
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

ON BEHAVIORS OF CELLULAR AUTOMATA WITH RULE 156

Inokuchi, Shuichi
Department of Informatics, Kyushu University

https://doi.org/10.5109/13474

出版情報：Bulletin of informatics and cybernetics. 30 (1), pp.121-131, 1998-03. Research
Association of Statistical Sciences
バージョン：
権利関係：



 Bulletin of Informatics and Cybernetics, Vol. 30, No. 1, 1998

ON BEHAVIORS OF CELLULAR AUTOMATA 

           WITH RULE 156

      By 

Shuichi INOKUCHI *

                     Abstract 

   This paper deals with one-dimensional finite cellular automata with 
a triplet local transition rule 156 and fixed boundary conditions. The 
author observed behaviors of CA156,,_0(m) by computer, and found 
formulae of number of limit cycles and transient length from observation. 
And the author got proof of them.

1. Introduction 

    Von Neumann introduced cellular automata capable of selfreproduction and uni
versal computation. While cellular automata have simple structure, their global behav
iors caused by interactions between cells are very complicated. Their global behaviors 
are similar to behaviors of complex systems as fractals, chaotic phenomenon and so on. 
Wolfram and other researchers rerealized important roles of cellular automata as theo
retical models of complex systems. Cellular automata have wide applications in biology, 
physics, computer science, mathematics and so on. 

    Recently various cellular automata are investigated and applied by many researchers. 
Wolfram (1986) classified 1dimensional cellular automata into 4 classes. Kawahara et al. 
(1995) studied 2dimensional cellular automata with linear rule 90. Lee and Kawahara 
(1992) investigated 1dimensional cellular automata with linear rule 60. Kawanaka et al. 
(1993) designed parallel processor model by a 2dimensional linear cellular automata. 
Many linear cellular automata are investigated and applied by many researchers. But 
many nonlinear cellular automata have not investigated yet. Some nonlinear cellular 
automata were investigated. Sato (1996) investigated behaviors of nonlinear cellular 
automata with rule 27. Lee and Kawahara (1996) investigated transition diagrams of 
1dimensional cellular automata and proved that transition diagrams of a cellular au
tomaton can be represented by the cartesian product of transition diagrams of smaller 
cellular automata. Shingai (1978) showed that the period length of limit cycles of cel
lular automata with a threshold transition rule is 4 or less. The author et al. (1996) 
simulated 1dimensional cellular automata by computer and analyzed the result of the 

simulations.
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   In this paper the author investigate 1dimensional cellular automata with non
linear transition rule 156. And the author prove the formulas of the number of limit 
cycles found by analysing the result of computer simulations in the paper written by the 
author et al. (1996).

2. 1-D Finite Cellular Automata 

   A configuration is a set of cells arrayed and having a state. The set of all configu
rations is called a configuration set. A cellular automaton is a dynamical system (X, 1) 
of a configuration set X and a transition function f on X . A cellular automaton is 
1dimensional if cells of its configurations are arrayed linearly. 

    In this section, we define 1dimensional finite cellular automata with a triplet local 
transition rule 156 and fixed boundary conditions and necessary notations for after 
discussion. 

DEFINITION 2.1. Let {1, 2, , m} be a set of cells. A configuration is a vector 
x = (x1, x2, • , x,,.,) where xi E {0, 1}. And we call the set of all configurations a 
configuration set. 

Usually a configuration (x1, x2, • • • , xm) is denoted by the sequence xi x2 • xm for short. 

DEFINITION 2.2. The triplet local transition rule f is a function {0, 1}3 —^ {0, 1}, 
and f is illustrated as follows; 

             111 110 101 100 011 010 001 000 
            r7 r6 r5 r4 r3 r2 r1 r° 

where ri = f (xyz) and i = 4x-1-2y+ z. And the rule number R of f is defined as follows; 

R = 277.7 26r6 2°r0. 

For instance, 
156 = 27 x 1 + 24 x 1 + 23 x 1 + 22 x 1, 

so the triplet local transition rule f of rule number 156 is given as follows; 

                 111 110 101 100 011 010 001 000 
Rule 156 1 0 0 1 1 1 0 0 

   DEFINITION 2.3. The global transition function b : {0,11m —* {0,1}m is defined 
as follows; 

6(xl, x2, ...,xm) = (f (a, xl, x2), f (xi, x2, x3), ... , f (xm_i, xm, 0)) 

where f is a triplet local transition rule and a, /3 E {0, 1}. 

We call a pair (a, /3) a boundary condition. We say that the boundary condition is cyclic 
if and only if a = xm and ,Q = x1, and the boundary condition is fixed if and only if
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a and ,3 are fixed. In particular,when a = a and ,3 = b, we say that the boundary 
condition is a-b. 

    A 1dimensional cellular automaton with m cells, rule R and boundary condition 
a-0 is denoted by CAR0,_p(m). 

    DEFINITION 2.4. Let x be a configuration of CARa_p(m). The configuration x is 
on a limit cycle of period length T if and only if there exists a positive integer s such that 
bs(x) = x, and T = min{s > 1ISs(x) = x}. And the configurations x(1), x(2), • • • , x(T — 
1) form a limit cycle of period length T if and only if x(i + 1) = S(x(i)) and x(T) = x(1), 
and x(i) forms a limit cycle of period length T where 1 < i < T — 1. 

A limit cycle of period length T is called Tcycle, in particular, a limit cycle of period 
length 1 is called a fixed point. And yT(m) denote a number of a limit cycle of period 
length T of CA-Ra_ p(m). 

DEFINITION 2.5. The height h(x) of a configuration x is defined as follows; 

h(x) = min{s > Olbs(x) is on a limit cycle}. 

Then the transient length H(m) of CARa_p(m) is defined as follows; 

H(m) = max{h(x)ix is a configuration of CARa_p(m)} 

    DEFINITION 2.6. The reverse transition rule 7 of a local transition rule f and the 
symmetric transition rule ft of f is defined as follows; 

f(x,y,z) = 1— f(1—x,1—y,l—z) 

ft(x, y, z) = f(z, y, x) 

   Let R and Rt be rule number of f and ft respectively, then we can identify CA
h'a_ (m) and CARp_a(7n) with CARa_p(m). So CARa_p(m), CA1~_p(m), CA
Rto_a(rn) and CAR53-_7,-,(m) can be identified with each other. 

    The symmetric rule and the reverse rule of rule 156 are rule 198 illustrated as 

follows; 

                 111 110 101 100 011 010 001 000 

Rule 198 1 1 0 0 0 1 1 0 

   We use the following notations: 

Let A be a subsequence of a configuration of cellular automata. 

   • Ak : sequence composed of k A's 

   • * : an irrelevant bit
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3. Computer Simulations 

    In this section we see the result of computer simulations of CA156a_a(m). The 
author simulated CA156a_p(m) by computer and got the following tables. 

m II1 2I3 4 5I6I 7 18------------------------------------------------------------------------------------------------------------------------------------------------------------19 I10 11I 12 113 114 115 I 
1-cycle 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 

  2-cycle 0 1 1 3 5 8 14 22 34 55 83 12.9 199 302 464 
  H(m) 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14  

Tablel:CA1560_0(m) and CA1561-1(m) 

  m 11 2 3 4 I 5 16 17 8 9 110 11 12 I 13 I 14 I 15  
 1-cycle 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 

 2-cycle 0 0 1 2 5 10 18 32 54 88 143 226 355 554 856 
 H(m) 0 0 0 2 2 4 4 6 6 8 8 10 10 12 12  

Tablel:CA-1560_1(m) 

I m  1 1 2 1 3 4 1 5 1--------------------------------------------------------------------------------------------------------------------------------------------------------6 1 7 1 8 1 9 1 10 11112I 13 114 115  
  1-cycle 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

   2-cycle 1 0 2 2 3 6 8 12 21 28 46 70 103 162 244 
  H(m) 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14  

Tablel:CA1561_o(m) 

    The numbers of limit cycles look irregular. But by analyzing the above tables by 
computer the following formulas are found. For CA1560_0(m) and CA1561_1(m) 

y1(m) =m-----2-1 + 2, 

 y2(m)=72(m1)-y2(m2)+y2(m3)2y2(m-4)-I0 if miseven{ 
                                                     1 otherwise 

                      H(m) = 2m                              2 

where [.] denotes the Gauss symbol. 
For CA1560_1(7n) 

y1(m) =y1(m 1)+y1(m2)71(m-3)+1, 

72(m) = 2-y2(m  1)  3y2(m  4) + 2-y2(m  5)0 of m is even 
1 otherwise 

                      H(m) = 2m2  

                             2
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For  CA1561_o(m) 
                           0 if m is odd 
71(m)_1 otherwise 

72(m) = 72(m — 2) + 272(m — 3) + 71(m — 3), 

H(m) = 2 [ ] .

4. Dynamical Behaviors 

    In this section, we study behaviors of CA-156„0(m) in terms of limit cycles, their 
numbers and transient lengths. 

4.1. Boundary Condition 1-0 

    In this subsection we investigate behaviors of CA1561_o(m), and we prove the 
formulas stated in section 2. 

    LEMMA 4.1. Let x be a configuration and y = 6(x). Then if xixi+l = 01, then 
yiyi+1=01 where 1<i<m. 

    PROOF. It is trivial. 

    LEMMA 4.2. The configuration x is a fixed point if and only if lx0 contains no 
subsequences 11 and 00. 

    PROOF. (necessary condition) First, suppose that lx0 contains the subsequence 
11. As the boundary condition is 1-0, lx0 contains the subsequence 110. So x is not a 
fixed point as f(110) = 0. Next, suppose that lx0 contains the subsequence 00. As the 
boundary condition is 1-0, lx0 contains the subsequence 100. So x is not a fixed point 
as f(100) = 1. 
(sufficient condition) Let y = 6(x). Suppose that x is not a fixed point, then there exists 
an integer i with 1 < i < m such that xi � yi. If xi = 0 and yi = 1, it follows that only 
xi_ixixi+i = 100 for yi = 1. So lx0 contains the subsequence 00. If xi = 1 and yi = 0, 
it follows that only xi_ixixi+i = 110 for yi = 0. So lx0 contains the subsequence 11. 

    LEMMA 4.3. Let x be a configuration. Then x = 62(x) if and only if lx0 contains 
no subsequences 111, 000 and 1100. 

    PROOF. Let y = 6(x) and z = 62(x). 

(necessary condition) First, suppose that lx0 contains the subsequence 111. The bound
ary condition is 1-0, so there exists an integer i with 1 < i < m — 1 such that 
xi_lxixi+ixi+2 = 1110. As f(*11) = 1 and 1(110) = 0, we have yi_lyiyi+1 = 110 
and zi+i = 0. Hence x 62(x). Second, suppose that lx0 contains the subsequence 
000. The boundary condition is 1-0, so there exists an integer i with 1 < i < rn — 1 such 
that xi_ixixi+lxi+2 = 1000. As f(100) = 1 and f(00*) = 0, we have yiyi+lyi+2 = 100 
and zi+i = 1. Hence x � 62(x). Lastly, suppose that lx0 contains the subsequence 1100,
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and we let xixi+lxi+2xi+3 = 1100 where 0 < i < m — 2. Then we have yi+lyi+2 = 01. 
So zi+i = 0 from f(*01) = 0. Hence x 52(x). 
(sufficient condition) Suppose that x # 62(x). Then there exists an integer i such that 
xi � zi where 1 < i < m. First we let xi = 1 and zi = 0. Then for zi = 0, it follows 
that yilyiyi+l = 110, 101, 001 or 000. 

 (a) If yi_lyiyi+l = 110, then for yi = 1, it follows that xi_lxixi+l = 111,011 or 
    010. But xs _ l xi xi+l = 011 and 010 contradict yi  i yi YI+i = 110. So we have 

xilxixi+1 = 111. 

 (b) If yilyiyi+i = 101, then for yi = 0, it follows that xa_lxixi+l = 110. Then for 
Yi+1 = 1, we have xi+2 = 0. So x contains 1100. xi+2 = 0. 

 (c) If yilyiyi+l = 001, then for yi = 0, it follows that xi_lxixi+i = 110. But 
xi_lxixi+i = 110 contradict yi_1YIYi+i = 001. 

 (d) If yi_lyiyi+i = 000, then for yi = 0, it follows that xi_ixixi+i = 110. But 
xi_ixixi+1 = 110 contradict yi_lyiyi+l = 000. 

Next we let xi = 0 and zi = 1. Then for zi = 1, it follows that yi_ i yi yi+1 = 111, 100, 011 
or 010. 

 (a) If yi_lyiyi+l = 111, then for yi = 1, it follows that only xi_ixixi+i = 100. But as 
f(00*) = 0, xi_lxixi+i = 100 contradicts yi+i = 1. 

 (b) If Yiiyiyi+l = 100, then for yi_lyi = 10, it follows that xi2xiixixi+l = 1000 
    or 1001. But xi2xiixixi+1 = 1001 contradicts yi+i = 0 as f(01*) = 1. So 

xi2xiixixi+i = 1000. 

 (c) If yilyiyi+i = 01*, then for yi_lyi = 01, it follows that only xi_2xiixixi+1 = 
   1100 

Therefore if x 62(x), then lx0 contains the subsequences 111,000 and 1100. 

From lemma 4.2 and lemma 4.3 we have that the configuration x is on a limit cycle 
of period length 2 if and only if lx0 contains the subsequences 11 or 00, and does not 
contain the subsequences 111,000 and 1100. 

    LEMMA 4.4. Let x be a configuration and y = 5(x). Then if yi_1 = yi = yi+1, then 
xi-1 = xi = xi+l. 

    PR.00F. First, we assume yi_i = yi = yi+1 = 1. For yi = 1, it follows that 
xi_ixixi+l = 111, 100,011 and 010. xa_lxixi+i = 100 contradicts yi+1 = 1 as f(00*) = 
0. xi_lxixi+l = 011 and 010 contradict yi-1 = 1 as f(*01) = 0. If xi_lxixi+l = 111, 
then we have yi  i yi yi+l = 111 from assumption that xi+2 = 1. So if yi -1 = yi = Yi+i = 
1, then xa_1 = xi = xi+i = 1. 
Next, we assume yi-1 = yi = yi+1 = 0. For yi = 0, it follows that xi_lxixi+l = 
110, 101, 001 and 000. xi_ixixi+l = 110 contradicts yi-1 = 0 as f(*11) = 1. xz_lxixi+i =
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101 and 001 contradicts  yi+l = 0 as f(01*) = 1. If xi_1xixi+i = 000, then we have 

YiiYiyi+1 = 000 from assumption that xi_2_0. So if yi-1 = yi = yi+l = 0, then 
xi-1 = xi = xi+i = 0. 

   LEMMA 4.5. Let x be a configuration. Then if 6(x) contains the subsequence 1100, 
then x contains the subsequence 111 or 000. 

   PROOF. Let y = 6(x). Suppose that y contain the subsequence 1100, and let 
Yi1YIYi+iYi+2 = 1100. For yi-lyi = 11, it follows that xi_2xi_1xixi+1 = 1111 and 
0100. If xi_2xE_ixixi+i = 1111, then for yi+lyi+2 = 00, it follows that xi+2xi+3 = 01. 
If xi_2xL_ixixi+i = 0100, then for yi+lyi+2 = 00, it follows that xi+2xi+3 = 00. Hence 
if 6(x) contains 1100, then x contains 111 or 000. 

    LEMMA 4.6. The following hold; 

   • If xixi+i • • • xi+s = 10s, then yi+lyi+2 • • yi+s = 10s-1 where s > 2. 

   • If xixi+i ... xi+s = 180, then yi+lyi+2 • • yi+, = 13-10 where s > 2. 

    PROOF. It is trivial. 

    PROPOSITION 4.7. All 2-cycle of CA1561_0(m) can be constructed without redun
dancy as follows; 

 (a) If xix2 • • • xm_2 and y1y2 • ym-2 form a 2cycle, then x1x2 • • • xm_201 and 
y1Y2 • • • ym-201 form a 2cycle. 

 (b) If x1x2 ' • xm_3 and y1 y2 • • • ym-3 form a 2cycle, then x1x2 • • xm_2010 and 
M.Y2 • • • ym_2011 form a 2cycle. 

 (c) If x1x2 • • • xm_3 is a fixed point, then x1x2 • • • xm_3010 and x1x2 • • • xm_3011 form 
     a 2cycle. 

    PROOF. First, configurations which are constructed form a limit cycle of period 
length 2 and don't overlap each other clearly. Next, we show that all 2cycles can be 
constructed. We let a and b be configurations which form a limit cycle of period length 2. 
We look at last 2 cells. In case am_la,n = 00, then a doesn't form a limit cycle of period 
length 2. In case am _ 1 am = 01, then we have bm _ i bm = 01 as a and b form a limit 
cycle. So laia2 • • • am_20 and 1b1b2  • • bm_20 contain the subsequences 11 or 00 and 
don't contain 111,000 and 1100. So aia2 • •  am_2 and bib2 • • • bm_2 form a limit cycle of 
period length 2 of CA156(m2)1_0. In case am_1am = 10, then if am_2 = 1 a doesn't 
form a 2-cycle . If am_2 = 0, then we have bm_2bm_1bm = 011. So laia2 • • • am_30 and 
1b1b2 • • • bm_30 don't contain 111,000 and 1100. Hence aia2 • • • am_3 and bib2 • • • bm_3 
form a limit cycle of period length 1 or 2 of CA  156(m 3)1_0. In case am_1am = 10, 
then if am_2 = 1, a doesn't form a limit cycle of period length 2 . If am_2 = 0, then we 
have bm_2bm_ibm = 011. So laia2  • • am_30 and 1b1b2 • • • bm_30 don't contain 111,000 
and 1100. Hence aia2 • • • am_3 and bib2 • • • bm_3 form a limit cycle of period length 1 or 
2 of CA  156(m  3)1_0. So all 2cycles can be constructed without redundancy.
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By the above discussion we get the following theorem. 

    THEOREM 4.8. CA1561_o(m) has limit cycles of period length 1 and 2, and for 
the number of limit cycles the following hold; 

                    (m)=0 if m is odd                  711 otherwise 

72(m) =72(m2)+272(m3)+7i(m-3). 
And for the transient length of CA1561_o(m) the following holds; 

H(m)i—o = 2 [v]. 
                                         PROOF. First, as for the formulae of numbers of limit cycles, it is clear by propo

sition 4.7. 

Next, as for the formula of transient length, let x(k) = Sc(x). First case, when the 
configuration lx0 contain Os, let xi+i xi+2 • • • xi+S = Os and xi+s+1 = 1 or i+ s = m+ 1. 
In case xi_1xi = 01 or i = 0. 

 (a) If s is even, then we have xi+i(s — 3)xi+2(s — 3) . • • xi+s(s — 3) = 0101 • • • 011000. 
    So xi(s — 2)xi+2(s — 2) • • • xi+s+i(s — 2) doesn't contain 111,000 and 1100. 

 (b) If s is odd, then we have xi+i(s — 2)xi+2(s — 2) • •  xi+s(s — 2) = 0101  • .01100. 
    So xi(s — 1)xi+2(s — 1) •  • xi+s+i(s — 1) doesn't contain 111, 000 and 1100. 

In case xi_ixi = 11. 

 (a) If s is even, then we have xi+1(s — 2)xi+2(s — 2) • • • xi+s(s — 1) = 0101 • • • 011000. 
    So xi(s — 1)xi+2(s — 1) • • • xi+s+1(s — 1) doesn't contain 111,000 and 1100. 

 (b) If s is odd, then we have xi+i(s — 3)xi+2(s — 3) •  • xi+s(s — 3) = 0101 • • .01100. 
    So xi(s — 2)xi+2(s — 2) • • • xi+8+1(s — 2) doesn't contain 111,000 and 1100. 

Second case, when the configuration lx0 contain 1s, let xi+ixi+2 • • • Xi-4-3 = P and xi = 0 
on+1=0. 
In case xi_ixi=01ori+s+1=m+1. 

 (a) If s is even, then we have xi+1(s — 3)xi+2(s — 3) • • • xi+s(s — 3) = 11100101  •  01. 
    So xi(s — 2)xj+2(s — 2) • • • xi+s+1(s — 2) doesn't contain 111, 000 and 1100. 

 (b) If s is odd, then we have xi+1(s — 2)xi+2(s — 2) • • • xi+s (s — 2) = 1100101 • • .01. 
    So xi(s — 1)xi+2(s — 1) •  • xi+s+1(s — 1) doesn't contain 111,000 and 1100. 

In case xi _ i xi = 00. 

 (a) If s is even, then we have xi+i(s — 2)xi+2(s — 2) • • • xi+s(s — 2) = 1100101 •  010. 
    So xi(s — 1)xi+2(s — 1) • • • xi+8+1(s — 1) doesn't contain 111,000 and 1100. 

 (b) If s is odd, then we have xi+1(s — 3)xi+2(s — 3) • • • xi+s (s — 3) = 11100101 • • .010. 
    So xi(s — 2)xi+2(s — 2) •   xi+s+i(s — 2) doesn't contain 111,000 and 1100. 

So when lx0 contain 1'n+1 or 0772+1, h(x) is maximal. So if m is even, then H(m)1_o = m 
and if m is odd, then H(m)i_o = m — 1. Hence H(m) = 2[].
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4.2. Boundary Condition 0-0 and 1-1 

   The reverse rule of the symmetric rule of rule 156 is rule 156. So  CA1560_o(m) 
and CA1561_1(m) are isomorphic. In this subsection we investigate behaviors of CA
1561_1(m) only. 

    LEMMA 4.9. Let x be a configuration and y ='5(x). If xm_ixm_i+1 • • • xm ----- OP, 
then ymiym-i+1 ' • • ym = Oli where 0 < i < m  1. 

    PROOF. It is trivial. 

From lemma 4.9, behaviors of CA1561_1(m) is isomorphic to behaviors of CA1561_o(m
i  1). So we get the following theorem from theorem 4.8 

THEOREM 4.10. CA1561_1(m) has limit cycles of period length 1 and 2, and for 
the number of limit cycles the following hold; 

                       71(m) = ------2m-1+2, 

   (m(m  1) + 72(m  2) + 72(m  3)  272(m  4) +0 if m is even  72) = 72 1 otherwise• 

And for the transient length of CA1561_1(m) the following holds; 

                    H(m) = 2 [in  1 

                              2 

    PROOF. If x = 1' or 01"'-1, then 5(x) = x. If x 1' and Olm-1, then there 
exists a positive integer j such that j = maxx;-o{i}. So for any configuration x such 
that x 1' and Olrt_1 • xm = OP where 0 < j < m 2. By lemma 4.9, 
behaviors of x1x2 • • • xm_s_1 are same as it of CA1561_0(m  i  1). So we have 

71(m)1-1 = 71(m  1)1-o + . • • + 71(1)1_0 +2 

and 

72(m)1-1 = 72(m  1)1_0 + .. • + 72(1)1-o. 

By theorem 4.8, we have 

                      71(m)1-1 =[m2------1]+2 

and 

72(m)1-1 = 72(m  1)1-1 +72(m  2)1-1 + 72(m  3)1-1  272(m  4)1-1 + 0/1. 

As max{h(x)I xm_ixm_i+1 • • • xm = 011 equals to transient length of CA1561_o(m  
i  1). So H(m) = 2['n2 1]
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4.3. Boundary Condition 0-1 

    In this subsection we investigate behaviors of CA1560_1(m). 

    LEMMA 4.11. Let x be a configuration and y = b(x). If x1x2 • • • xi+i = Oil, then 
yly2•••yi+1=Oil where 0 < i < m — 1. 

    PROOF. It is trivial. 

From the above lemma CA1560_1(m) and CA1561_1(m — i — 2) are isomorphic each 
other. So we get the following theorem. 

   THEOREM 4.12. CA1560_1(m) has limit cycles of period length 1 and 2, and for 
the number of limit cycles the following hold; 

71(m) = 71(m — 1) + 71(m — 2) — 71(m — 3) + 1, 

     72(m) = 272(m — 1) — 372(m — 4) + 272(m — 5) +0 if m is even 1 otherwise 

And for the transient length of CA1560_1(m) the following holds; 

                      H(m) = 2m2 

                              2 5. Conclusion 

   In this paper we investigated behaviors of CA156a_p(m) in terms of limit cycles 
and their numbers, and transient length, and proved the formulas of the number of limit 
cycles and transient lengths. 
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