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                                  By 
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                       Abstract 

   This paper is concerned with a fuzzy stopping time for a dynamic 

fuzzy system. A new class of fuzzy stopping times which is called as a 

monotone fuzzy stopping time is introduced. The notion of monotonicity 

is well-known and important in the stochastic optimization theory. Here 

we will try to define a monotone property and discuss a stopping problem 

which is corresponding a dynamic fuzzy system. Since the fuzzy stopping 

time can be constructed using by a-cuts of fuzzy states, the explicit 

derivation of an optimal one is derived under appropriate assumptions. 

The key point of our discussion for the optimization of a stopping problem 

is to induce an additive weighting function for the fuzzy reward.

1. Introduction and notations 

    The stopping time with fuzziness, called a `fuzzy stopping time', is discussed in 
our previous paper, Kurano et al.(1998). The corresponding optimization problem on 
fuzzy stoppings is considered by the constructive method. This kind notion of stopping 
times are first introduced by Kacprzyk(1977) as time horizon constraints in the dynamic 

programming, and Kacprzyk and Esogbue(1996) studied multistage decisionmaking 
with fuzzy time constraints. 

    We have extended the problem to that of an optimization handling about a sys
tem with fuzzy states, which is called a `dynamic fuzzy system' (Kurano et al.(1992), 
Yoshida(1994)). In Kurano et al.(1998), we also discussed a problem of systems in 
conjunction with fuzzy stopping times as strategies. 

    Alternatively, it is well-known that a class of stopping times with a monotone 

property is useful for various application problems concerning about stochastic models, 
because the class is simple to understand and easy to calculate. Refer to Chow, Robbins 
and Siegmund(1971), Ross(1970) etc.. 

    In this paper, we introduce a new class of fuzzy stopping times which has a mono
tone property in a sense of fuzziness and apply it to a problem with additive weighting 
functions, which is incorporated into the scalarization of the fuzzy total rewards. 
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     In the remainder of this section, a fuzzy dynamic system is described . In Section 
2, a new class of fuzzy stopping times, which we call them 'monotone fuzzy stopping 
times', is introduced and their construction are also discussed. These results are applied 
to the 'optimization' of a corresponding fuzzy stopping problem in Section 3. In Section 
4, an example is given to illustrate the results. 

    Throughout the paper, we will denote a fuzzy set and a fuzzy relation by their 
membership functions defined on a convex compact subsets of some Banach space . For 
the theory of fuzzy sets, refer to Novak(1985). The detail of its definition is omitted 
here. 

     Let E be a given convex compact subsets of some Banach space . .F(E) denotes 
the set of all convex fuzzy sets, u, on E whose membership functions are assumed to 
be upper semicontinuous and have a compact support with the normality condition: 
SupZEE ii(x) = 1. The a-cut (a E [0, 1]) of the fuzzy set u is denoted as ua. C(E) 
means the collection of all compact convex subsets of E . Then clearly, u E .F(E) means 
ua E C(E) for all a E [0, 1]. Let R be the set of all real numbers and let C(R) be 
the set of all bounded closed intervals in R. The elements of .F(R) are called fuzzy 
numbers. The addition and the scalar multiplication on .F(R) are wellknown. See Puri 
and Ralescu(1985) for the details. The following results are known, so the proofs are 
omitted. 

    LEMMA 1.1. (Chen-wei Xu(1992), Kurano et al.(1998)). 

  (i) For any m, n E .F(R) and A > 0, it holds that In + i E .F(R) and am E .F(R) . 

 (ii) Let El and E2 be convex compact subsets. If ft E .F(Ei) and 13 E .F(E1 x E2) 
    satisfy P(x, .) E .F(E2) for x E El, then supzEE, {u(x) A 13(x,•)} E .F(E2), 

where a A b = min{a, b} for real numbers a, b. 

    Now we will formulate the dynamic fuzzy system. 

DEFINITION 1.2. (Kurano et al.(1992)). The pair of (S,4) is called a dynamic 
fuzzy system if the following conditions (i) and (ii) are satisfied: 

  (i) The state space S is a convex compact subset of some Banach space. In general, 
    the state of the system is simply called as a fuzzy state and it is denoted by an 

    element of .F(S). 

 (ii) The law of motion for the system is based on a timeinvariant fuzzy relations -4:SxSi [0,1], and we assume 4E.F(SxS) and 4(x,.)E.F(S) for xES. 

    If the dynamic fuzzy system (S , 4) is given, then we consider a sequential transition 
of states as follows. Firstly, a fuzzy state s` E .F(S) is moved to a new fuzzy state Q(s") 
after a unit time has passed, where Q :.F(S) H .F(S) is defined by 

Q(i)(y) := sup{i(x) A 4(x, y)} for y e S.(1.1) 
                                  xES



A monotone fuzzy stopping time in dynamic fuzzy systems93

Note that the map Q is welldefined by Lemma 1.1. Explicitly, for the dynamic fuzzy 
system (S,  q) with a given initial fuzzy states E F(S), a sequence of fuzzy states {s`t}t° 1 
is defined by 

•1 .= s and s`t+1 •= Q(it) (t > 1).(1.2) 

    We need the following preliminaries to define fuzzy stopping times for this sequence 
{s`t}t_1, which are given in the next section. Associated with the fuzzy relation q, the 
corresponding maps Qa : C(S) C(S) (a E [0, 1]) are defined as follows: For D E C(S), 

Qa(D)__{yES> a for some x E D}ifa>0(1.3) cl{y E S q(x, y) > 0 for some x E D} if a = 0, 

where cl means the closure of a set. From the assumption on q, the maps Qa are well
defined. The iterates Qa (t > 0) are defined by setting Q° := I(identity) and iteratively, 

Qa+1 QaQa (t > 0). 

In the following lemma, which is easily verified by the idea in the proof of Lemma 1 of 
Kurano et al.(1992), the a-cuts of fuzzy state, Q(s-)a, are specified using Qa of (1.3). 

    LEMMA 1.3. (Kurano et al.(1992,1996)). For any a E [0, 1] and s' E F(S), we 
have: 

 (i) Q(s)ca = Qa(Sa), 

(ii) St = Qa 1(sa) (t > 1), 

where is and it,a are the a-cuts of fuzzy state i and it respectively and {it}t_1 is defined 
by (1.2) with the initial state s`1 =

2. Fuzzy stopping times 

    In this section, we define a fuzzy stopping time to be discussed here, and we intro
duce a new class of fuzzy stopping times, which is constructed through subsets of a-cuts 
of fuzzy states. For the sake of simplicity, denote F := F(S) and let F' be a subset of 

F. 

DEFINITION 2.1. (Kurano et al.(1998)). A fuzzy stopping time on F' is a fuzzy 
relation &: .F' x {1, 2, • • •} [0, 1] such that, for each fuzzy state s' E .F', &(i,t) is 
nonincreasing in t and there exists a natural number t(i) > 1 with &P, t) = 0 for all 
t > t(s`). 

    We note here that `& = 0' represents 'stop' and `& = 1' represents ̀ continuity' in the 
grade of membership (Kurano et al.(1998)). Between the two decisions, the intermediate 
value `0 < & < 1' is a notion of ̀ fuzzy stopping'. A fuzzy stopping time &(i, t) means 
the degree of `continuity' at time t starting from a fuzzy state i. The set of all fuzzy 
stopping times on F' is denoted by E(.F').
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    DEFINITION 2.2. A fuzzy stopping time 5 E E(F') is called monotone if there exists 
a map S :.F' H [0, 1] satisfying 

 (i) S(Q(s)) < S(ss), and 

(ii) &(s", t) = AL1 S(si) for all s` E .F' and t > 1, 
where {s`t}t_1 is defined by (1.2) with s-1 = s`• 

    The realvalued map S is called a support of Fr. The definition means a natural and 
good property for fuzzy stopping times, which is simple and easy to calculate optimal 
stopping times in actual optimization problems. The degree of monotone fuzzy stopping 
times is given by only the fuzzy state at current time t. Therefore, in stopping problems, 
the criterion is reduced whether the fuzzy state at current time t belongs to the optimal 
stopping region or not. 

    We now construct a class of monotone fuzzy stopping times. For the purpose of 
this construction, we assume the following conditions. 

    CONDITION Cl. For each a E [0, 1], there exists a non-empty subset Ka of C(S) 
satisfying 

Qa(Ka) C Ka.(2.1) 

    Using this subset Ka, we define a sequence of subsets {Ka}t_1 inductively by 

                      1 

               Ka:=  Ka; 

              Ka:= {c E C(S) I Qa(c) E Ka1} (t > 2).(2.2) 

Clearly, Ka = Qa 1(K« 1) = Qa (t-1) (Ka)Also, it holds from (2.1) that 1Cq C Ka+1 (t > 
1). To simplify our discussion, we assume the following condition holds henceforth. 

   CONDITION C2. For all a E [0, 1], it holds that 

co 

            C(S) = U K.(2.3) 
                                                  t-1 

   For c E C(S) and a E [0, 1], we define a stopping time ?a(c) by 

ii-a(c) := min{t > 1 I c E Ka}.(2.4) 

This is the first entry time of a closed interval c(E C(S)) with the grade a . We define a 
restricted class F(C .F) by 

.r := {s E F I &a(sa) is nonincreasing in a E [0, 1]}. (2.5) 

Using the class {&a(sa) I a E [0, 1]}, for the restricted element s' E .F, we define 

(3-(s, t) := sup {a A 1Dn (t)} (t > 1),(2.6) 
aE[0,1]
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where  1D,, is the indicator of a set Da :_ {t > 1 1 &a(ia) > t}. This is the usual 
technique to construct a fuzzy number from a family of level sets. Then we obtain the 
following theorem. 

    THEOREM 2.3. Under Conditions Cl and C2, the following (i) and (ii) hold. 

 (i) &a(ia) = min-ft > 1 1 &(s`,t) < a} for i E .r and a E [0, 1]. 

 (ii) & = &(i, t) (i E .F, t > 1) of (2.6) is a fuzzy stopping time on F. 

   PROOF. By the definition, &(.,t) < a is equivalent to &a(ia) < t. This fact shows 
(i). From Condition C2, there exists t* > 1 with so E KpM . So, &a(ia) < &o(so) < t* for 
all a E [0, 1], which implies that &(. , t) = 0 for all t > t* by the definition of F. Since 
&(s, t + 1) < &(s, t) holds clearly for t > 1 from (2.6), we also obtain (ii). ^ 

    In order to show the monotone property of &, we need the following lemma. 

    LEMMA 2.4. Let s" E F. Then 

  (i) &(i, t) = a if and only if, for any E > 0, Sa+E E Ka-}-E and Sa-E cZ Kt                                                                                              IX-E; 

 (ii) 5 E F (t > 1). 

   PROOF. By (2.6), &(s`,t) = sup{a 1 &,(i„) > t}. So, (i) follows from (2.4). From 
Lemma 1.3(ii), for l > 1, &a((. )a) = &a(. i,a) _ &a(Qa 1(ia)). By (2.2) and (2.4), 

6-„((i Oa)= min-ft > 1 I Q1(n) E Ka} 
                        = min{t > 1 1 sa E Ka+1-1} 

                        = max{&a(ia) — (1— 411, 

and it is nonincreasing in a E [0, 1] since s' E F. Therefore we obtain (ii) . ^ 

    THEOREM 2.5. Let s E .F be given and assume that Conditions Cl and C2 hold. 
Then, (3 = &(. , t), t > 1, is a monotone fuzzy stopping time with the initial state s. 

    PROOF. Let {s't}t_1 be defined by (1.2) with s"i = s". First, we will prove that 

&(i, t + 0,- &(i, t) A &(st+1, r) for t, r > 1.(2.7) 

Note that &(st+1, r) is welldefined from Lemma 2.4(4 Let a = &(s, t + r). From 
Lemma 2.4(i), we have 

sa+E E Ka+E and sa_E cZ Ka+TE for any e > 0. 

Noting Qa (Ka) = 1C,1 (1 < t < l) and Lemma 1.3(ii), we obtain 

st+1,a+E — Qa+* c+E) E Qa+E(Ka+E) — Ka-}-E
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and 
                 _tt. t--T_Kr a-f.                      St+1,a--E—Qa—E(Sa—E)YQa—E("'GY-E)—/~a-E. 

Therefore, we get &(st+1, r) = a from Lemma 2.4(i). Namely, &(s, t + r) = &(s"t+1, r). 
Since &(s, t + r) < &(s, t) from Theorem 2.3(ii), we obtain &(. , t) A &(st+1, r) = a, and 
so (2.7) holds. Next, we put 8(s) _ &(s, 1) for s` E F. From (2.7), we get 

&(s`, t) — &(s", 1) A &(. 2i t — 1) 
= &(8,1)A&(s`2,1)A&(s'3,t-2) 

t A&(S1,1) 
!_1 

t 

A 8(s`i) for t > 1. 
1-1 

Since we also have 8(Q(s)) < J(s) from Theorem 2.3(ii), & is a monotone fuzzy stopping 
time with s. The proof of this theorem is completed.^ 

3. Fuzzy stopping problems 

    In this section, applying the results in the previous section, we obtain the optimal 
fuzzy stopping time for a fuzzy dynamic system with fuzzy rewards (see Kurano et 
al.(1996)) when the weighting function is additive. 

    Firstly, we formulate the stopping problem to be considered here. Let r` : S x R H 

[0, 1] be a fuzzy relation satisfying r` E .F(S x R) and r"(x, .) E F(R) for x E S. If the 
system is in a current fuzzy state s` E .F, a fuzzy reward is earned: 

R(s)(z) := sup{s(x) A r`(x, z)}, z E R. 
xEs 

   Then we can define a sequence of fuzzy rewards {R(st)}t_1, where {st}t__1 is defined 
in (1.2) with the initial fuzzy state s`1 = s". Let 

t-1 

cp(s`,t) := ER(s1) for t > 1.(3.1) 
l-1 

Note that (3.1) designates the summation of fuzzy numbers. For details, refer to Puri 
and Ralescu(1985) and Kurano et al.(1996). We need the following lemma, which is 
proved in Kurano et al.(1992,1996). 

   LEMMA 3.1. (Kurano et al.(1992,1996)). For t > 1 and a > 0, 

t-1 

co( S,t)a = E Ra(Si,a) 
1-1
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holds, where 

                {z E R 1 r(x,z) > a for some x E sl,a}  if  a  >  0 Ras~a3.2         '_cl{z E RIr`(x , z) > 0 for some x E ss ,a} if a = 0.() 

    Let g : C(R) i-+ R be any additive map, that is, 

                g[c' + c"] = g[c'] + g[c"] for c', c" E C(S).(3.3) 

Adapting this map g = g[•] for a weighting function (see Fortemps and Roubens(1996)), 
for a fuzzy stopping time (3 E E(F) and an initial fuzzy state s E .T., the scalarization 
of the total fuzzy reward is given by 

                                    1               G(i, &) fg [y(s&a)] da 

                                  0 

             f16'0,-1(3.4)                       =fg E Ra (it, a)da, 
                        0 t-1 

where &a means &(ss", •)c, = min{t > 1 1 &(i, t) < a} for simplicity. Since cp(s, &a) E C(R) 
and the map a g[cp(i, &a)a] is leftcontinuous in a E (0, 1], therefore the right-hand 
integral of (3.4) is welldefined. For a given .~'(C F), our objective is to maximize (3.4) 
over all fuzzy stopping times & E E(F) for each initial fuzzy state s E F'. 

    DEFINITION 3.2. A fuzzy stopping time &'" with s E .F'' is called an ioptimal if 

G(.,&) < G(s, &*) for all & E E(F'). 

If &* is soptimal for all s E F', then &" is called optimal in F'. 

    Now we will seek an ioptimal or an optimal fuzzy stopping time by using the 
results in the previous sections. For each a E [0, 1], let 

Ka(g) :_ {c E C(S) 1 g[Ra(Q0(c))] < 0}.(3.5) 

    Hence we need the following Assumptions Al and A2, which are assumed to hold 

henceforth. 

   ASSUMPTION Al. (Closedness). For all a E [0, 1], Qa(Ka(g)) C Ka(g). 

   By (2.2), we define a sequence {Ka(g)}t_1 by 

Kat(g) Q«(t1)(Ka(g)) for t > 1.(3.6) 

   ASSUMPTION A2. For all a E [0, 1], C(S) = U71 Kat(g)• 

   Using the sequence {Ka(g)}t_1 given in (3.6), we define &a, F, & and &(s`, •)a by 
(2.4) — (2.6). Then, from Theorems 2.3 and 2.5, & is a monotone fuzzy stopping time 
on F. The following theorem will be proved by applying the idea of the monotone 
policy (Chow et al.(1971), Kadota et al.(1996) and Ross(1970)) for stochastic stopping 
problems.
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    THEOREM 3.3. Under Assumptions Al and A2, & is an optimal monotone fuzzy 

stopping time in .F. 

    PROOF. Firstly, we will consider a deterministic stopping problem which maximizes 

the reward of a weighting function g[cp(s, t)a] over t > 1. Since g is additive, g[ca(55, t)a] = 
~t-1 g[Ra(sta)] holds. Therefore g[cp(s,t)a] > g[cp(s,t+1)a] if and only if 5t,a E Ka(g)• 
By Assumption Al, st,a E Ka(g) implies g[So(s, t)a] > g[cp(55, l)a] for all 1 > t. Together 
with (3.5), we obtain 

g[tp(5, &(5, .)))a] > g[w(s, &(5, •)))a] 
for all & E E(F) and a E [0, 1]. This implies that G(55, &) > G(5, &) for all & E E(.~') 
by using (3.4). This completes the proof.^

4. A numerical example 

    An example is given to illustrate the previous results of fuzzy stopping problem in 
this section. Let S := [0, 1]. The fuzzy relation q" and the fuzzy reward a• are given by 

     x=1 ify=/3xandr`z=1 ifz=x  A      4(x,y)0 
otherwise()0 otherwise 

for x, y E [0, 1] and z E R, where A > 0 is an observation cost and 0 < ,0 < 1. Then, Qa 
and Ra defined by (1.3) and (3.2) are independent of a and are calculated as follows: 

Q ([a, b]) = [i3a, ,i3b] and Ra ([a, b]) = [a  A, b  A] 

for 0<a<b<1. 
   Let g[[a, b]] := (a + 2b)/3 for 0 < a < b < 1, which is additive. Then, Ka Ka(g) 

is given as 

                Ka = {[a, b] E C(S) a + 2b < 3A/0}, 

So Kat = Qa (t1)(Ka) = {[a, b] E C(S) a + 2b < 3A/i3t}. Since Ka is independent of a , 
we see that Qa(Ka) = {0[a, b] [a, b] E Ka} and Ut°_1 Ka = C(S). Thus Assumptions 
Al and A2 in Section 3 are fulfilled in this example. 

    Let the initial fuzzy state be 

5(x) := max{1  412x  11, 0} for x E [0, 1]. 

For the stopping time &a(sa) given in (2.4), we easily obtain that sa = [(3 + a)/8, (5  
a)/8] and &a(5a) = min{t > 1 13  a < 24A/3-t}. Thus, as &a(5a) is nonincreasing 
in a E [0, 1], we have s E.F. Since &a (Sa) E Kt (g) means 13  a < 24A/3-t, we obtain 

&(.5,t) = min{1, max{13  24A13-t, 0}}. 

The numerical value of & is given in Table 1.

Table 1: An 5optimal fuzzy stopping time (A = 0.48, 0 =0 .98). 

  t 1 2 3 4 5 6 7 ••• 
615,0 1 1 .7603 .5108 .2552 .00 .00 • • •
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