 

and a subset A1z of S2 by 

               An = {Y'n > 0} _ {Xn > E[X41 1Fn] }. 

ASSUMPTION 3.1. For p E A4, there exists a subset To of T satisfying p(To) = 1 
such that for all t E To (Y,z) is a submartingale and limn„ P(ltET,An) = 1. 

    When (YD is a submartingale, we have the relation 

                E[Xn+11-Tn] >_2Xn+2E[Xn+21Yn],
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which means that (Xn) is concave with regard to time parameter n. If To is a finite 
set. (_412) is increasing with regard to n and lim„_ X P(An) = 1 for every t E To. then 
lim, „ P(ntET.,An) = 1. 

We define a new scalarized process (Y;,(p)) by 

Yn(µ) = Yndµ(t) = Xn(I-i) — E[Xn+1(µ)1Yn]• 

Then we notice that An (t) = {Y, (ii) > 0}. 

    LEMMA 3.2. If Assumption 3.1 is satisfied for some µ E M, then (Y;,(,u)) is a 
submartingale. 

   PROOF. By the definition of n,(µ) and the fact that ,a(T — To) = 0. it follows that 

Yn(µ) — E[Yn+1(1-)ITn] _ f(Y —l 
Since (Y,) is a submartingale for any t E To, that is. Y,t < E[Y n+1 l.FF], n E N, we have 
Yn(p) < E[Yn+l(,a)LFF], and so (Yn(1c)) is a submartingale for given µ E M. 

    THEOREM 3.3. If Assumption 3.1 is satisfied for some µ E M, then Condition 
C(µ) holds, and hence for each n E N the OLA rule on(u) is (0, u)—Pareto optimal at 
n. 

    PROOF. In order to show that An (µ) C An+i (ii), it suffices to prove that X n+i (µ) > 
E[Xn+2(1)i-Fn+1] on An(µ). Since Y(,u) is a submartingale from Lemma 3.2 and 
Yn(µ) > 0 on An(µ), it follows that for any B E 

                        (Xn+1(µ) — E[Xn+20µ)1'F,+1])dP 
                        A„ (µ)nB 

Yn+1(µ)dP 
                         A„ Gc)nB 

             fYn(ii)dP                         n (onB 

> 0 

and hence Xn+i(µ) > E[Xn+2(-)1-Fn+1] on An(//). Similarly, by using the fact that 

(Y,t) is a submartingale for any t E To, it follows that An C An+i for every n E N and 
t E To, some ro AnC ntET0An+i for every n E N. 

   Next we see that for all t E ToXn>E[Xn+11.F,]on ntET,,A7z. Since µ(To) = 1 for 
a given µ E M, it follows from Fubini's theorem for conditional expectation that 

xn(µ) = fXndtt(t) 
                                                           ~ > E[ 411Tn]dtt(t) 

                       = E[f`~~+ld,u(t)] 
                                               To 

                         = E[kn+1(µ)~-~n]
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on ntET, An. Hence ntEr,-4 C An(,u) and so U72 ntET, An C u 40(µ). Since P(Un nT, 
An) = P(ntETo-4;,) = 1. we have lim„_,x P(A,(p)) = P(Un-4n(µ)) = 1. Thus 
Condition CO”) is satisfied for a given µ E M. From Theorem 3.1 it follows that the 
OLA rule o',(µ) is (0, p)-Pareto optimal at n. 

    Next we shall give another sufficient condition for Condition C(p) to be satisfied. 

    ASSUMPTION 3.2. For µ E M, there exists a subset To of T satisfying µ(To) = 
1 such that An = An and At C A41 for each n E N and any s. t E To, and 

P(An) = 1 for any t E To. 

    THEOREM 3.4. If Assumption 3.2 is satisfied for some µ E wl, then Condition 
C(t) holds, and hence the OLA rule an(p) is (0, p)-Pareto optimal at n. 

    PROOF. We see from Assumption 3.2 and by the way similar to the proof of Theo-
rem 3.3 that At = nsETOAs, C An(,u) for each n E N and all t E To. Conversely, since we 
have Xn(p) > E[X0+1 (µ)1.Fn] on An(µ), there exists t E To such that Xn > E[X411.Tn], 
and so we have A0(p) C An = nsET„An. Thus it follows that An = nsETOA;, = An(p) 
for each n E N and all t E To. From Assumption 3.2 the monotonicity of {An} implies 
that of {An(p)} and we have lim„x P(An(,u)) = 1, that is, Condition C(p) is satisfied 
for a given p E M. Hence it follows from Theorem 3.1 that the OLA rule an(p) is 
(0, p)-Pareto optimal at n.

4. Examples 

    In this section we shall give four examples as applications of the previous section. 

EXAMPLE 4.1 (WITHDRAWAL PROBLEM I) . Let (WO be a random sequence which 
satisfies a regular condition, and assume that there is a subset To of T such that for 
each t E To and all n E N Xn = E[Wu+at l.Fn], where a parameter at of time-shift is a 
nonnegative integer. 

    We define random sequence (Z0) and a subset B0, of .F0 by 

Z„ =ti ,, - E[I 7z+1 I1-n] 

Bn={W0>E[W0+11-Pn]}={Z,,>0}. 

respectively. We then have the relation Yn = E[Zn+~, Pn]. We assume that (Z0) is 
a submartingale and limn>„ P(B0) = 1. Here we notice that (BO is an increasing 
sequence of sets. Then we easily see that (Y,t) is a submartingale, so An C An+1, n E N 
for each t E To. Also since Bn C B0+01, we have Bn C An for each n E N and all t E To, 
so we have lim„x. P(ntEr0An) = 1. Hence Assumption 3.1 is satisfied for any µ E M 
satisfying p(To) = 1. Thus Theorem 3.3 implies that for such a p the OLA rule an(p) 
is (0, p)-Pareto optimal at n for every n E N. 

    In a withdrawal problem from the market. we can explain this model as follows. 
There is a company which owns a lot of factories producing a common article at many
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countries in the world. Let T be a set of all factories. 1V, represents demands for the 

article on USA at time n and is susceptible to the influences of the market. For a part 

of factories To. Xn represents demands at the factory t E To and is influenced from TV7, 
with time delay at. The aim of the company is to find a withdrawal time T from the 
market, at which all factories simultaneously stop to produce the article. 

    EXAMPLE 4.2 (WITHDRAWAL PROBLEM II). For t E T. let ft be a strictly in-
creasing real—valued function on real line. For (TV,,) given in Example 4.1, there is a 
subset To of T such that for each t E To and all n E N X i = ft(WL'n), for example, 
Xn = atti n + bt. where at and bt are constants such that at > 0. If (W1z) is in monotone 
case, i.e. B72 C Bn+l, n E N and lim„, P(B,,) = 1, we can easily check that Assump-
tion 3.2 is satisfied. Thus it follows from Theorem 3.4 that for any µ E M satisfying 
p(To) = 1, the OLA rule an (,u) is (0, µ)—Pareto optimal at n for every n E N. This 
model is also applicable to a withdrawal problem. 

   EXAMPLE 4.3 (WITHDRAWAL PROBLEM III). For each t E To C T. let ((In) be a 
bounded sequence of random variables defined on (Q,.F. P) and adapted to (TO). For a 
given constant 13t(0 < ,3t < 1) : discount factor, we define random sequence (Xn) by 

n 

                       Xt =kur                       n~tkt7 
k-0 

for t E To. We assume that for each t E To and any n E N 

E{U 1rn>0]>0, 

P(unt+1 <0U, <0)=1 

and 
P(Un{U < 0}) = 1. 

Then we easily see that tint > 0 if and only if Xn < E[X ,+1 1.T,], and that if U,, < 0 
then > E[X +1 l.Fk] for every k > n. Thus it follows that An = {Un < 0}, An C 
An+1,tE To, nEN and lim,P(An)=1. 

    Since 

ynt = —3t+1E[Ln+11.T] 
                                                                       n, 

it follows that if 

                    E[Lrn+11 -q > UtE[tnt+2(-Fn] 

for each n E N and any t E To, (Yn) is a submartingale, and hence that for any µ E M 
satisfying ,a(To) = 1 Assumption 3.1 holds under condition that limn„ P(nteT ,An) = 1 
or that To is finite. 

   If {Un < 0} = {U, < 0} for each n E N and any s.t E To, Assumption 3.2 is 
satisfied for such a p. 

    We can explain this model as other withdrawal problem similarly to Huang and 

Li(1990) and Ohtsubo(1991).
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Ex.aNIPLE4.4 (cF. CHOW et al.(1971)). For each t E To C T. let (TV) be a se-

quence of independent and identically distributed random variables with finite mean, 
and let 

mn= max 1VV, Xn =mn— cn 
0<k<n 

for each n E N, where (c;): 0 is any strictly increasing sequence of positive constants. 
Then we have 

         tttt+t                         Xn+1 — Xn= (Wnt+1—mn)—bn, 

where bn = cn+1 — cn. From Chow et al.(1971, p.56), it follows that if bn+1 > bn for all 
n E N, that is. (cn) is convex with regard to n, then An C An+1 for any n E N and 

lim P(An)=P(at<x)=1, 
n-,o0 

where 

           = inf{n > OPCn > E[Xn+1 l.Tn]} = inf{n > Omn > 3n} 

and 3n is the unique solution of the equation 

E[(til'n — 3n)+] = bn. 

    Now in order to check that Assumption 3.1 is satisfied for any µ E M satisfying 

tt(To) = 1, it suffices to show that (Yn) is a submatingale. We have easily 

E[Yn+i — Ynl Fn] = E[(Xn+1 Yn+2) — (Xn — Xn+1)LTn] 
                = E[(Wn+                             t—mtn)+—(Un+2—mtn+1)+~Fn]—(btn—btn+1)   l' 

Since rat, < mn+1,n E N and (WiCn) is i.i.d., 

E[(W,t+1 — mn)+ITn] > E[(147 nt +2 — mn+i)+11-n] 

Thus when (bn)n 0 is an increasing sequence for every t E To, it follows that E[Y,t+1 L-T1] > 
Yr , that is. (Y,t) is a submatingale.
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