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ON OPTIMALITY CONDITIONS FOR 

TRILEVEL DYNAMIC OPTIMIZATION 

          PROBLEMS

     By 

Yi-Hang SHAW'

                       Abstract 

   In this paper, we introduce trilevel dynamic optimization problems. 

Reformulating the trilevel dynamic problem as a single-level optimal con-

trol problem with state-control functional constraints, we derive the nec-

essary optimality conditions. We also show that the necessary conditions 

are sufficient for optimality in a 'convex' case.

Key Words and Phrases: trilevel dynamic optimizaion problems, nonsmooth analysis, 

necessary conditions, sufficient conditions, constraint qualifications.

1. Introduction 

    In this paper, we consider the following trilevel dynamic optimization problem 

(TDOP). In this problem, there are three players A, B and C whose controls are u, 
v and w, respectively. The players A, B and C minimize their cost functionals on the 
following manner: 
   For each u chosen by the player A, the player B selects a control v = v[u] E V[u], 

where V[u] is the set of optimal controls v of the following optimal control problem, 

P [u] : Minimize : JGi (t, y(t), u(t), v(t))dt + gi(y(1)) 

                                     0 

                subject to : y (t) = o(t, y(t), u(t), v(t)) a.e. 
y(0) E C2 

                             v(t) E U2(t) a.e.. 

Next, the player C chooses a control w = w [u, v] E W [u, v] (v = v [u] ), where W [u, v] is 
the set of optimal controls w of the following problem, 

                                     i Pc [u, v] : Minimize : fG2(t, z(t), u(t), v(t), w(t))dt + g2(z(1)) 

                                    0 

              subject to :z (t) = ''(t, z(t), u(t), v(t), w(t)) a.e. 
z(0) E C3 

                           w(t) E U3(t) a.e..
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    Among all controls (u, v. w) = (u, v[u]. w[u. v[u]]). the player A selects a control 
optimizing the following optimal control problem, 

P : Minimize :F (t, x(t), u(t), v(t). w(t))dt + f (x(1)) 

      f 

              subject to : x (t) = ¢(t, x(t). u(t). v(t). w(t)) a.e. 
                     x(0) E C1 

                        u(t) E U1(t) a.e. 
v E V[u] 

                         w E W[u, v]. 

   In this trilevel dynamic optimization problem (TDOP). . 

(x(.), y(.), z(.)) E AC([0, 1], km' x Rm2 x Rm3) is the state. 
(u(.), v(.), w(.)) E L1([0, 1], Rn' x R'12 x R"3) is the control. 
F : [0,1] x R'"l x Rn' x Rn2 x Rn3 —* R. 
f:Rm' -->R, 

          G1 : [0.1] x Rm2 x R7" x Rn2 — R, 

91 : Rm2 —f R. 

(D) : G2 : [0, 1] x Rm3 x Rn' x Rn2 x Rn3 —, R. are given functions, 
92:Rm3 --I R, 

¢ : [0, 1] x Rm' x Rnl x Rn2 x Rn3 --* Rini , 
:i% : [0,1] x Rn2' x Rn' x Rn2 -* Rm2 , 

0 : [0, 1] x Rm3 X Rrnl X Rn2 X Rn3 —p Rm3 
Ci is subset of Rm; (i = 1, 2, 3), 
Uz (t) : [0, 1] -f 2R' is set valued function (i = 1, 2, 3), 

where AC([0, 1]. Rmi x Rm2 x Rm3) denotes the space of absolutely continuous functions 

on [0,1] with value in Rmi x Rm2 X R'n3 
   A control (u, v. w) of (TDOP) corresponding to the state (x, y, z) is called admissible 

iff (x, u, v, w) satisfies the differential equation x= ¢(t, x, u, v. w) a.e. with initial con-
dition x(0) E Ci and control constraint u(t) E U1(t) a.e.. (y, v) and (z, w) are optimal 
solution for PB[u] and PC[u, v] respectively. An admissible control (ux, v,, w*) corre-
sponding to state (x*, yx, zx) is called optimal for (TDOP) iff (x„, u,, v*, wx) minimizes 
the value of cost functional of PA over all admissible controls corresponding to the states 
of (TDOP). 

    This trilevel dynamic optimization problem can be applied in various areas. For 
instance, in economics, the controls u are government's monetary or fiscal policies: the 

controls v are decisions of consumers which respond to the policies u; the controls w 
are decisions of firms which depend on the policies of government u and the consumer's 
decisions v. 

    Many papers have been devoted to bilevel programming problems (static optimiza-
tion). Yezza (1996) studied necessary optimality conditions for multilevel programming 

problem. For the bilevel dynamic optimization problems, the recent results are given 
by Ye (1995, 1997). In these papers. under some assumptions. Ye reduced the bilevel
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dynamic optimization problems to single-level optimal control problems without state-
control constraints. Then. Ye derived the necessary optimality conditions. 

    To our knowledge. there is no paper dealing with optimality conditions for general 
trilevel optimal control problems. The main purpose of our paper is to discuss the 
necessary optimality conditions for the above trilevel dynamic optimization problem in 

general case. This problem can not be reduced to a single-level optimal control problem 
which has no state-control constraints. Thus, we can not extend the results of necessary 
conditions in Ye (1995, 1997) to our (TDOP). Moreover, we show that our necessary 
conditions are also sufficient for optimality under some convexity assumptions on the 
functions and sets in (D). Using the results given below, we can also derive the optimality 
conditions for another type trilevel optimization problems (see Remark (i) below). These 
conclusions can be generalized easily to k-level dynamic optimization problems without 

other additional hypothesis. 
   Define the value function Li (u) : Li ([0, 1], Rm1-) -~ RU f+ DO U {—oo} for PB[u] by: 

                         i 

   Vi (u) in f fGi (t, y(t), u(t). v(t))dt + g1 (y(1)) 

                       0 

            (t) = (t, y(t), u(t), v(t)) a.e., y(0) E C2, v(t) E U2(t) a.e.}, 
the value function V2 (u, v) : L' ([0, 1], Rm') x Li ([0.1], Rm2) —+ R U {+oc} U {—DO for 
Pc [u, v] by: 

                       i 

  j%2(u, v) := inf{12G(t,z(t), u(t), v(t), w(t))dt + g2(z(1)) : 
                Z. (t) = v(t, z(t), u(t). v(t), w(t)) a.e., z(0) E C3, w(t) E U3(t) a.e.. 

Throughout this paper, by convention. we assume that the infimum over empty set is 

+0c. 
    Then, the above problem (TDOP) is obviously equivalent to the following single-
level optimal control problem, 

P : Minimize : JF(t, x(t),iu(t), v(t), w(t))dt + f (x(1)) 
                            0 subject to : x (t) = (6(t, x(t), u(t), v(t), w(t)) a.e. 

Y. (t) = co(t, y(t), u(t), v(t)) a.e. 
z (t) = v(t, z(t), u(t), v(t), w(t)) a.e. 

(x(0), y(0), z(0)) E C1 x C2 x C3 
(u(t), v(t), w(t)) E Ui (t) x U2 (t) x U3 (t) a.e. 

        fi                  oG1(t, y(t), u(t), v(t))dt + g1(y(1)) —1'i (u) < 0 

                   JG2(t, z(t), u(t), v(t), w(t))dt + g2(z(1)) — V2(u, v) < 0, 
                           0 which contains state-control constraints in which the value functions are nonsmooth in 

general. We shall study the optimality conditions for such optimal control problem in 
the next section.
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2. Nonsmooth Optimal Control Problem 

    In this section, we deal with the following problem: 

                           fl(NOCP):Minimize:Lo(t, x(t), u(t))dt + ho(x(1)) 
                                 subject to : x(t) = (I)(t, x(t), u(t)) a.e. 

                          x(0) E C 
                               u(t) E U(t) a.e. 

Gi(x, u) < 0 i = 1, ••, k, 

in which 
                               l            Gi(x, u) := fLi(t, x(t), u(t))dt + hi(x(1)) - Ai(u). 

                             0 Here, x(.) E AC([0, 1],Rm), u(•) E Ll([0, 1],Rn), Li : [0, 1] x Rm x Rn -> R, hi : Rm --~ 
R (i = 0, • , 1), Ai : Ll -> R U{+oc} U {-oc} (i = 1, • • , k), : [0,1] x Rm x Rn - Rm, 
C is a subset of Rm and U : [0, 1] 2Rn 

   We say that (x, u) E ACxL' is an admissible process for (NOCP) iff L. x(•), u(.)) 
(i = 0, • • •, k) are integrable and (x, u) satisfies all constraints in (NOCP). An admissible 
process (x*, a*) is called a local minimizer for (NOCP) iff (x*, u*) minimizes the cost 
over all admissible processes (x, u) satisfying Hx - x* 11 L- < E and Hu - u* ~~L~ < E for 
some € > 0.

2.1. Necessary conditions 

   Letting (x*, a*) be an admissible process for (NOCP), we assume that {C, U(t), 
I), Li, hi (i = 0, • • •, 1), Ai (i = 1. • • •, k)} satisfies (A1)-(A6) below. 
(Al): C is a closed subset of Rm. 
(A2): U(•) is a closed set-valued map, GrU is L x B measurable. There exists p(.) E Ll, 

   such that lul < p(t) for any u E U(t) a.e. t E [0, 1], where is the Euclidean norm 
for uERm. 

(A3): 1(t, x, u) is measurable in t, continuously differentiable in (x, u). There exists k(t) 
   E L'° and E > 0 such that for almost all t 

14)(t, xl, u1) - 4)(t, x2, u2)1 < k(t)(1 xl - x21 + (ul - u21) 

    for xi, x2 E x* (t) + €BR,,, , ui, u2 E Rn. BR" is the closed unit ball of Rm. 

(A4): Lo, • • •, Lk are measurable in t. and there exists kL(•) E L'° such that for any i E 
{0,•• k}, 

1 Li(t, xl, al) - Li(t, x2, u2)1 < kL(t)(1 xl - x21 + 1u1 - 1121) 

    for all xi, x2 E x*(t) + EBR- , ui, u2 E Rn a.e. t E [0,1 

(A5): There is kh > 0 such that for each i E {0, • • •,11, 

~hi(xl) - hi(x2)1 < kh 1x1 - x21
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    for any xi. x2 E x.(1) + EBR..- • 
(A6): There exists kA > 0 such that for any i E {1. • • •k}, 

~i(u1) — Ai(u2) < kA — u211 Li 

    for any u.'(•) with Hu — 11,11 Li < E, j = 1,2. 
Now, we state our main theorem for necessary optimality conditions. For simplicity, 

we abbreviated the arguments (t, x5(t), u5(t)) to [t], for instance 4)[t] := 4)(t, xx(t), ux(t)). 

    THEOREM 2.1. Let (x,(•), u„(•)) be a local minimizer for (NOCP). Assume that 
(A1)-(A6) are satisfied. Then, there exist Ai > 0 (i = 0, • •, k) with >k_0 Ai = 1, 
p(.) E AC([0, 1], Rm) and ((•) E Lx ([0, 1], Rn) such that 

(-15(0,0)) E V (1 ~) (p(t), 43[t]) — EAia(x u)Li [t] a.e. (2.1) 
i-1 

          = + (2, E EAiaAi(ux(•)), c2(t) E Nu(t)(ux(t)) a.e. (2.2) 
i-1 

p(0) E Ne(x,,(0)), —p(1) E EAiahi(xx(1))(2.3) 
                                                            i-1 

          Ai. (fLi[t]dt + h;(x„(1)) — Ai(u*)= 0 (i = 1, •••, k). (2.4) 

                    0 

    In particular, assume that there exists (x1, u1) E AC x L1 such that the following 
constraint qualifications (2.5) and (2.6) hold, 

   JL°((xx, ux). (xi, ui))dt + hi°(xx,x1) + (—.1i)°(ux, ul) < 0 for i E Ix (2.5) 

     0 

 xl = (1)/ [t]xi + 41'u [t]ui a.e., xi (0) E Tc (x (0)) and ui (t) E Tu(t) (ux) a.e., (2.6) 

where, I,, := {i E [1, • • , k] : Gi[t] = 0}. Then, we have )o > 0. 

We will give the proof of this theorem in Section 5. 

    REMARK. (i) In Theorem 2.1, V denotes the gradient in usual sense; a indicates 
the Clarke generalized gradient; Ne and Nu(t) are the Clarke normal cones associated 
with C and U(t), respectively; .~°, L°, h° are the Clarke generalized directional deriva-
tive; Tc (x5 (0)) and Tu(t) are the Clarke tangent cones associated with C and U(t), 
respectively (see Clarke (1983)). 

    (ii) To prove Theorem 2.1, we will follow the idea in the proof of Theorem 3.2.6 in 
Clarke (1983). By the analogous way, Ye and Zhu (1997) showed necessary optimality 
conditions for a bilevel perturbed differential inclusion problem (Theorem 3.1). How-
ever, in the proof of Theorem 3.1 they used a lemma (Lemma 6.2) whose proof seems 
insufficient. It seems that their Theorem 3.1 has not been proved.
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2.2. Sufficient condition in a convex case 

    Pinho and Vinter (1995) pointed out that for the nonsmooth optimal control prob-
lem without mixed state-control constraints, the weak maximum principle is sufficient 

for optimality in 'normal and convex' case, while the general form of the nonsmooth 
maximum principle may fail to be sufficient. For (NOCP), we show that the neces-
sary optimality conditions in Theorem 2.1 are also sufficient in a 'convex' case. These 
consequences can be used in the multilevel optimization problems. 

   Now, let us denote by (LOCP) the problem (NOCP) whose state equation is given 
by 

                ±(t) = A(t)x(t) + B(t)u(t) + b(t), 

where A(•) : [0, 1] —* R'"' and B(•) : [0, 1] — R„z"n are integrable, b(•) : [0,1] — Rm 
is measurable. 

We will impose the following hypotheses : 
(H1): C is convex set of Rm. 
(H2): U(t) is convex in Rn for almost all t E [0, 1]. 
(H3): Li (i = 0, • • •, k) are Lebesgue measurable in t, convex in (x, u). 
(H4): hi (i = 0, • • •, k) are convex functions. 
(H5): The functionals Ai (i = 1, • •  k) are concave. 

    Then, we have the following result: 

   THEOREM 2.2. Let (x,, (•), u, (.)) be an admissible process for (LOCP). Suppose that 
(H1)-(H5) hold. If there exist p(•) E AC([0, 1], Rn), C(•) E Lx ([0,1], Rm), Ai > 0 
(i = 1, • • •, k) and Ao > 0 such that conditions (2.1)-(2.4) are satisfied, then (xx(•), u,(•)) 
is a minimizer for (LOCP).

    REMARK. In Theorem 2.2, the notations a and N stand for the standard subdif-
ferential and normal cone in the sense of convex analysis, respectively. The condition 

(2.2) is understood as 

C = (i + C2, E EA,a(-A1(u.)), (2(t) E NU(t)(ux(t)) a.e.. (2.7) 
i=1 

    PROOF. In this convex case. the condition (2.1) implies that 

(gt) + p(t)A(t), —C(t) + p(t)B(t)) E EA,OLi [t].(2.8) 
i=1 

    Comparing the cost value of an arbitrary admissible process (x(•), u(•)) with that
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of (x,(.). ux(•)). and by (2.4) we see that 

J/'1       Lo(t.x,u)dt + ho(x(1)) -JLo[t]dt - ho(xx(1)) 
0 k 1k 

>Ao f(t.  x, u) -Li[t])dt + Ai(h(x(1)) - h(x(1))) 
  i-1 

 ~'1 -EAi(`1i(u) - Ai(u,,)) + f (p(X - Ax - Bu - b) - p(xx - Ax* - Bu, - b))dt 
i-1 

 1k 11 _-~~i (Li(t,x,u)-Li[t])dt-f(+A)(x -xx)dt 

                                     1 

   — f(pB -()(u-u5)dt + Eai(hi(x(1)) - hi(x,,(1))) + p(1)(x(1) - x*(1)) 
 °i=1 

k1 

+EA (-Ai(u) + Ai(u,)) - f(1(u - u,~)dt 
i=1° 

                 f1-x(0)) -(2(u - u,)dt} 
                               A*. 

Recall the definitions of subdifferential of convex functions and normal cone of convex 
sets. From (2.3), (2.7) and (2.8), it follows that 0* > 0. Thus, (x,, u,) is a minimizer 

for (NOCP). ^

3. Value Function 

   The value functions VI(u) and V2(u,v) of (TDOP) may be nonsmooth even if all 
functions in (D) are smooth. In such case, it is difficult to calculate their Clarke general-

ized gradients. On the differentiability, we recall the recent results given by Ye and Zhu 

(1997). To discuss the sufficient optimality conditions for trilevel optimization problems, 
we will also observe the convexity of the value functions under some assumptions. 

    For (o, G1) : [0, 1] x Rm2 x R121 x Rn2 --> Rm2 x R and (0, G2) : [0,1] x Rm3 x Rnl 
x Rn2 x Rn3   Rn12 x R. we set 

pt(t, y, u) {(cp(t, y, u, v), G1(t, y, u, v)) : v E U2(t)} 
: [0, 1] X Rm' X Rnl   2R"'2 XR 

H1(t, y, pi, u) sup {< p1, cp(t, y, u, v) > -G1(t, y, u, v)} 
vEU2 (t) 

: [0, 1] x Rm2 X Rm2 x Rn1 -> R 

vt(t. z, u, v) _ {(u(t, z, u, v. w), G2(t, z, u, v. w)) : w E U3(t)} 
: [0. 1] x Rrn3 X Rnl X R02 ) 2R"'3 x R 

H2(t, z, p2. u, v) sup {< p2, v(t, z, u, v, w) > -G2(t, z, u, v, w)} 
WEU3(t) 

:[0,1]XRm3xRm3xRn'xRn'—fR.
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To use the results in Ye and Zhu (1997), we assume (A7)-(A8) below. 

(A7): (Gi (t. y, u, v), ;0(t, y, u. v), (t, y. u), Hi (t, y•Pi, u)) ((t• y, Pi, u, v) E [0.1] x Rm? x 
Rn" x Rn' x Rn?) satisfies the following a)-d). 

    a) The functions G and p are measurable in t and continuous in (y, 11,v). The mul-
      tifunction 4;t has nonempty, compact, convex values. 

    b) There exists a nonnegative function 01 (t) E Lx, such that for almost all t E [0, 1], 

(Pt(t,yi,u1) C 40t(t,y2,u2)+91(t)(1y1 —Y21 + u21)BR"2, 

for any yi,y2ERm2,ui,u2ERn~. 

    c) For each u(.) E U1 := {u(.) E L1 : u(t) E U1(t) a.e.}, there exists a nonnegative 
     function pv,(•) E L1 [0, 1], such that :pt(t, y, u(t)) C p,(t)B for any y E Rm2 a.e.. 

    d) The partial Clarke generalized gradients a(y,pi )Hl (t, y, Pi, u) and auH1(t, y, pi, u) 
      are upper semicontinuous with respect to (t, y, pi, u). 

(A8): a)-d) above hold with (Gi (t, y, u, v), :p(t, y, u, v), 4%t (t, y, u). H1(t, y, p1 i u)) replaced 
    by (G2(t, z, u, w), (t, z, v, w),t(t, z, u), H2(t, z, p2, u)) (u = (u, v), (t. z, p2i u, w) E 

[0,1] x Rm3 X Rm3 X Rni+n3 X Rn3 ). 

   Let 'yi (t) := fo Gi (t, y(t), u(t), v(t))dt. Under the assumptions in Lemma 3.1 given 
below, according to the Filippov's Lemma (see Loewen (1993)), the optimal control 
problem PB [u] can be expressed by the following perturbed optimization problem with 
differential inclusion constraints: 

Minimize : g(y(1)) + 71(1) 
subject to : (y(t), :y1(t)) E :t(t, y(t), u(t)) a.e. 

                      y(0) E C2. 

    Recall a well-known result: if y is an optimal state (corresponding to an opti-
mal control v) for PB [u], then there exists a Hamiltonian multiplier p1 E AC with 

                                                             (t)) E a(y,poHl (t, y(t), pi (t), u(t)) a.e., p1(0) E Nc, (y(0)) and —Pi (1) E 
ag1(y(1)) (see Clarke (1975)). 

We put 

Si, := {y E AC : y is an optimal state for PB [u] } 

~~h (y) :_ {pi E AC : (—P1(t), y(t)) E a(y,poHi (t, y(t), p1(t), u(t)) a.e., 
pi(0) E Nc, (y(0)), —p1(1) E agi(y(1))} 

auH1(•, y(•), p1(•), u(.)) := {( E L; ((t) E auH1(t, y(t), pi (t), u(t)) a.e}. 

Thus, using the results of Ye and Zhu (1997), we obtain 

    LEMMA 3.1. Assume that gl is locally Lipschitz continuous, (Al) and (A2) hold 
for C = C2 and U(t) = U2(t), respectively, and (A7) is satisfied. Then, Ii(u) is locally 
Lipschitz continuous and 

—aVi(u) C cl co{auHi(.,y(.),p1(•),u(•)) : y E Sn, Pi E Hu(y)}, 

where cl*co denotes the weak convex closure.
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    Similarly, for the value function 1:2(u. v) we have 

    LEMMA 3.2. In addition to (A8), assume that g2 is locally Lipschitz continuous, 

(Al) and (A2) hold for C = C2 and U(t) = U3(t). respectively. Then, V2(u,v) is locally 
Lipschitz continuous and 

-av2(u ,v) C cl*co{0(li,,)H2(•,z(.).p2(.),u(.),v(•)) : z E S(0 ). P2 E AI(u.2)(z)}, 

where 

3(~.t)H2( z(•),p2(.), u(•), v(•)) := {( E L°°; ((t) E a(u,,)H2(t, z(t),p2(t). u(t), v(t)) a.e.}, 

S(u,v) := {z E AC : z is an optimal state of Pc [u, v] }, 

11I(u.v)(z) := {p2 E AC: (-p2(t).z(t)) E a(2,,p2)H2(t,z(t),p2(t),u(t),v(t)) a.e., 
pi(0) E N'c2(y(0)). -Pi(1) E agi(y(1))}. 

    Next, we proceed to the convexity of the following value function: 

11x (u) := in f fG(t, y(t), u(t), v(t))dt + g(y(1)) :y(t) = A(t)y(t) + B(t)u(t)+ 

                   0 

                    D(t)v(t) + b(t) a.e, y(0) E C, v(t) E U(t) a.e.}, 
where (y, u, v) E AC([0,1], Rm) x L1([0, 1 ]. R°1) x Li ([0, 1], Rn2 ), G : [0,1] x Rm x 
R°' X R02 --> R, g : Rrr' — R, C C Rm, U(.) : [0, 1] -4 2R„2, A(•) : [0, 1] Rmxm 
B(.) : [0,1] -* Rraxn1 D(•) : [0,1] -+ Rm,xn2 and b(•) : [0,1] -> Rm. 

    LEMMA 3.3. Suppose that (H1) and (H2) are satisfied, A(.) is integrable, B(.), 
D(.), b(•), G(•. y, u, v) are measurable, then the following statements hold. 

    (i) If G(t, •, •, •) and g(•) are convex, then V; (u) is convex. 
    (ii) If G(t, •, •. v) and g(•) are concave, then V(u) is concave. 

    PROOF. Let ui, u2 be arbitrary elements of 1,1[0, 1], and put u = Aui + (1 — A)u2 
for any A E (0, 1). We define 

N(u) := { (y, v) E AC x Li : y = Ay + Bu + Dv + b a.e., y(0) E C, v(t) E U(t) a.e.} 

           e(y, u, v) := fG(t,y(t),u(t), v(t))dt + g(y(1)). 
                                  0 Then. we have 1:,(u) = inf e(y, u, v). 

(y,z')EN (a) 
(i) If N(ui) or N(u2) is empty, then AV (ui) + (1 - A)V. (u2) = +x > V,,(0. Thus 
we may assume that both N(ui) and N(u2) are not empty. For any (yi,vi) E N(ui), 

(y2, v2) E N(u2), let 

y= Am, +(1-A)y2,v=wi+(1-A)v2.
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It is easy to see that (y.z,) E NO). Noting that O is convex, we see 

ae(y~, ui vi) + (1 — A)0(y2, u2. v2) > O(y, u. > inf e(y, u. v). 
(y,v)EN(a) 

Hence, we have 

AL'*(ui) + (1 — A)Vx(u2) = A inf O(y, ui, v) + (1 — A) inf e(y, u2, v) 
(y,v)EN(ui)(y.v)EN(u2) 

                     > inf e(y, u, v) = l x (u). 
(y,v)EN(e) 

(ii) If N(u) = 0, then Vx(u) = +oo > AV (ui) + (1 — A)V (u2). Thus, we may assume 
N(u) � 0. For every (y, v) E N(u), let yz be a solution of following equation, 

        (t) = A(t)y(t) + B(t)ui(t) + D(t)ti~(t) + b(t) a.e 
    y(0) = Y(o)(i — 12). 

Then, we have 

                = Ayi + (1 — A)y2, (yi, v) E N(ui) (i = 1, 2). 

By concavity of G and g, we see that 

O(Y, u, v) > Ae(yi, ui, v) + (1 — A)0(2, u2, v) 
> A inf O(y, u1, v) + (1 — A) inf O(y, u2, v), 

(y,v)EN(ui)(y.v)EN(u2) 

which implies that 

V (u) = inf O(y, u, v) > a inf O(y, u1, v) + (1 — A) inf O(y, u2, v) 
(y,v)EN(C)(y,v)EN(ui)(y,v)EN(u2 ) 

> AV. (ui) + (1 — a)V*(u2). 

We have therefore proved this lemma. ^

4. Optimality Conditions for (TDOP) 

   In this section we derive the optimality conditions for the trilevel dynamic opti-
mization problem (TDOP). A simple example will be given in Section 5. 

    In Theorem 4.1 and Corollary 4.2 given below, a indicates the Clarke generalized 

gradient and Nc, ,Nu, (t) (i = 1, 2. 3) denote the Clarke normal cones, while in Theorem 
4.3, these stand for the subdifferential and the normal cones in the sense of convex 
analysis, respectively. 

    First we derive necessary optimality conditions for (TDOP). 

    Let (xx, yx. zx: ux. v.,, w,) = (xx: ux) be a local optimal solution of the trilevel op-
timality problem (TDOP), i.e. (xx : u*) is a local minimizer for the optimal control
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problem P. Notice that P can be easily written in the form (NOCP) with 

x(•) := (x('), y(.), z(.)) E AC([0. 1]. R'n). m = m1 + m2 + m3 
u(•) := (u(•), v(•), w(')) E L1([0, 1], R°), n = nl + n2 + n3 

           C := C1 x C2 x C3, U(t) := Ui(t) x U2(t) x U3(t) 
            (1)(t. x, i) :_ (0(t, x, ii). (t, y, u, v), (t, z, u)) (

D*) L
o(t, x. u) := F(t, x, u), ho((0)) := f (x(0)) 

L1(t, x, u) := G1(t, y, u, v), h1(x(0)) := g1(y(0)) 
L2(t. , u) := G2(t, z, u), h2((0)) := g2(z(0)) 
A1(2l) := tii(u), A2(2t) := V2(u,v). 

    If the assumptions in Theorem 2.1 are satisfied, then there exist an absolutely 
continuous function p(•) : [0, 1] —p Rmi x R'n' x Rm3, a measurable essentially bounded 
function ((•) : [0,1] — R°' x R°2 x Rn3 and Ao. A1, A2 > 0 with o Ai = 1, such that 

(-)5(t), ((t)) E V (2,u)H(t, xx, a*) — a(-,u)E(t, x, ux), (4.1) 

= µ1 + P2, —µ1 E Ala0Vi(u*) + A2a072(u*, v*), ti2(t) E NU(t)(u*(t)) a.e., 

P(0) E Nc(x*(0)), —P(l) E Aoa2f(x*(1)) + Aiaxgi(y*(1)) + A2a-g2(z*(1))• 

Here, we set 

     H(t,x,u)):= (p',c/:)(t,x,u,v,w))+(p2, ,y,u,v))+(p3,1/5(t,z,u,v,w)), 

E(t x u) :_ A0F(t,x,u,v,w) +A1G1(t,y,u,v) +A2G2(t,z,u,v,w). 

    Now we arrive at the following conclusion. 

    THEOREM 4.1. Suppose that (x*, y*, z*; u*, v5, w,) is a local minimizer for (TDOP). 
Let assumptions (A1)-(A6) hold for the data {C, U(t), 4), Li, hi (i = 0, 1, 2), Ai 
(i = 1, 2)} in (D*) associated with (x*; u*). Then, 

    (i) there exist p(') = (P1(•),P2('),p3(')) E AC, ((') = ((1(•), (2('), (3(-)) E Lx and 
Ao, A1, A2 > 0 with EZ_o Ai = 1, such that (4.1) and the following (4.2)-(4.5) hold. 

((i,(2,(3) = (6 + +(1,(2 +(4 .2) —~l E Aia0Vt(u*), —(C1, (2) E A2a(0,,0172(u*, v*) 

((1, (2, (3) E Au1(t)(11*(t)) x NU2(t)(v*(t)) x NU3(t)(w*(t)) a.e. (4.3) 

(Pi (0), P2(0), P3(0)) E Ncr (x* (0)) x Nc9 (y= (0)) x Nc3 (z* (0)) (4.4) 

— (pl(1),p2(1),p3(1)) E Aoa.rf(x*(1)) x Alaygi(y*(1)) x A1a,g2(z*(1)).(4.5) 

    (ii) If the constraint qualifications (2.5) and (2.6) in Theorem 2.1 hold for the data 
{Ai, Li, hi (i = 1, 2). (1), C. U(t)} in (D*), then Ao > 0.
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   (iii) If F. G1. G2 are convex in (x: u), then (4.1) implies that 

—p1(t) E p1(t) V1o(t,x*(t),u*(t)) — AO, F(t.x*(t),u*(t)) 
—p2(t) E p2(t) •V2 (t.y*(t),u*(t),v*(t)) — AlayGi(t,y*(t),u*(t),v*(t)) 
—p3(t) E p3(t) • 7:0(t. z*(t). u*(t)) — A23:G2(t. z*(t), ux(t)) 
(i(t) E H(t,*(t). ux(t)) — E(t,*(t), ux(t)) 
(2(t) E H(t, *(t),a*(t)) — E(t. ,,(t), ;JO) 
(3(t) E pl (t) cu.0(t, x* (t), u* (t)) + p3(t) • V (t, z* (t), 14(0) ) 

—aoau.F(t. x*(t), ux(t)) — A2au.G2(t, z*(t), a*(t)). 

    Combining Theorem 4.1, Lemma 3.1 and Lemma 3.2, we obtain 

COROLLARY 4.2. Assume that (x*, y*, z*; a* v* w*) be a local minimizer for the 
(TDOP), the assumptions (A1)-(A5) hold for the data {C, U(t), 4), Li, hi. i = 0, 1, 2} in 
(D*) associated with (x*; a*). Let (A7) and (A8) hold. Then there exist (pi(•), P2 0, p3(•)) 
E AC, ((1()2()(3()) E L'° and A. A1, A2 > 0 with ~~~i = 1, such that (4.1), 
(4.3)-(4.5) and the following (4.6) hold. 

((1,(2,(3) = ((1 +(1 +(1.(2 +(2,(3) 
  —(1 E cl*co{a.tiH1(,a(•),q(.),a*(•)) : a E S,, q E M (a)} 

         E clco {a(u,,z)H2(•, a(•), q(•), u,(•), v*(•)) ,„), q E ~1~~_ ~, )(a)} 
                                                       (4.6) 

    Now we replace the state equations in (TDOP) by linear systems 

      ±(t) = A1(t)x(t) + B1(t)u(t) + D1(t)v(t) + El (t)w(t) + b1(t) a.e. 

Y(t) = A2(t)y(t) + B2(t)u(t) + D2(t)v(t) + b2(t) a.e. 

Z(t) = A3(t)z(t) + B3(t)u(t) + D3(t)v(t) + E3(t)w(t) + b3(t) a.e. 

where Ai (t) : [0, 1] —> Rm` x m, , Bi (t) : [0. 1] Rm; "2' . Di (t) : [0, 1] —* Rm; "2 (i = 
1.2,3) and Ei (t) : [0, 1] — Rm' "3 (i = 1,3) are integrable, bi (t) : [0.1] —* Rm' 
(i = 1, 2.3) are measurable. We denote this problem by (TDOP*). 

    Notice that the condition (2.4) always hold for P. From Theorem 2.2 and Lemma 
3.3 we get directly the following sufficient optimality conditions for (TDOP*). 

    THEOREM 4.3. Assume that the control (u*, v,, w*) corresponding to (x*, y*, z*) is 
admissible for (TDOP*). Let the data {C. U(t), Li, i = 0, 1, 2} in (D*) satisfy (H1)-
(H3), respectively, G1(t, •. •, v), G2(t, •, . •. w) be concave, and gi (•). g2(•) be affine. If 
there exist (pi ,p2,p3)(•) E AC, ((1,(2,(3)(•) E L'° and ao > 0, A1, A2 > 0 such that 
(4.1)-(4.5) hold, then (x*, y*, z*; a*, v*, w*) is an optimal solution of (TDOP*). 

    REMARK. For the trilevel optimization problem (TDOP), sometimes, the player 
A has to guarantee that the costs of the players B and C are not too large. The problem
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PA of (TOCP) with such constraints is stated as follows, 

Minimize : JF(t, x(t), u(t), v(t), w(t))dt + f (x(1)) 
                            0 subject to : x (t) _ o(t, x(t), u(t), v(t), w(t)) a.e. 

x(0) E C1 
                   u(t) E Ul (t) a.e. 

vEV[u] 
w E W [u, v] 

           foi Gi(t, y(t), u(t), v(t))dt + gi(y(1)) <Mi 

                fG2(t, z(t), u(t), v(t), w(t))dt + g2(z(1)) 
where 1'~1i, 11,72 > 0. From the results in Section 2 and 3, we can also get optimality 

conditions for this trilevel optimization problem.

5. Proof of Theorem 2.1 

    PROOF. Let us omit the variable t when this does not cause confusion. We put 

M := { (x, u) E AC x Li : ±(t) = 43.(t, x(t), u(t)) a.e, x(0) E C, u(t) E U(t) a.e.} 

A((x1, u1), (x2, u2)) Hui — u211L1 + Ixi(0) — x2(0)1 

It is evident that 0 is a metric, and Al is a complete metric space with respect to A. 
    For given e > 0, Let 

FE (x, u) := max{Gi (x, u), • • •, Gk(x, u), F(x, u) — F(xx, ux) + €2}, 

F(x, u) :=  Lo(t, x(t), u(t))dt + ho(x(1)). 

Then, we see that FE(x, u) > 0 for all (x, u) E Al. It follows that 

FE(x*, u,e) < inf FE(x, u) + c2. 
(x.u)EM 

    Thus, by the Ekeland Variational principle, we have 

LEMMA 5.1. There is an element (xo, uo) E M, such that (x o, uo) minimizes 

I E(x, u) + eA((x, u), (x0i uo)) 

over all (x, u) E , and 

((xx, ux), (xo, uo)) < e. Fe(xo, uo) < €2.(5.1) 

    The following Lemma 5.2 will be used to derive Lemma 5.3.
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   LEMMA 5.2. Let Li = {u E Li[0.1] : u(t) E U(t) a.e.}. If uo(•) E L'. then 

   /i•i 

            Jinft)luo(t) —v~dt = inuluo(t) — u(t)~dt. (5.2) 

                    0 

    In fact, by the measurability theorem (see Loewen (1993)). there is a sequence of 
Lebesgue measurable functions vn such that U(t) = cl{vn(t): n = 1, 2, •1. 

   Let kli(t) = inf uo(t) — vl . For any e° > 0. there exist vt E U(t) and no E N, 
,EL (t) 

such that 
T(t) + e° > luo(t) — vo(t)1 , Ivo(t) — v,„ (t)1< e°. 

Then, we have 

 inf luo (t) —vn(t)1 >>tiinft)inf uo (t) —vl> l uo (t) — vo (t)1— e° > I uo (t) — vno (t)1— 2c° 
                 > inf uo(t) —1),(01—  2e°, 

nEN 

which implies that 
                0 < inf l uo (t) — v(t) l — (t) < 

nEN 

Thus, (t) = inf luo(t) — vn(t)I . It is obvious that. for every u(•) E U, 

                inf luo(t) — vl dt < fluo(t) — u(t)l dt. (5.3) 
                      vEU(t) 

    For E > 0, consider a multifunction 

C2(t) := u E U(t), 1u0(t) — ul < vEf luo(t) —vl+2E, 
which is measurable with closed nonempty values. By the Measurable selections Theo-
rem (see Loewen (1993)), Q admits a measurable selection t(•). Since u is measurable 
and u(t) E Q(t) a.e.. We see that u(•) E U, and 

luo(t) — ft(t)1 dt < /inf luo(t) —vldt +E.(5.4) 
00vEU(t) 

Combining (5.3) and (5.4), we get (5.2). 

LEMMA 5.3. The (x0, uo) above is a local minimizer for the function. 

A(x, u) := FE(x, u) + c ((x, u), (x0, u0)) + K2 f±(t) —CD(t, x(t), u(t))1 dt 

                                        i 

                                                      0 

+Kidc(x(0)) + Ki fdu(t)(u(t))dt, 
                                     0 where dc(x(0)) , dj(t)(u(t)) denote the distances of the points x(0) and u(t) to the sets 

C and U(t), respectively, and 

K~ = K(KK' + 1) + e), K2 = KK. 
K = max{IlkLilL— + kh,11kLHLx + k.,}, 

              K = exp fk(t)dt, K' = 111IILx• 

                                  0
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    Suppose this lemma to be false. Then, there exists a sequence {(xi,ui)} converging 
to (x0, no) with _1(xi. u1) < A(xo, no). Let A(xi. ui) = A(xo. no) — 20K1 (where Ei > 0). 

By Lemma 5.2 there is 2li(•) E Lf such that 

                  — uiIlL, C Lvin,ft)tt/JO—v~dt + E. (5.5) 
                              Since C is closed, there are ci E C (i = 0 • • • k) such that dc(xi(0)) = xi(0) — . Let 

xi(t) = xi (t) — xi(0) + ci, thus for sufficiently large i, it holds that 

        ifxi(t) — 4.(t,xi(t)ui(t))dt 
 1(5.6) 

< — 4.(t,xi(t),ui(t))1 dt + K' — + lxi(0) — ci1)• 

0 Let xi(t) be a solution of the following integral equation 

                                             t 

               y(t) = xi(0) + f42.(t y(t),ui(t))dt. 
                                          0 We see that (xi, ui) E M with xi(0) = xi(0) and 

pi(t) — xi(t)I < f((t, ~,)—i)dt 
    frt 

              <
Jo0(4.(t,-±i,ui)—xi)dt +J(~(txZ~uZ)—~(txiui))dt 

   tt              < )(t, xi, ui)— xi)dt + Jk(t)~xi(t) —xi(t)1 dt . 
  00 

It follows that 

Pi — < K f(t) —(t, ±i(t), ui(t)) dt. (5.7) 
                                      0 (5.6) and (5.7) lead to 

                             i Pi — xil1Lx < K 1±i(t) — ,D(t, xi(t) ui(t))1 dt + KK' — uiULi (5.8) 

0 +(KK' + 1) — cil . 

From (A3). (5.8) and (5.5), we have 

         rE(xi, 2Gi) + EA((x2, uz), (x0, u0)) 
    < F(xi, ut) + EA((xi, ui), (x0, u0)) + K(Il ui — uill L~ + Pi — xill c) 

             — + lxi(0) — ci~) 

                                                     1 

     < FE(xi, ui) + € ((xi, ui), (x0, u0)) + KK J~i(t)— 4.(t, xi(t), ui(t))1 dt 

                                                    0 +(K(KK' + 1) + E)(/inf~ui(t)—v~dt + Ei +~xi(0)—ci~) 
                             0 vEU(t) 

     = A(xi, ni) + EiK1 

     < A(xo, no) 
      = FE(xo, uo),



132 Y.SH_ao

which contradicts Lemma 5.1, so Lemma 5.3 holds. 
    By Lemma 5.3, we know 0 E a_1(xo. uo), i.e. 

       0 E aFE(xo. uo) + a€A((xo, uo), (xo. uo)) + aKidc(x0(0))+ 

ax,J
OdU(t)(uo(t))dt + aK21.i0(t) —4)(t, x0(t), u0(t))1 dt.(5.9) 

f 

    According to the formulas of the generalized gradients (see Clarke (1983)), we have 
the following. 

(a) For every e E aFE(xo, uo), there exist functions ei, 11i (i = 0, • • •, k) with (ei, rli)(t) E 
aLi(t, xo(t), uo(t)) a.e. and vi E ahi(x0(1)) (i = 0, ..., k), E —aAi(u0) (i = 1, ..., k), 
Ai > 0 for i E Io(xo, uo) with Eici(x o,,o) Ai = 1, such that for any (x, u) E AC x Li 

e(x, u) = EAi f{(i.x)  +OW,u)}ds+EAi (vi, x(1)) + Ai f(fli,u)ds, 

                                                         where, Io(xo, uo) :_ {i E [0...., k] : Gi(xo, uo) = FE(xo, uo)}. Go(xo, uo) := F(x,u) — 
F(x,, u,) + E2, and Ai := 0 for i I(xo, uo). 

(b) For every E acA((xo, uo), (x0, uo)), there are function 02 with 02(t) EEBTv, a.e. 
and 01 E EBR— such that for every (x, u) E AC x Li 

~(x(0) u) = (91, x(0)) + J(02, u) ds. 

                                                  0 (c) Every e E aKldc(x0(0)) corresponds to a mapping r E Kiadc(xo(0)) with 

-(x) = (r, x(0)) for any x E AC. 

(d) For every E OKi fo dU(t)(uo(t))dt, there is a function with (t) E Kiadu(t)(uo(t)) 
a.e. such that 

e(u) = J(~,u) ds for any u E L'. 

                              0 (e) Finally, for every e E aK2 fo 1 xo(t) — its(t. xo(t). uo(t))1 dt, there exists 

             (P, E a(,,x,li)K21xo(t) — (t, xo(t), uo(t))1 (5.10) 

such that 

(x, u) = J{(p, x) +(µ1, x) + (µ2, u)}dt for any (x, u) E AC xL'. 

                 0 Since O(x,x;u)(• — (x, u)) = {(1, —clx. —1)u)}. by Jacobian Chain Rule, (5.10) implies 
that 

(µi, u2) = —V(x,u) (P, (xo, uo)) •(5.11) 

    Then, we arrive at
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    LEMMA 5.4. There exists Ai, ~i r~i. vi (i = 0 .. k). (i = 1 ... k), 71, 91, 82, r p, 

ill, µ2 stated in the above, such that for any (x. u) E AC x Li 

k 1kk     0 = EAi {(~~ x) + (ni, u)}dt + EAi (vi, x(1)) + EAi f(fi. u) dt 
   i=o °i=o 

11 

         +         (01,x(0))+ f(02, u) dt +(r.x(0)) +f(~,u) dt 
   00 

        fop, x) + (u1, x) + (p2, u)}dt. 
    Separating x and u, from the above equation we get 

1 k1k 

 fo~aii+µ1ixdt +f(p, x) dt +(EAivi , x(1)+ (91 + r, x(0)) = 0, (5.12) 
i=ooi=o 

f1m +µ2+~i~ii++ 82ads = 0 for any u E L'. (5.13) 
 i=oi=i 

    Hence, (5.13) shows that 

  kk 

Eaini(t) + 112(t) = —EaMi(t) — fl(t) — 92 a.e.. (5.14) 
i=o i=t 

According to Dubois-Reymond Lemma (see Hestenes (1980)), using standard variational 
arguments, from (5.12), we observe that 

t k 

p(t) _ f(aii+µ1)ds+ r +641 (5.15) 
i=0 

        kk 

p(1) = —EAivi E —EAiahi(x0(1)) (5.16) 
i=o i=o 

                p(0) = r + 91 E K1adc(x0(0)) + 01. (5.17) 

By (5.15), we see that p (t) — Ek=o Ai i = µ1. Letting ( = — Ek_o Aini — µ2i from (5.11), 
we have 

(—  (0,0 E V(x,u) (p, 1'(xo, uo)) — EAia(x,u)Li(t, x0, uo) a.e.. (5.18) 
i=i 

Letting (i = E i Aini + 02 and (2 =17, by (5.14), (a) and (d), we get 

_ + (2,(1 E —EAia=1i(uo(')) + 92, (2(t) E Nu(t)(u0(t)) a.e.. (5.19) 
i=i 

Notice that p, (, Ai, i = 0... k depend on E. From (5.1), we know that (xo, uo) 

(x*, u,) as E ---> 0. Letting E 0, as in the proof of Theorem 3.2.6 in Clarke (1983),
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from (5.16)-(5.19), it follows that there are p E AC, E L'° and Ai > 0. i = 0, • • •, k 
with Eko Ai = 1 such that (2.1)-(2.3) hold. 

    Observe that for sufficient small c > 0, if io E {i E [1, • • •. k] : Gi(xx. ux) < 0} . 
then Go,(xo, uo) < 0. It is easy to see that io Io(xo, u0). Hence, we have Ai0 = 0, which 
yields (2.4). 
   Finally, let (2.5) and (2.6) hold. If Ao = 0. then Ek_i Ai = 1, (2.1) and (2.3) imply 

that 

kk 

(15 + P4`4x [t], —c + pc1)u. [t]) e EAia(x,„)Li [t], —p(1) E EAjahi(xx (1)). (5.20) 
—1i-1 

Then, from (2.2), (2.4)-(2.6) and (5.20), it follows that 

1 

    0 > EA,fL~°((xx,u,;~),(xi,ui))(t)dt + hi°(xx, xi) + (—=~i)°(ux,u1) 
              i-1 

 1/1 
      > J (15x1 +p)x[t]xi —~ul+p4)u[t]u1)dt — p(1)xi(1) + J c1uidt 

              1   I 

 O10 

=(—pxl+p)x [t]xl+p~u[t]u1)dt — p(0)x (0) —J(2uidt 

                                                               0 

                            1 = —p(0)xi(0) — f(2uidt 
                           0 > 0, 

which is a contradiction. Thus, we have Ao � 0, which completes the proof. ^ 

Now, we give a simple example. 

EXAMPLE 5.5. Let us consider the following trilevel dynamic optimization problem. 

P1 : Minimize : x(1) + f (~x — ul — v — w) dt 

                                             0 

                      subject to : x= u — v — w a.e., x(0) = 0 
u > 0 a.e. 

vEV[u], wEW[u,v], 

where V[u] is the set of optimal controls v of the following problem, 

                                                  1 P2 [u] : Minimize : y(1) + fydt 

                                                   0 

                        subject to : y= u + v a.e., y(0) = 0 
                                           v > 0 a.e., 

W[u, v] is the set of optimal controls w of the following problem, 

                                 f1P2[u. v] : Minimize: z(1) +zdt 
                                        subject to : z= u + v + w a.e., z(0) = 0 

w > 0 a.e..
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Here. (x. y. z) E AC([0. 11 R3) is the state, (u, v, w) E L1([0.1]. R3) is the control. 
    For this problem, it is easy to see that 

         Vi (u) := in f y(1) + J ydt : y= u + v, y(0) = 0, v > 0 

                                      0 

 _          f'(u+fudT)dt 

                                    1 

       172(1iI, v) := in fz(1) +zdt : z= u + v + w, z(0) = 0, w>0 
                1 f

(u_u+v++v)dTdt 
                       0 Then, P1 is equivalent to the following optimal control problem, 

                                          /'1 
                                         u       P1:Minimize: x(1)+J(~x-1—v—w)dt 

                                        0 

                subject to : x= u — v — w a.e., x(0) = 0 
y= u + v a.e., y(0) = 0 
z= u + v + w a.e., z(0) = 0 

u > 0, v>0. w > 0 a.e. 

                    y(1)+ Jy — u —JudTdt<0 

                                       0 

      r1                    z(1)+J(z_u_v_ft(u+v)dy)dt<o. 
                                       0 If (x;„ y5, zx; u,,, v5, w*) is a local minimizer for P1, then vx = wx = 0 and by Theorem 

2.1 there are Pi, P2, P3 E AC, (1, (2, (3 E Lx and A1, A2, A3 > 0 with E3-1 A = 1 
such that (2.1)-(2.3) hold. 

    Here, (2.1) is equivalent to that 

                                                ft(—P1,(1) _ (0,P1 +P2 +P3) —A1(1,-1) — A2(0,8(-u -udr)) 
                                     /'               -A3(0, a2,(-v -Jvdr)) a.e.. 

     °(5 .21) f
or some a E [—1, 1], 

                                                                t —P2(t) _ —A2, = —Pl +P2 + P3 + Al + A3av (v + fvdr) 
                                                            0 —153(t) _ —A2, (3 = —p1 +P3 + Al • 

(2.3) implies that 
—pi(1) _ A1, —P2(1) = A2, —p3(1)) _ A3.(5.22) 

    Combining (5.21) and (5.22) we see that 

P1 = ctA1t — ctA1 — A1, P2 = A2t — 2A2, P3 = A3t — 2A3, (5.23) 

and for any u0 E L1 

                                                                 /'t 
   ((1,u0) = (p1 + P2 + P3)110 + (eAi + A2 + A3)110+(A2 + A3)Ju0dT a.e.. (5.24) 

                                                                 0
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    If u* � 0. i.e. there exists I E [0,1] whose measure is not zero such that u* (t) > 0 
for any t E I, then from (2.2) it follows that (1(0 = 0 for a.e. t E I. Put u0 - 1. (5.24) 
implies that 

(AA]. t — Al + 2A2t — A2 + 2A3t - A3 = 0 for a.e. t E I. 

which contradicts that Ai, A2, A3 > 0 and E3—i = 1. Therefore u* = 0. 
   Here, it is not difficult to check that there exist Ai > 0 with pi, p2, P3, (i, (2, (3 and 

A2, A3 stated above such that (2.1) and (2.4) hold. Thus, by Theorem 2.2 we know that 

(x*, y*, z*; ux, vx, w*) = 0 is an optimal solution for P1.
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