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    SADDLEPOINT APPROXIMATIONS

        By 

Hiroyuki TAKEUCHI*

                      Abstract 

   In this paper we shall examine the behavior of the saddlepoint in 

the saddlepoint approximations for the Mestimators of location. It is 

of use when applying a numerical method to solve an equation with 

respect to the  saddlepoint as well as considering theoretical view of the 

approximations.

1. Introduction 

    The saddlepoint approximations have widely been used in statistical applications 
since Daniels [1] introduced the method. It is well known that the method leads to 
accurate approximations to the densities of a sample mean and other simple linear 
statistics for small sample size n, even down to n = 1. See for example, Reid [9] 
for a review. To apply the method we must find the saddlepoint, however it is not 
always possible to find it explicitly, because the saddlepoint is often defined as a solution 
to a complicated equation. Though it is crucial to investigate the properties of the 

saddlepoint in the sense not only analytically but also numerically, many authors seems 
to have been paid little attentions to that. 

    In this paper we shall examine the behavior of the saddlepoint for the Mestimators 
of location. As a result, it may give analytic properties of the saddlepoint approximations 
and furthermore deduce the computational efforts to solve the saddlepoint equation by 

numerical techniques. 
    In the section 2 we shall show the existence and continuity of the saddlepoint. The 

existence was investigated by Daniels [1] for the mean of a sample of size n, however, we 
shall show it under some restricted conditions of the underlying distribution and also 
relate the smoothness of the saddlepoint. We shall give a lower and an upper bound for 
the saddlepoint and it makes possible to see its behavior at the tail of the distribution. 
This bound may be of use finding the initial value when applying a numerical iteration 
method to solve the saddlepoint equation. The behavior of the saddlepoint at the center 
of the distribution is also considered and consequently, in the section 3, we can evaluate 
the order of pointwise convergence of the derivative of the log density for the small 
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sample asymptotics which appears in Hampel [8], Field and Hampel [6], Field [5] and 
Field and Ronchetti [7]. 

    Let X1, X2, • • • Xn be independently and identically distributed random variables 
whose distribution is F(x — 90), where F(x) is symmetry and the 8o is a location pa
rameter. Hereafter we assume that 90 = 0 without loss of generality. The Mestimate 
for the location is defined as the solution On, of the equation En1~0(X•— 9)B-9,a— 0           a0, 
where 0(x) is a nondecreasing function. Since the saddlepoint approximations to the 
density for the Mestimate is given by Field [4], Field and Hampel [6] and Field and 
Ronchetti [7], the details of the method will not be explained here. We suppose that the 
following (A. 1) and (A. 2) in this paper. 

    (A. 1) The distribution function F(x) is continuous with F(—x) = 1 — F(x) for 
         x E R. And it also satisfies the followings, 

                     F(x) < 1 for x < a 

F(x) = 1 for x > a, 

         where a > 0 and if desired a = oo. 

    (A. 2) The score function 1,1)(x) is Huber type ; 0(x) = x for lx1 < k, 
tP(x) = ksgn(x) for ixj > k, where 0 < k < a. 

The saddlepoint is denoted by at and it is defined as a solution to the saddlepoint 
equation g(t, a) = 0 with respect to a, for fixed t, where 

                                             a 

                  g(t, a)-f(x — t)eal'(x_t)dF(x). (1.1) 
                                             a Since from (1.1), the saddlepoint itself does not depend on the sample size. It should 

be noted that there are two ways to get the saddlepoint approximations to the proba
bility density function. The formula (1.1) appears when the conjugate density with the 
Edgeworth expansions approach is employed. And the other is by means of the method 
of steepest descent, see for example De Bruijin [3], however there is no difference for the 
value of the saddlepoint (Field and Ronchetti [7]).

2. Behavior of the saddlepoint 

    For the existence of the saddlepoint we have the following theorem for the M
estimator of location, and it plays a key role in this paper. Note that the theorem 
essentially dues to Daniels [1] where he proved it for a sample mean. There is no need 
for the existence of the probability density function for this theorem. 

THEOREM 2.1. For any fixed t WI < a), the equation g(t,a) = 0 has a unique 
simple root at. 

    PROOF. Since 

I g(t, a + h) — g(t, a) 1 < kekla1 (ehl hl — 1) -4 0 as h 0,
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 g(t,  a) is a continuous function of a, uniformly for t. And it is strictly increasing as 

a g(t, a + h) — g(t, a) > h f(V'(x — t))2 ea"G('t)dF(x) > 0 
                                                     a for h > 0. However it is obvious that lim g(t, a) = oo, lim g(t, a) = —oo, for any 

—} CO —oo 

fixed t < a), we shall prove only for the first one. As we have 

fa ake~'« (F(a)—F(t+k)) , for t < a — k      0(x — t)elP(z_t)dF(x) >   ta fo -tx2dF(x + t), for t > a — k, 

hence we geta 

          g(t, a) > —c/>(t+a)F(t)+f0(x — t)ea~'(xt)dF(x) 
                                               t —+ oo as a -+ oo. 

Thus g(t, a) always has a unique simple root at for any fixed t < a). 
Since for any fixed t < a) we have a unique real number at which is a function of t, 
from now on we shall write it as a(t) if necessary. It is obvious that g(—t, —a) = —g(t, a), 
hence from Theorem 2.1 the saddlepoint satisfies a(—t) = —a(t) on it' < a, so, we shall 
confine ourselves to examine the behavior of a(t) for t > 0. Daniels [1] showed that if a 
is not finite then the saddlepoint for the mean of a sample of size n does not always exist. 

However for the Mestimate, by the theorem above, the equation g(t, a) = 0 always has 
a unique simple root for < a whether a is finite or not by the boundedness of the 
score function 7,1(x). 

    The sign of the saddlepoint can be stated as follows. 

PROPOSITION 2.2. If the distribution function F(x) satisfies that 

t fa                    (x — t)dF(x) < 0 for t 0, (2.1) 

                                  a then the saddlepoint satisfies the followings. 

a(t)>0 for 0<t<a 

a(t)<0 for —a<t<0. 

   PROOF. Suppose that a(t) < 0 for t (0 < t < a) then we have for all x E R 

(ett) — 1) ?,1)(x — t) < 0. 
This yields a contradiction to Theorem 2.1 because from (2.1) we have g(t, a(t)) < 0. 
Furthermore if there exists a t (0 < t < a) such that a(t) = 0 then the same contradiction 
occurs. Hence we have a(t) > 0 for 0 < t < a. Similarly we can show for t (—a < t < 0). 

It is obvious that if t = 0 then a(t) = 0 by Theorem 2.1. The converse is true under the 
condition of Proposition 2.2. 

    Although it is not always possible to get an explicit root for the equation g(t, a) = 0 
with respect to a, we can construct a lower and an upper bound for the saddlepoint.
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    PROPOSITION 2.3. There exist a lower and an upper bound for a(t) such that 

              logl(tF,t)< 2ka(t)<log1 F(t+k(2.2) 
for t < a  k). 

    PROOF. There exist continuous and strictly increasing functions g+ and g such 
that lim g+ (t,a)=limg(t, a) = +oo and g (t, a) < g(t,a) <g+(t,a) for each 

   a-~fooa-*foo 

fixed t (1t1 < a  k). Defining that 
—ka—t 

g+ (t, a) = -ke-ka JdF(x+t)+kekaJdF(x+t) 
        a—t0 

       f0a—t           g (t, a) = -ke-ka dF(x + t) + keka JdF(x+t), 
        a—tk 

we get the conclusion by substituting a = log F(F(tj and a = log 1_FIt)+k) to g+ (t, a) 
and g (t, a), respectively. Note that to construct g+ and g we used an inequality 
eaz < 2k (ekot — e—ka) x -} 2 (eka +e-ka) for Ix~ < k. 

If we suppose (2.1) then the left-hand side of (2.2) can be written as 

F(t  k)               max 0, log-----------for 0 < t < a  k 1-F(t) 

by Proposition 2.2. The bound (2.2) may be of use finding the initial value when applying 
a numerical iteration method to solve the saddlepoint equation g(t, a) = 0 with respect 
to a. 

    We have the following corollary in the tail of the distribution . 

    COROLLARY 2.4. If a is infinite then we have 

                a(t)  2klog (1  F(t)) as t-+oo.(2.3) 
Note that t -oo case can also be obtained through the odd property of a(t) . 

    The existence of the saddlepoint is shown in Theorem 2.1, however, under some 
restricted conditions of the distribution we can state Theorem 2.6 for the existence and 
smoothness of the saddlepoint through implicit function theorem . Firstly we need the 
following lemma to the theorem. 

    LEMMA 2.5. The saddlepoint a(t) is continuous on < a . 

    PROOF. Assume that for an e > 0 there exists an hm (0 < I hml < l/m) such that 
a(t + hm)  a(t) 1 > E for m = 1, 2, • • . If a(t + hm)  a(t) > € then Theorem 2.1 and 

Lebesgue's convergence theorem leads that 

                         fa0 = g(t+hm,a(t+hm)) >tp(x — (t + hm))e(a(t)+E)c.(t+hm))dF(x) 

                                                  a 

         La(x — t)e((t)mt)dF(x) as m -> oo. 



On Behavior of the Saddlepoint in the Saddlepoint Approximations19

And this yields a contradiction because the last-term is greater than 0, again for the 

strict increase of g(t, a) and Theorem 2.1. We can show for a(t + hm)  a(t) <  —E case 
in the same way and this completes the proof of the lemma. 

    THEOREM 2.6. If the distribution has a continuous probability density function f (x) 
then the saddlepoint a(t) belongs to C) on it' < a. 

    PROOF. Let to E I be an any fixed point where I is an any finite open interval 
such that I C {t : It < a}. From Lemma 2.5 there exists a positive constant M such 
that !at l < M for every t e I. Thus it can be shown that eag(t, a) exists by Lebesgue 
convergence theorem, and it takes positive. et g(t, a) also exists and they are both 
continuous on {(t, a) : t E I, < M} by continuity of f. Whence g(t, a) belongs to 
C(1). Consequently, by virtue of implicit function theorem and Theorem 2.1 there exists 
a unique function a(t) which belongs to C(1) such that, 

             (i) a(to) = ato 
       (ii) g(t, a(t)) = 0(2.4) 

           (iii) dta(t)atg(t, a) lasg(t, a) 
                     a-a~a-at 

on an open interval that includes to. Hence we get the conclusion by Lemma 2.5. 

A modulus of continuity of a(t) for < a can be evaluated by the following theorem. 

    THEOREM 2.7. Suppose that the distribution has a probability density function f (x) 
with 13-th Lipschitz condition and there exists a constant q > 0 such that 

                                  a 

                Jf (x)dx = 0(L-q) as L -* a, (2.5) 
                        L and that it also satisfies the following. 

                                             a 

                 —oo<f<cx)f10(42 f(x + u)dx > 0(2.6) 
                                                a Then we have for each < a that 

              ja'(t+h)a'(t) =0(h ) as h-+0. 
    PROOF. From 0-th Lipschitz condition of f (x) we have 

gt(t + h, a)  gt(t, (1)1 = 0 (ha) as h 0. 

And also we have 

                                                L 

 

Iga(t + h, a)  ga(t,a)1 = k2eklal0 (L-1) +fIf(x + t + h)  f(x + t)I dx 

                                               L 

                   = 0 (L-q) + 0 (Lh') as h -3 0 and L -4 a (2.7)
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Setting L = 1h1 we get the order O(hv++l) for the right-hand side of (2.7) and the 
term can not be faster than this rapidity. By the (iii) in (2.4) and (2.6) we obtain the 
conclusion. 

    To show the monotonicity of a(t) with respect to t, we need a technical condition 
as follows. 

PROPOSITION 2.8. If there exists an ht > 0 such that for any h (0 < h < ht) 
implies 

  fkk             J xe"(t)xdF(x + t + h) <~xe"(t)xdF(x + t) (2.8) 
                                                                                                                                                           . for each t WI < a), then we have 

a(ti) < a(t2) for ti < t2. (2.9) 

PROOF. From assumption there exists an ht such that g(t + h, a(t)) < 0 for 0 < 
h < ht. Since g(t, a) is a strictly increasing function of a for any fixed t , and by Theorem 
2.1, there exists a 6 > 0 such that g(t + h, a(t) + 6) = 0. Thus we have a(t) < a(t + h) 
for h (0 < h < he). Hence we get the conclusion by continuity of a(t). 

Note that the conclusion in (2.9) is strict provided that the relation (2.8) is strict. 
    Asymptotic behavior of the saddlepoint when t -* 0 is described as follows. And 
we shall require the corollary to Theorem 2.9 to prove Theorem 3.1 which evaluates the 
order of pointwise convergence of the derivative of the log density for the small sample 
asymptotics. 

    THEOREM 2.9. The saddlepoint satisfies the following. 
           k (F(t + k)  F(-t + k))  f'kxdF(x + t) 

                                             as t-+0   a(t)~ ------------------------------------------------------------------------------0.(2.10) 
          k2 (F(t  k) + F(-t  k)) + f kk x2dF(x + t) 

PROOF. To obtain a recurrence formula for a we expand (1.1) as follows. 

                  rt—krt+ka         g(t, a) =J at+J—+ J0(x  t)e"~G('t)dF(x)                    k+k 

              = (-lc ̂ k2a + 0(a2))F(t  k) 

k 

                             /'k +JxdF(x + t) + a f x2dF(x + t) + 0(a2) 

                             k 

                                               k 

                  + (k + k2a + 0(a2)) (1  F(t + k)) 

The relation g(t, a(t)) = 0 yields that 

                                        k 

       {k2 (F(t  k) + F(-t  k)) + fx2dF(x + t)a(t) 
                                        k k           = k (F(t + k)  F(-t + k))  fxdF(x +t)+ 0 (a(t)2) . (2.11) 

                                              k Together with (2.11) and lim a(t) = 0, we get the conclusion. t—>o
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Under some smoothing conditions of the probability density function  f  (x), we have the 
following corollary. 

    COROLLARY 2.10. If the distribution has a probability density function f(x) which 
is twice continuously differentiable and the f"(x) is bounded on lx1 < k then we have 

a(t)f 0'(x) f (x)dx ~2(x)f(x)dxt as t 0.(2.12)     f 

3. Small Sample Asymptotics 

    In this section we shall show the pointwise convergence of the derivative of the 

log density for the Mestimator of location that plays a key role in the small sample 
asymptotics introduced by Hampel [8], see also Field and Ronchetti [7]. 

    The derivative of the log density is -x, if the density is the standard normal. 

Field [5] showed that the cumulative deviation from this linearity in the derivative of 
the log density is very closely related to the accuracy of the normal approximation for 
the tail area. Field and Hampel [6] expanded it, in powers of 1/n at each point using 
recentering by means of the conjugate distributions, and later Daniels [2] showed that 
this technique is equivalent to the saddlepoint method. 

    As mentioned above Field considered the cumulative deviation from linearity such 
that 

~vaA x dx,(3.1)      ft 
                      where the first-term of the integrand is the first order of the expansion of the saddlepoint 

approximations to the derivative of the log density. And the second-term is that of the 

standard normal. And A(t) is defined as A(t) = c(t) fa a  0'(x  t)ea(t)11)(x-t) f(x)dx, 
where c(t) is given by c(t) f as ea(t)11)('-t) f(x)dx = 1. The asymptotic variance of the 
Mestimator for the locations is denoted by v2. However the cumulative deviation (3.1) 
may vanish even when the integrand is not identically equals to 0. This means that 
the deviation does not necessarily denotes a distance between the Mestimate and the 
standard normal. In this respect we simply consider the convergence of the ratio of these 
two terms in the integrand. 

    THEOREM 3.1. We assume that the conditions of Corollary 2.10 hold and the dis
tribution function satisfies 0-th Lipschitz condition; 

IF(x+y)F(x)1<Cly1'3, C>0,  > 0,(3.2) 

where C and 0 are independent of x. Then we have 

_1Hvt ) A  1 = O (_4rnin{/31}) as n -+ oo. (3.3) 
    PROOF. Let to be vt/.. From Corollary 2.10 the left-hand side of (3.3) is asymp
totically equivalent to A(tn)/ If as '(x) f (x)dx  1 and we have that 

                faA(t)  ~' (x  tn) ea(tnM°—t„) f (x)dx as n co. 

                                  a
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Then we have 

 A(4,) fa'(x)f (x)dx= {F(tn+ k)  F(tn k) _a(x)f(x)dx} af 
                                                                                a f oi(tn) fx f (x + tn)dx + 0 (a2(tn,)) as n->co. (3.4) 

The first term of the right-hand side of (3.4) is 0 (t.173,) by (3.2). Therefore we get the 
conclusion.
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