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    By 
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                       Abstract 

We deal with a sequential stochastic assignment problem on a par
tially observable Markov chain. This is a generalization of a problem 
treated in Derman, Lieberman and Ross (1972). Especially, not only 
one job will appear at one time period. Under several assumptions, 
we consider a partially observable Markov chain and several prop
erties concerning a relation between observations and information. 

On basis of these properties, we investigate the sequential stochastic 
assignment problem on this partially observable Markov chain.

1. Introduction 

    We deal with a sequential stochastic assignment problem on a partially observable 
Markov chain. This is a generalization of problem treated in Derman, Lieberman and 
Ross (1972). There are m jobs which appear in a sequential order, and m persons to 
be assigned to these jobs. This problem is how to assign these persons to m jobs in 
order to maximize the total expected reward. Especially, not only one job will appear 
at one time period. Associated with each job, there is a random variable depending on 
the state of this chain, which indicates a value of a job. In order to investigate this 
problem, we initially treat an optimal selection problem. This is a problem to select a 
predetermined number of jobs in order to maximize the total expected reward of these 
selected. In both problems, the number of observations available at one time period is 
not known in advance, but only the probability is known beforehand. 

    When the state of this Markov chain indicates the economic condition, it affects 
the values of jobs available at each time period. Usually, this condition is not known 
directly, and there is only partial information about this condition. Theorems 1 and 2 

give essential properties about posterior information after having obtained through the 
values of these jobs. As a learning procedure, we employ the Bayes' theorem. Albright 

(1974) and Nakai (1986b) also treated a sequential stochastic assignment problem on 
a partially observable Markov chain. Brown and Solomon (1973), Nakai (1985, 1990, 
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1995, 1996), Pinedo and Ross (1980) considered a partially observable Markov decision 

problems. 
    In Section 2, we deal with an optimal selection problem . In subsection 2.1, we make 

some preliminary notations and assumptions to treat these problems . In subsection 2.2, 
we summarize some properties about posterior information . For this problem, we use 
some results obtained in Nakai (1986a). In subsection 2.3, we summarize some essential 
properties about the optimal selection problem. Finally, we investigate a sequential 
stochastic assignment problem on this partially observable Markov chain .

2. Optimal Selection Problem 

2.1. Some Preliminaries 

    An optimal selection problem is to select a predetermined number of jobs in order 
to maximize the total expected reward of these selected. Associated with each job , 
there is a random variable indicating its value. These random variables are independent 
and identically distributed. Let N be the planning horizon of this problem . On the 
other hand, there are m jobs having a random value {Xi}i-1 ... . The objective of this 
problem is to maximize the total expected reward by selecting k jobs out of in during 
N time periods. If a job is not selected at one time period , then it is not available for 
future decisions. 

    In general, the number of jobs observable at one time period is assumed to be 
random with known distribution. When there are m jobs during N time periods , let 
{PN,rn(n)}n0,1,...,m be a probability of n jobs at the initial time period. When these 
jobs appear uniformly and independently, PN,m. (n) is as follows. 

                                   1)m-n 
         PN,m(n) =m(N —Cn---------NM(0 < n <m,Pi,m(m) = 1)(1) 

We concentrate on this case, but it is possible to consider these problems for a more 

general case. 
    Let X1, • • • , Xn be n i.i.d. random variables, and let further X(1), • • • , X(n) be the 

order statistics corresponding to X1, • • • , Xn. (X(i) > • • • > X(n)) We arrange these 
values from the largest to the smallest one, for convenience sake . We also use the 
notation {X(i)}i1 ,...,n instead of {Xi}i=1,...,n. These n random variables {Xi}i=1,...,n 
are absolutely continuous with density f (x) . It is well known that 

                            t 

      9n,i (X(i))_(i— 1)n(n  i)!(F (x(i)))n-i (1 — F (x(i)))i-1 f (X(i)) (2) 
is the probability distribution of the i-th order statistic X(i) (See Wilks (1962)). 

    For a decreasing sequence fail (a0 = oo) of positive numbers, define a function 
Un(ai, ai_1Ik, y) by 

                                       aiAy        Un(ai, ai-1Ik,y) =Jai hn,k (x(k)) f (x(k)) dx(k) 

                             0
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                                                ai_1Ay 

 +  X(k) hn,k (x(k)) f (x(k)) dx(k)                   fajAy 
     ^fyl                         Un(ai_i,ai-2I+1, x(k))f (x(k)) dx(k) (3) 

                                                                    t where a A b = min{a, b}, Un(ai, ai_1 In + 1, y) = ai (y > 0) and 

                               n! 

                         (nn.)t(F (x(~)))n-k hn,k (x(k)) =(4) 
    For any decreasing sequence {ai}i>o, we construct a sequence {ai,n}i>o as 

ai ,n = Un(ai, ai-1 I1, oo) (i > 1),(5) 
where ao,n = oo. We summarize some properties according to Nakai (1986a), which are 
necessary to investigate these problems. 

Lemma 1 
nnifai_3 

anA(i-1)  in = Ex()g,j())()(xdx+ nCj (1 — F (a_))2 (F(a_))3 
  j=1s_+1j=0 

Lemma 2 If a sequence {ai}i=0,1,2,...(ao = co) is decreasing with respect to i, then the 
sequence {ai,n}i,no,1,2,... defined by Equation (5) is also decreasing with respect to i. 

Lemma 3 If ao = oo and a1 = a2 = • • • = 0, then ai,n = E[X(i)] (1 < i < n) and 
ai,n = 0. (i > n) 

2.2. A Partially Observable Markov Chain 

    Let's consider a countable state partially observable Markov chain. Let {0, 1, 2, • • •} 
be a set of states, and let further P = (p„,) be a transition probability matrix of this 
chain. The random variables observed at each time period depend on a state of this chain. 
When the state of this chain is s and n jobs appear, we assume the random variables 
associated with these jobs to be independent and identically distributed, but dependent 
on s. Let S be a random variable indicating the state of this Markov chain. When 
a state of this chain is s, the conditional expectation ,a, is finite, and the distribution 

function F,(x) of these random variables are absolutely continuous with density fa(x). 
We consider two assumptions. 

Assumption 1 If t < s, (s,t = 0, 1, 2, • • •) then, for x < y, 

ft(y)fa(x)~f,(y)ft(x), i.e.,f a(y)(y)> 0.(6)                             ()it((Y) 

                                                  Assumption 2 For any pair of t and t', if t > t', (t, t' = 0, 1, 2, • • •) then 

pa't pa't' 
              Pat'71a'tpa't'pat,i.e., >0,(7) 

                                                 Pat Pat' 

where s < s'. (s, s' = 0, 1, 2, • • •)
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    If the state of this chain corresponds to the condition of the economy, then As
sumption 1 means that this condition becomes better as s becomes smaller. The state 
0 is the best one among them. It is easy to show that Las}s—o,1,2,... is decreasing with 
respect to s. From Assumption 1, if s > t (s, t = 0, 1, 2, • • •), then X(t) is greater than 
X(s) by means of the likelihood ratio. This also implies that X(s) satisfies the TP2 
condition (totally positivity of order two). 

    For this countable state Markov chain, assume that the state of this chain is not 
known directly. All information about this state is summarized by a probability distri

                                                                                                       00 

bution 0 on the state space, i.e., 0 E S = { 01 0 = (00, 01, 02, • • •), Os > 0, E Os = 1}. 
s-o 

At each time period, information is obtained through random variables depending on the 
state of this chain. If there is no observation at one time period, there is no information 
about it. Let prior information about the state of this chain be 0(E S). When n jobs 

appear with x = (xi, • • • , x,,,), then, by learning, we improve information as T(01x). In 
this paper, we use Bayes' theorem as the learning procedure. Since this chain initially 
makes a transition according to P, information .P changes to 

co 

(7)s' = E0apaa',
(8) 

                 _a=0 _ _ 
                           .P= (0o, 01, 02,•••). 

Let ft(x) be a joint probability distribution function of n random variables X = 

(X1,... , Xn) when the state of the chain is t. Since the random variables are inde
pendent with each other and identically distributed, we note that 

n ft(x) = H ft(xi)•(9) 
i=1 

Information about the state of this chain is updated by using Bayes' theorem as 

T,, (°1x)-= 
          E,_00sfs(x)(10) 

T(V1x) = (To (Vx),T1 (V x),T2(ix),...). 

    Initially, we introduce an order on S by using a likelihood ratio. This order is also 
treated in Nakai (1985, 1986b, 1990, 1993) and Ross (1983), etc. 

Definition 1 For any pair of 0 and P in S, denote 0 >1 'P if and only if 

                               Ost< Ot,b,, i•e.,J ,,Y//',,t       7'> 0(11) Ost 

for any s and t, (t < s, s, t = 0, 1, 2, • • .) and at least one pair of s and t, q5, 0t < qts 
If Os = 7,b., for any s = 0, 1, 2, • • ., then 0 =1 W. 0 >1 W, if and only if 0 =1 'P and 
0 >1 T.
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    It is easy to show that this order is a partial order. We say a function  u(P) on S 
to be increasing by means of this order, if and only if u( > u( for any pair cP and 

  where P >1 W. 

Definition 2 For any and y of k observations (r, y E 1Zk ),  y if and only if 
x(i) < y(i) (1 < i < k). 

   Assumptions 1 and 2 imply Lemma 4 (Nakai (1985, 1986b, 1990, 1993)). 

Lemma 4 For any pair of t and s, (t < s, s, t = 0, 1, 2, • • •) if -< y, then 

ft(y)fs(x)>.fa(y)ft(x), i.e.,fD(y)ft(x)> 0.(12) 
                         MY)()(y) 

    As for posterior information, we obtain the following properties by a method similar 
to one used in Nakai (1985, 1986b, 1993). We have already obtained for the case where 
n = 1 in (1985, 1986b, 1993). We use the notation E [ • ] for the expectation when a 

probability distribution on the state space is ~. 

Theorem 1 If -.< y, then T x) <1 T (V y) (0 E S). 

Theorem 2 If 0 >1 , then V >1 V and T a) >1 T (V x) E 7Z11). 

Lemma 5 If 4 >1'F (I,'F E S), then 

o0 Eq, [cp(X )] = q5i f cp(x) fi(x)dx < y i f Sp(x) fi(x)dx = E+ [0(X)] 
i-0i-0 

for any nondecreasing function cp(•) of x.

2.3. Optimal Selection Problem on a Partially Observable Markov Chain 

    Let's consider an optimal selection problem on the partially observable Markov 
chain treated in the last subsection. There are m jobs, and each one of them appears 
uniformly and independently during N time periods. Associated with each job is a 
random variable indicating its value, which depends only on a state of this chain. If 
a job with a value x is selected, a reward x is earned. The density function of these 
random variables is known previously. If a state of this chain corresponds to an economic 
condition, the economic condition is not known precisely, but there exists only partial 
information about it. Concerning the number of jobs at the initial time period, the 
probability {pN,.,,,,(n)}n-o,l,...,m is given by Equation (1), which is independent of the 
state of this chain. The value of a job appeared at one time period, however, depends 
only on the current state s of this chain. 

    The optimal selection problem is to select k jobs out of m during N time periods 
when prior information about the state is t. We consider (N, m, k, 0) as a state of this 
problem. The objective of this problem is to find an optimal policy in order to maximize
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the total expected reward. When the problem is in state (N, m, k, 0), consider that n 
jobs appear with x _ (x(1), • • • , x(n)). If i jobs out of n are selected, then, at the next 
instance, the state of the problem becomes (N  1,m  n, k  i, T(04)))  . 

    Let vN,m,k, be the total expected reward (under the optimal policy) for a problem 
in state (N, m, k, 0). As in Ross (1970), the principle of optimality implies 

m vN,m,k,E vN,m,k, 0 (n)pN,,,(n),(13) 
                                     n-0 

VN,m,k,#(n) = E[VNm,k, (n;X(1),...,X(n))],(14) 

                                       k 

            vN,m,,k,~ (n; x) = max E x(j) +VN1,m-n,ki,T(;,x) •(15) 
                                         j-1 

   Define sequences { diN m } , {dip m (n) } and { eN c m } of nonnegative numbers 
recursively in the following manner. (i, n = 0, 1, 2, • • • , m, N = 0, 1, 2, • • • , 0 E S) 

m diN, Cm E dN,i,m (n)PN,m(n) ,(16) 
n=0 

dN,c m(n) = E [dN "(n; X)] ,(17) 
      dN,,m(n;')(In(eN1,T(i,x),m-n' eN11,T(7,x),m-n 1' °°) '(18) 

dN, cm (6) eN-1,Tm' eN-1, cm = dLN1,T(T,x),m' (N > 2) (19) 

where 0 =(c90,(p1,(P2, • • •),(P, = E otpts, dN j,n = dN ,m(n) = oo, and do 0 = 0. 
t-0 

When prior information about the state of the chain is 0, Lemma 3 implies di1 cm = 

dy j ,m(m) and di m(m) = Es [X(i)] . When 4 <j 0 implies as >j (LT', we call 
a function aqs to be decreasing with respect to 0. The following properties are also 
obtained in Nakai(1996). 

Lemma 6 di" ,,,,,,, dN, ,,,,,(n) and em are decreasing with respect to 0 by means 
of the likelihood ratio. {dN c m}0<i<m, {dN,„(n)}0<i,n<m and {eN c m}o<i<m are 
decreasing sequences of i. 

Theorem 3 For a problem in state (N, m, k, 0), assume that n random variables appear 
with x(i),x Let j be the largest number which satisfies x > eN"-i+1 and 
1 < j < k A n, then it is optimal to select the largest j observations out of n, i.e., 
x(1), • •  , x(j)• 

Theorem 4 For an optimal selection problem in state (N, m, k, 0), 
kk 

              V N,.m,k, = E dN„,,,n, viv,m,k,,, (n) = E dN,,,,m (n) • (20) 
i-1i=1 

V N,rn,k, s6 and vN,,n,k, 25 (n) are decreasing with respect to .P.
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Remark 1 Theorem 4 implies  vN,„7,j~ — VN,,ry,,]g_1,~ = dN c,,,,, and it is possible to 
consider that a value of dN m indicates a value of a contribution from another option 
to select for a problem in state (N, m, k — 1, 0). Lemma 6 yields that dN,,.L 0 is a 
decreasing sequence of k. This implies that the value of a contribution is, therefore, 

decreasing with respect to k. Since Equation (20) implies vN,,,,,,k, g6 = diN 1z and 
                                                                               i-1 

vN r,, ~ (n)= E d~N "(n), these values do not necessary decreases with respect to N. 
i-1 

If the number of observations is known and even if the number of periods increases, one 
cannot obtain monotone results as before. On the other hand, Theorem 4 shows that 

{vN,m,k,,6} and {vN,m,k,o(n)} are decreasing with respect to 0.

3. A Sequential Stochastic Assignment Problem 

    Let's consider a partially observable Markov chain treated in Section 2.2. There 
are m jobs, and each one of them appears uniformly and independently during N time 
periods. Associated with each job is a random variable which depends only on a state 
of this chain. Regarding the number of jobs at the initial time period, the probability 
{pN,m(n)}n_o,l,...,m is given by Equation (1). On the other hand, there are m per
sons to be assigned to these m jobs. The abilities of these m persons are indicated as 

P1, P2, • • • , Pm . We assume 1 > pl > p2 > • • • > p,n > 0 without loss of generality. As
sociated with the n appeared jobs are independent and identically distributed random 
variables. When a state of this chain is s, these random variables indicate the values of 
jobs and depend on s. If a person with an ability p is assigned to a job with x, a reward 
px is earned. We also assume that a person who is assigned to some job is not available 
for future decisions. This problem is to assign m persons to m appearing jobs, in order 
to maximize the total expected reward. 

    As usual, there exists threshold values independent to pi, p2 • • ;pm, which are 
closely related to the optimal policy and essential properties of this problem. Let m and 
m' be numbers of jobs and persons, respectively. We assume here that m' and m are 
equal. If m < m', then it is sufficient to assign the m largest p, i.e., {pi, • • • , p,.,,,} to m 
jobs. On the other hand, if m > m', then it is sufficient to add m — m' trivial values 
pm,+1 =...=Pm=O. 
    Consider that there are m persons with abilities' {pi, • • • , pm} for m jobs during N 
time periods. We treat this problem is in state (N, 0; pi, • • • , pm). We also indicate this 
problem as PN, (pi, • • • , pm). When a state of this problem is (N, 0; pi, • • • , pm) and 
there are n jobs at the initial time period, then we use the notation PN;pi i...,1,,,, (n) for this 
subproblem. When there are n jobs with x(i), • • • , x(n), we also consider a subproblem 
PN,0;pi,...,p,,,(n; x(1), • • •, x(n)). The objective of this problem is to maximize the total 
expected reward by assigning m persons with {pi, • , pm} to m appearing jobs. 

     For the problems PN, cp,,...,pm, PN, ,pm (n) and PN, ~;pi,...,p,. (n; X(1), •.. , x(n)), 
let vN, ~;pl ... p11  vN, ~;pl ...  (n) and vN, ~... p„t (n; x(1), • . • , x(n)) be total expected re
wards obtainable under the optimal policy, respectively. As in Ross (1970), the principle
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of optimality implies the following optimality equations. 

m vN, 0;Pi,•••,Pm —vN, f;p1,...,pm (n)pN(n) (21) 
n=0 

VN, cp,,•••,pm (n) E [vN, 0;p1,•••,p,, (n; X(1), • • • , X(n))] (22) 
VN, ~;p, ... prn (n; x(1), ... , x(n)) 

                                            n 

              ff_p—maxmax~Pv(j)x(j)+vN1,T(~,~);p;,...,pm_n , (23)                       11,...,pn}C{p1i-,p,n} OESn j =1 

where {pi, • • • , pm* _n} are the remaining m  n persons except to n persons, {Pi, • • , Pn }, 
out of m p's, {pl, • • • , pm,} (pi > • • • > pm_n, pl > • • • > Pn)• The optimal policy and the 
total expected reward obtainable under this policy are determined by threshold values 
as usual. These threshold values are the same ones obtained for the optimal selection 

problem in the last section, i.e., {dN m} and {dN m(n)}. The proof of the following 
two theorems are complicated, and we only sketch the outlines of the proofs. 

Theorem 5 For the sequential stochastic assignment problem PN, Cp1i... p11, the opti
mal policy is as follows. "When the problem is in state (N, .P; pi, • • • ,pm),  n jobs ap
pear with x(i), • • • , x(n) . Let {bj }j1,2,...,m be a rearranged sequence of two sequences 
{x(i)}i=1,•••,n and {d}i1,•••,m-n from the largest to the smallest. If bj = x(i), 
(j = 1, • • • , m, i = 1, . • • , n) then it is optimal to assign the j-th pi to a job with x(i) . If 
bj = dN (j = 1, • • • , m, i = 1, • • • , m  n) then it is optimal not to assign this 
pi in this time." 

Theorem 6 The total expected reward vN, #;p1 i...,p,n and vN, cp1,...,pm (n) obtainable un
der the optimal policy for problem in state (N, ~; pl • • • ,pm) are as follows. 

vN, ;Pl,•••,19m. = L pidN, vN, ~;p,,...,pm (n)  > pidN, " (n) • (24) 
i-1i-1 

    In order to prove Theorems 5 and 6, we employ the induction principle on N. When 

N = 1, Theorem 5 are obvious since 

       {Ex} n              max(j) _ Epjx(j), (25) 
j-1j-1 

which is known as Hardy's lemma. On the other hand, 

m 
rrlm                    vl,~;P1,...,pTn=>piE[X (i)] = > pidtl,.,m 

i=1i-1 

implies Theorem 6. We assume that they are true for any value less than n  1 .
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    Proof of Theorem 5 
 m—n 

                           PimplyN-1;pl,,p-=EPidN1 ,T(T,2),m-n'     Since the induction assumptions im1v•...                                                                                      m  n 
                                                                      i=1 

we have 

   mSxE f(j)x() + vN,,);p;,... 
j=1 

n m-n 

                            = maxPo(j)x(j) + E Pi dNN1,T(T,X),m-n                                             crESn                  j
=1i=1 

m-n 

              = maxE Po(j)x(j) + (26) 
QESn 

j=1i=1 

Equation (25) yields 

nm—nnm—n 

max(j)(j)*N1T( X)
,m-n—*() maxPox+Pid,Pjx(j)+PidLN-i,T~,x,m-n' 

j=1i=1j=1i=1 

If an individual decides to assign n ({i, • • -,13n1  C {pi, • • • ,pm}), it is optimal to 
assign the j-th largest pj to a job with x(i). This implies 

V N, ;pi ,...,p,„ (n; x(i), • • • I x(n)) 

                         max max fP()X() + vN1,T(~,~);p',... {251,•••43n}C{p1,...,Pm} °ES,.1 ni-n j=1 

nm-n                    maxE {3X() + Pi dN1,T( ,X),m-n(27)                       {Pi,•••,P,.}C{pic••,Pm} j-1i-1 

    In this point, the problem is how to assign the n {x(i) }i-1 ... n and the m — n 

{di —}i=1 ... m-n to m p's, i.e., {Pi, • • • ,pm}. Let {bj }j=1,2,... m be a rear  Nl,T(p,~),m-n 

ranged sequence of two sequences {x(i)}i-1 n and {di }i=1 ••• m-n from 
rn 

the largest to the smallest, then Equation (27) equals to max E pibo(i) . Since 
o ESn 

4=1 

bi > b2 > • • • > bm,, Equation (25) implies 

      m m                   max {Epibo.(i) _ >Pibi• 
QESn 
               i=1 i=1 

If bj = x(i) (j = 1, • • • , m, i = 1, • • • , n), then it is optimal to assign x(i) to the j-th Pj. If 
bj — di(i = 1, • • • , m, i = 1, • • • ,m — n), then it is optimal not to assign 

at this time period. ^
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    Proof of Theorem 6. 
    By the induction principle, we will prove that di m is the expectation (under the 

optimal policy) to which the i-th pi is assigned in the problem in state (N, 0; pi. i • • • , pni ) 
(i < m). From this, it will be shown obviously that the total expected reward is given 
by Equation (24). Similarly, dir m(n) is also the expectation to which the i-th pi is 
assigned in the same problem when n jobs appear for decisions. 

    We note thatdNm(n) = Un(dN-1,T(,X),m-n'dN11,T(7,3),m-n I1' oo)• Since 
al ,n = Un(di, ool1, oo) 

  d100 

         f0d1hr,1(x(1))f(x(1)) dx(1) +fai x(1)hn,l (x(1)) f (x(1)) dx(1), (28) 

                                           then 

dN,~,m = Un (d_l,T(,)rn_nOO 1, oo) 
d1 

                  foN1.T(~e~).m—n1dN1,T(#,X),m-nhn,1(x(1)) f (x(1))dx(1) 
          +x(1)hn 1 (x(i)) f (x(1)) dx(1)• (29) 

                             d1                                                 N-1,T( ,X),ni.-n 

This value is an expectation to which the largest p1 is assigned under the optimal policy. 
This comes from the fact that; if x(1) > dN-1,T( ,x),m-n, then it is optimal to assign 
p1, and if, otherwise, it is optimal to decide not to assign p1 at this time period. This 
result follows by conditioning on the initial x(1) recalling that p1 is used if and only if 
this value lie in the interval (d 1l co). The second term of Equation (28) 
corresponds to the first case, and the first term is the expectation to which the pi is 
assigned for the future decisions under the optimal policy. 

    For the general cases, since 

    ai,n = Un(di, di-1 I1, co) 
   didi_        = j dihn+1 (x(1)) f (x(1)) dx(1) +x(1)hn,l (x(1)) f (x(1)) dx(1) 

              o 

                                                               d, 

          f+ (in (di-1, di-2 2, x(1)) f (x(1))dx(1),(30)                                  ,_1 

we investigate about these three terms. Equation (30) implies 

d~N,o,m(n)Un (d_1 T() rn-n' Ni1,T( ,X),rn-n1, oo) 
         d' 

   JdN1,T(~,~),m-nhn(x(1)) f (x(1)) dx(1) 

     0 

          di— 1 
N1,T(#.X),rn—n 

 +x(1)hn,1 (x(1)) f (x(1)) dx(1) 
da 

N1,T($,a`L'),nt—n 

 +Un(di-1, d-22, x(1)) f (x(i)) dx(1)• (31) 
    di-1N1,T(CX),m-nN1,T(T,X),m-n 

N1.T(f,aa,), na—n
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If  x(1) < dN1 ,T(,X),m—n,then not only pi but also pi, • • • , pi_i are not assigned at this 
time period. At the next instant, pi will be also the i-th largest among the remaining 
m — n p's. This implies that the expectation (under the optimal policy) which will be 
assigned to pi isdN -1,T(X),n_,,from the future decisions. This case corresponds to 
the first term of Equation (31). 

    If di< xi<d`-i, then pi, • • • , pi_i are not assigned          N1
,T(T,X),m—n—()N1,T(~,~),m—n 

at this time period, but the i-th pi is assigned to this job. This case corresponds to the 
second term of Equation (31). 

If dx-1< x(1), then pi is not assigned to a job with x(i). Since            N1
,T(T,X),m—n 
               < X(1), one of the pi., • • • , pi_1 is assigned to this job under the op N1 ,T(T,X),m—n 

timal policy. In this case, an individual decides for a job with x(2). There will consider 
the following three cases, i.e., (1) x(2) < di—11,T(~,X),m—n'(2)~N 11,T(~,eC),m—n<x(2) < 
di-2and (3) di-2< x(2).These cases are similar classification  N1 ,T(T,X),m—nN1,T(Ca°),m—n — 
for x(1). The third term of Equation (31) corresponds to this case. 

    This result follows by conditioning on the initial x(i) recalling that pi is used if and 
only if this value lies in the interval (did—i]. The expecta                                                N1 ,T(~,~°),m—n'N1,T(~,X),m—n 
tion to which the pi is assigned under the optimal policy is, therefore, equal to Equation 
(31), and this completes the proofs. E 

Remark 2 If we assume pi = • • = ph = 1 and pk;+i = • • • = p,n = 0 in Theorem 6, 
then we obtain a similar result in Theorem 4. From this fact, the sequential stochas
tic assignment problem is a generalization of an optimal selection problem in the last 
section. As is shown in Theorem 5, dN c k(m) means a threshold value for the opti
mal policy. Theorems 5, 6 and Lemma 6 indicate the properties of the optimal policy. 
For example, di N ,k (M) is decreasing with respect to If a state corresponds to an 
economic condition, as information about this state becomes smaller, the economic con
dition improves. From this fact, we say that; as information about the state improves to 
better, the threshold value increases. We also consider that; as the number of random 

variables increases, the threshold value increases. It is, therefore, natural that dN c h(m) 
is increasing with respect to m. This can be shown by using the induction principle. 

Remark 3 In this paper, we only treat a case where the total number of jobs is previously 
known, but it is possible to show similar results when this number is not known previously. 
We can obtain a proof for this case by a method similar to one used in Nakai (1986a). 
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