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                       Abstract 

   The values of constants appearing in error estimates of approxima-
tions by finite element methods play an important role in numerical verifi-
cation methods for elliptic equations (Nakao and Yamamoto(1998),Yam-
amoto and Nakao(1995) , etc.).For efficient implementation of the verifi-
cation algorithms on computers, it is necessary that these constants can 
be estimated as close as possible to their optimal values. In Nakao,Yam-
amoto and Kimura(1998), the optimal constant was derived for quadratic 
elements as well as a nearly optimal value for cubic elements. In this 

paper, we establish a method to calculate the values of constants for 
approximation by piecewise polynomials of arbitrary degree and to give 
bounds on the difference between the constants so calculated and optimal 
values.

1. Introduction 

We consider an interval I C R and Sobolev spaces on it, denoted by L2(I), H1(I), 
Ho (I), and so on, as usual. The inner product in L2(I) is represented by (• , • ), and the 
norm in the same space by 11 11. 

-'e divide the interval I into subintervals and consider a piecewise polynomial space 
Sh (I) C Ho (I) of arbitrary degree. Let u be a function in Ho (I) n H2 (I) and uh E Sh its 
approximation which satisfies 

                   (u' — u ') = 0 for d'0 E Sh(I). 

Since uh is the orthogonal projection of u into Sh with respect to the inner-product in 
Ho , 

11u/ — uhll <_ 11u' — ~~~ for dV) E Sh(I), 

holds. and we refer to 2c9 as the Ho-projection of u into Sh(I). 
    For u and uh, the following error estimate holds : 

11u/ — uhll <_ Cohllu„II (1.1)
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where h is the maximal size of subintervals, and Co is a constant independent of u and 

h. The purpose of the present paper is to calculate the value of Co. 

    As is well known. an Ho-projection into a piecewise polynomial space coincides 
with the interpolation of the function at each node (e.g., Schultz,1973). Therefore, we 
shall reduce our problem to the error estimation for local approximations of functions 
on an interval e - [0, h], vanishing at the terminals. 

   Let QN(e) with N > 0 be a polynomial space defined by 

     QN(e) = {p(x) p is a polynomial of degree N + 1, p(0) = p(h) = 0} 

and, for an arbitrary function u E H(e) n H2(e), let Py a be the local Ho-projection of 
u into QA-(e) defined by 

                 (u' — (PNu)', v')e = 0 for dv E QN(e), 

where (• , • )E denotes the inner-product of L2(e). We look for the minimal constant Co 
which satisfies an error estimate of the form: 

(PNU)'ll e < C0hllU„Ile, (1.2) 

where li • IIE is the norm of L2(e). Note that the constant in (1.2) gives an upper bound 
in (1.1) when Sh(I) is a piecewise polynomial space of degree N +1, and that it can also 
be extended into multi-dimensional problems (cf. Nakao,Yamamoto and Kimura,1998). 

    The following lemma provides a basis for error estimates of the approximation by 
piecewise linear functions. 

    LEMMA 1.1. Wirtinger's inequality (Theorem 1.2 in Schultz,1973) 
   If u E Ho (e), then                         

Il'lle <— h —7111111e- 

                                       Moreover, the equality holds if u(x) = sin (7rx/h). 

From Lemma 1.1, it can be seen that the optimal value for the constant Co in (1.2) 
for the error estimate of linear interpolant (N = 0) is 1/7r. Therefore, it is natural to 
expect that the corresponding constant is smaller than 1/7r when we use higher degree 
polynomials. Actually, this is proved in Nakao,Yamamoto and Kimura(1998) in the 
quadratic and cubic cases. In this paper, we are concerned with an arbitrary degree.

2. Explicit Estimate of Constants 

   Now we introduce a set of polynomials {gi}x 1 of the form 

gi(x) 
                         i+112 di-1[X,i~i! hi+1/2 dxj-1(h — x)
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The followings are well known properties of these polynomials: 

                         h2 
                2(2i — 1)(2i + 3)(i=7) 

       h2  (gi . gj )e = _---------------------------------------(i =j+ 2)(2.1) 
4(i + j + 1)(2i + 1)1/2(2j + 1)1/2 

      0(otherwise) 

and 
                            1 (i = j) 

(gi, 93)e =(2.2) 

                             0 (i j). 

The fact that {gi}x 1 gives a complete orthonormal system in L2(e) enables us to expand 
an arbitrary function u E Ho (e) as 

                       u(x) ti E uj gi (x), 
                                           j=1 

where 
uj = (u , gj )e . 

Moreover, we can represent the Ho-projection of u E Ho (e) into QN(e) as 

PNU(x) = E uj g; (x), 
j=1 

owing to the uniqueness of the Ho-projection for fixed QN(e). 
    The following theorem gives a rough estimation for the case of an arbitrary integer 

N > 0. 

   THEOREM 2.1. If u E Ho (e) n H2(e), it follows that 

117/ — (PNU)111 e < CN h2 MU" 1je, 

where 
          _ 1 1 1                   N 8 2N+1 + 3) • 

PROOF. 

       — (PNU)'11E = E (u', gi')E 
i=N+1 

=E (u", gi)e (integrating by parts) 
                              i=N+1
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                 < Ilu"11e E (by Schwarz' inequality) 
i=N+1 

                                    1                 = h2~~u"11e
2(2i — 1)(2i + 3)(from (2.1)) 

i_A+1 

h2
uii21 1             = 8 11~~e (2i - 1 2i+--------3                                          i=N+1 

                      h2 
8 2N1+1+2N+3 IIu 112 

    In the following lemma. a smaller constant is derived by considering a finite dimen-
sional eigenvalue problem in the case that u is a polynomial. 

LEMMA 2.2. Let AI > 1 be an arbitrary integer. If q E Q v+m(e), then the following 
holds: 

    ply 0e C AN h2   — (Piti'q)'re, 

where 

11 AN - max{2(2 N + 1)(2 N + 5) +4(2N+5)-V2N+3V2N+7' 
1 1  

             4(2N+5)V-2N+3V2N+72(2N+5)(2N+9)+(2.3) 

1  4(2 N + 9) V2 N + 7V2 N +--------11 } • 
PROOF. 
    Each polynomial q E QN+M(e) can be represented as 

N+M 

q = E q2 gi, 
i=1 

and we have 

N+M N+M 

PNglre= E gi(gi~9j)eg1 
                                        i=N+1 j=N+1 

N+AI 

Hq' — (PNq)/11 e= Eqi2. 
                                          i=N+1 

Now let us consider an M-by-M matrix: 

AA = a 
1<z.j<M
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where 

 N_1  ai j=h2(9.~'+i, 9N+.i)e , 

and let q;f be an M-dimentional vector: 

41 = (qi) 
1<i<Al 

Then we have 

                  llq - PNglle __qNT ANqN  
               q~0 h2Mg' — (PNq)'I1e9s p0 qMTqN• 

The right-hand side equals the largest eigenvalue of A/ , denoted by 4. From Ger-
schgorin's Theorem, 4 can be estimated by 

Al 

                       A,,,I< maxl a.1. 
                                     1<i<M - - j -1 

Using (2.1), the right-hand side of the above inequality is calculated as 

   a_M < maxlal11 +Iai I , 1a2N21+ 1a241,max laiNi3<z<M—2I + IaI + la:+zl} 
       = max{Ia11I + Ia3I,Ia31I+Ia33I+Ia35I} 

= AN. 

This completes the proof. 

    The following theorem, the main result of this article, is an extension of Lemma 

2.2. 

    THEOREM 2.3. For any function u E Ho (e) f1 H2 (e), we have 

IIU' - (PNU)'lle < A iv h211U„lle, (2.4) 

where the constant AN is defined by (2.3). 

PROOF. 
Using Lemma 1.1, Lemma 2.2, Theorem 2.1, and the relation II(PN+MU)'—(PNU)'II e 

< HU' — (PAru)'lle, we have the following for an arbitrary integer M > 1 : 

IlU - PNUIIe < (IIu - PN+Mulle + IIPN+MU — PNUlle)2 
          h}2 

<IIu' - (PN+Alu)'Ile + AN1/2h 11(PN+mu)' - (PNU)'IIe 
7r 

h h 111/2 

                   2f2N+21~1+1+21'~'+2M+3~IU~le 

2 +AN1/2 h Hu' - (PNune .
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Letting ItI tend to infinity, we obtain 

IIu-PtiuIIE <ANh2IIu'-(PNu)'IIE•(2.5) 

Moreover. from (2.5), 

Il u' - (P1v-u)'ll e = (u' - (PNUr u' - (PNu)')e 
                            = (u' - (Pvu)', u')e 

                                 = -(u - PNu, a")e 

< Iiu - PNuH l u"Ile 

< AN1/2 h Uu' - (PNu)'IIeIIu"I1e (2.6) 

holds. Dividing both sides of (2.6) by IIu' - (PNU)'II ej we have (2.4). 
                                                              El 

    In Bernardi(1996), similar arguments (but not numerical) are presented. The above 
theorem assures (1.5) of Bernardi(1996) in the case of s = 2: 

PNuII H1(e) N + 1 II uMI H2(e) 

with numerical estimate of the constant c. For example, the theorem tells us that we 
can choose c = 1/2. 

Moreover, we can estimate an upper bound of the difference between AN and the 
optimal constant CO2. Since AN < Co2 < AN holds for an arbitrary integer M > 1, we 
have 

                       IAN -Co2I < IAN -ANI• 

                            2IAN -----------AN  In the following table, we estimate relative errors of AN on Co by taking A
N 

Al = 4 for N = 0, • • • , 10. The exact values of CO2 obtained in Nakao,Yamamoto and 
Kimura(1998) are shown for N = 0,1. For N > 2, exact values of CO2 are not yet 
known, which are represented by '?' in the table. 

    From this table, it is seen that the relative errors of AN are less than 15% for 
N = 0, ••. 10.

N A4A,2ANI_~,-AvI   1~A v 

0 0.1013197 (-71--,)2 ~' 0.10132 0.110911 0.0864766 
1 0.0253155 (1 )2 " 0.02533 0.0291335 0.131053 
2 0.0123516?0.0142767 0.134841 
3 0.00748463?0.008594640.129152 

4 0.00507143?0.005770620.121164 
5 0.00368227?0.004151420.113011 
6 0.00280337?0.003133540.105368 
7 0.00220957?0.002450780.0984193 
8 0.00178846?0.001970040.0921739 
9 0.00147842?0.001623420.0893178 
10 0.00124326?0.001388920.104871
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3. Conclusion 

    We have obtained a method to get numerical estimates of the constants appearing 

in (1.1) for the approximation by polynomials of arbitrary degree. Since the estimates 
derived here are sharp enough for actual application, we believe that they will play an 
important role in the error estimates for the finite element method and in the numerical 
verification of solutions to nonlinear elliptic equations. 

    From the mathematical point of view, the relation between the degree of polyno-
mials and the constant in (1.2) is very interesting. We leave it as an open problem to 
decide the optimal constants.
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