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                     Abstract 

   This paper provides a proof of a representation theorem for homo

geneous relation algebras by using concepts of scalar relations and point 
relations.
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theorem. 

1. Introduction 

   Just after Zadeh's work on fuzzy sets in 1965, Goguen (1967) generalized the con
cepts of fuzzy sets and relations to taking values on arbitrary lattices, and also stressed 
the importance of relations as follows: 
The importance of relations is almost selfevident. Science is, in a sense, the discovery 
of relations between observables. Zadeh has shown the study of relations to be equivalent 
to the general study of systems (a system is a relation between an input space and an 
output space). 

    The modern algebraic study of (binary) relations, namely relational calculus, was 
begun by Tarski; see Maddux (1991) for details of the history of the study of Boolean 
relation algebras. Tarski (1941) also proposed a formalisation of Boolean relation al

gebras and their representation problem. Schmidt and Strohlein (1985), (1993) gave 
a simple proof of a representation theorem for Boolean relation algebras satisfying the 
(so-called) Tarski rule and a point axiom. Dedekind categories (Olivier and Serrato 
(1995)) (or allegories (Freyd and Scedrov (1990))) provide a categorical framework for 
relational calculus. Relational calculus is a very useful framework for the study of math
ematics (Kawahara (1995), Tarski and Givant (1987)) and theoretical computer science 

(Schmidt and Strohlein (1993), Bird and de Moor (1997)) and also a useful tool for 
applications. Some element-free formalisations of fuzzy relations and proofs of represen
tation theorems are given in Kawahara and Furusawa (1995), Kawahara, Furusawa and 
Mori (1996), and Furusawa (1997) .
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    In this paper we consider relation algebras, which may not be Boolean, and provide 
their representation theorem. Relation algebras in the sense of this paper are equivalent 
to Dedekind categories (or allegories) with just one object. Kawahara, Furusawa, and 

 Mori (1996) proved a representation theorem for Dedekind categories, showing that a 
Dedekind category with a unit object satisfying the strict point axiom is equivalent to a 
subcategory of the category of Lrelations (where L is the lattice of all endomorphisms 
on the unit object). .A unit object is an abstraction of singleton (or onepoint) sets, 
and, following Goguen (1967), Lrelations in Kawahara, Furusawa and Mori (1996) are 
setfunctions with values on a fixed complete distributive lattice L, that is, functions 
R : X x Y L. The discussion in this paper does not assume the existence of a unit 
object, and Lrelations in this paper are homogeneous relations on a set X, that is, 
functions R :X x X -+ L. This study is the first step to prove a representation theorem 
for Dedekind categories without unit objects. 

    To prove a representation theorem for relation algebras, we use concepts of scalar 
relations and point relations. The concept of scalar relations is an original one, which is 
defined in section 3 as a relation included in the identity relation and which commutes 
with the greatest relation with respect to composition. In the case of Lrelations, scalar 
relations can be represented as scalar matrices. We use the concept of scalar relations 
to define a new concept of crisp relations different from that in Kawahara and Furusawa 
(1995), Kawahawa, Furusawa and Mori (1996), and Furusawa (1997). Also the set of 
all scalar relations is a complete distributive lattice, which is a sublattice of the relation 
algebra, and scalar relations represent membership values. The concept of point relations 
was introduced by Schmidt and Strohlein (1985), (1993) in the context of applications 
of (Boolean) relation algebras to theories of graphs and programs, and it played an 
important role in proofs of representation theorems in Schmidt and Strohlein (1985), 
Kawahara and Furusawa (1995), and Kawahara, Furusawa and Mori (1996). In this 
paper we define a "strict" point axiom by using our concepts of scalar relations and 
point relations, and then we prove our representation theorem for relation algebras.

2. LRelations 

   Let L =(L,<,  V, A, 0, 1) be a fixed complete distributive lattice with least element 
0 and greatest element 1. Complete distributive lattices are equivalent to complete 
Brouwerian lattices or complete Heyting algebras. Elements of the complete distributive 
lattice L will be denoted by 1, l',1", • • •. The supremum (least upper bound) and the 
infimum (greatest lower bound) of a family {lA}A in L will be denoted by VA/, and 
AA/A, respectively. 

   An Lrelation R on a set X is a function R : X x X — L. For x, y E X the value 
R(x, y) E L means the degree to which x and y are related under R. Throughout this 
section, all Lrelations are those on a fixed set X. The set of all Lrelations on X will be 
denoted by RelL (X ). An Lrelation R is contained in an Lrelation S, written R C S, 
if R(x, y) < S(x, y) for all x, y E X. The empty (zero) relation Ox and the universal 
relation OX are Lrelations with Ox (x, y) = 0 and V x (x, y) = 1 for all x, y E X,
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respectively. It is trivial that  C is a complete distributive lattice, and  OX C RC OX 
for all Lrelations R. We denote the least upper bound and the greatest lower bound of 
a family {RA IA by UaRa and nARA respectively. We then have: 

(UARA)(x,y) = VARA(x,y) 

and 
(nARA)(x, y) = AARA(x,y) 

for all x, y e X. The composite RS(= SoR) of an Lrelation R followed by an Lrelation 
S is defined by 

(RS)(x, y) = UzEX [R(x, z) A S(z, y)] 

for all x, y E X. This composition of Lrelations is called sup-inf composition. The 

associativity (RS)T = R(ST) holds for all Lrelations R, S, and T. The identity relation 
idx is an Lrelation such that idx(x, y) = 1 if x = y and idx(x, y) = 0 otherwise. The 
unit laws R = Rids and idX R = R and the zero law ROX = OX R = OX hold for all 
R. The converse (or transpose) Ru of an Lrelation R is defined by 

Ru (x, y) = R(y, x) 

for all x, y E X. An Lrelation R is called nonzero if R� OX. An Lrelation R is called 
crisp if R(x, y) = 0 or R(x, y) = 1 for all x, y E X. 

    It is now obvious (Goguen (1967)) that Lrelations together with the operations 
defined above satisfy all axioms stated in the next section. Maybe only R4(Dedekind 
formula) is not obvious; it will be proved in the following: 

PROPOSITION 2.1. Let R, S, T be Lrelations on X . Then RS n T C R(S n RUT) 

(Dedekind formula). 

    PROOF. With RU (z, x) AT(x, y) < (R"T)(z, y), the Dedekind formula follows from 

(RS n T)(x, y) = vz [R(x, z) n S(z, y)] n T(x, y) 
                    = Vz [R(x, z) A S(z, y) A T(x, y)] 

                   = vz [R(x, z) n S(z, y) n Ru (z, x) n T(x, y)] 
                   < Vz [R(x, z) A S(z, y) A (Ru T)(z, y)] 

vz [R(x, z) n (S n R"T)(z, y)] 
                 = [R(S n T)](x, y) 

for all x, y E X.0 

    This formula is called "modular law" in Freyd and Scedrov (1990), Bird and de 
Moor (1997); in Schmidt and Strohlein (1985), (1993) the Dedekind rule is given as 
QR n S C (Q n SR")(R n QUS). Since these formulae are equivalent, we use the name 
"Dedekind formula" in this paper. 

    In this paper we will call an Lrelation R the scalar, if there is an 1 E L such 
R(x, y) = 1 if x = y and R(x, y) = 0 otherwise. Now we denote the set of all such



112H. FURUSAWA

scalar relations by S. Then it is clear that the tuple (S,  C,  U, fl, Ox, idx) is a complete 
distributive lattice with least element Ox and greatest element idx, and also that is 
isomorphic to L. Moreover, scalar Lrelations can be characterized algebraically: 

   PROPOSITION 2.2. R is a scalar Lrelation if and only if R C idx and RVx = 
VxR. 

   PROOF. Remark that RVx(x, y) = VzEx[R(x, z)AVx(z, y)] = R(x, x)AVx(x, y) = 
R(x, x) for all x,y E X if R C idx. (Similarly VxR(x,y) = V (x, y) A R(y, y).) 
Now assume that R is a scalar Lrelation. Then it is trivial that R C id. Thus 
RVx(x, y) = R(x, x) A Vx (x, y) = Vx (x, y) A R(y, y) = VxR(x, y). Next assume 
that R C id and RVx = VxR. By R C idx we obtain R(x, y) = 0 if x y. Also 
R(x, x) = RVx (x, y) = V R(x, y) = R(y, y) for all x, y E X. Therefore R is a scalar 
Lrelation.^

3. Axioms of Relation Algebras 

   This section provides the axioms R1-R4 of relation algebras and lists some basic 
properties of relation algebras. A relation algebra 12, which will be defined below, is 
an algebraic structure over a nonempty set R of elements called "relations". Originally, 
relation algebras were formalized by Tarski (1941) as complete Boolean algebras with 
composition and converse. But in this paper, relation algebras are only complete dis
tributive lattices with composition and converse. In other words, relation algebras (in 
this paper) are complete Dedekind categories (Olivier and Serrato (1995), Kawahara, Fu
rusawa and Mori (1996)) or complete distributive allegories (Freyd and Scedrov (1990)) 
with just one object. Elements of 1Z are denoted by Greek letters such as a, /3, • . •. The 
composite a; ,3 of a relation a followed by a relation /3 will be written by a/3, unless 
confusion is possible. 

    DEFINITION 3.1. A relation algebra 1Z = (1Z, E, U, n, ; ,q , O, V, id) is an algebraic 
structure over a nonempty set R. satisfying the following: 
Rl. [Complete Distributive Lattice] The tuple (R., C, U, n, O, V) is a complete 
distributive lattice. 
R2. [Involutive Monoid] The tuple (R., ; ,q , id, 0) is an involutive monoid with unit 
element id and zero element O. That is, 

(a) (a0)7 = a(fy), (b) aid = ida = a, (c) aO = Oa = O, (d) (ad)0 = a, (e) 
(0)1# /3 aq 
(f) If a C /3, then aq C 130. 
R3. [Distributive Law] a(UA/3A) = UAa/3A. 
R4. [Dedekind Formula] a,Q n 7 C a(/3 n aq7).^ 

   It is clear that every algebra Re1L (X) = (Re1L (X), C, U, f1, o,u , Ox, Vx, idx) of 
Lrelations is a relation algebra. Let R = (R., E, U, n, ; ,q , O, V, id) be a relation algebra. 
A relation algebra R. with V = 0 is trivial and not worth mentioning. Throughout the 
rest of the paper all discussions will assume a fixed relation algebra RZ with V � O. A 
relation a is nonzero if a � 0.
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   PROPOSITION 3.2. Let a,  /3, /3' be relations. Then the following hold: 

 (a) If /3 C /3', then a/3 C a/3' and /3a C /3'a. 

 (b) 01 = 0, V° = V and ida = id. 

 (c) (a U /3)U = al U /31 and (a fl /3)1 = al fl /3d 

 (d) If °l a C id, then a(/3 fl /3') = a,3 fl a/3'. 

 (e) If a C id and /3 C id, then as = aa = a and a/3 = a fl /3. 

 (f) If /3 C id and /3' C id, then a(/3 fl /3') = a/3 fl a,3'. 

   PROOF. (a) If /3 C /3', then a/3 C a/3 U a/3' = a(/3 U /3') = a/3' by R3.(b) 
OI C 0 = 0 since 0 C O°, and V = V" C Vl since V1 C V, and idq = idaid = 
idp id" = (ida id)I = id" = id. (c) First note that al U /3p C (a U /3)° . Hence a U /3 = 
all U/311 C (al U/31)a and (aU/3)0 C (al U/3l)" = al U/31. (d) If aaa C id, then a/3fla/3' C 
a(/3 fl as a/3') C a(/3 fl id/3') = a(/3 fl /3') by R4. (e) Assume that a C id and /3 C id. Then 
a= an V C a(id fl alV) C id fl as V C al (a fl V) C al by R4. Similarly it can be shown 
that al C a holds. Also aa C a is trivial by (a), and a= a fl V C a(a fl ap V) C aa by 
R4. Moreover, since a0 C /3, a0 = a/Q fl /3 C a/3 and a n /3 C a(id fl al /3) C a/3 by R4. 
(f) If ,Q C id and /3' C id, then a/3 fl a/3' C (a fl a/3'/3a)/3 C a/3'/3 = a(0 fl /3') by R4 and 
(e).^ 

   Note that a(fl),/3A) C fl),(a/3),) and VV = V hold immediately by the last propo
sition 3.2(a). 

    The concepts of scalar relations and crisp relations in relation algebras are defined 
by the following: 

    DEFINITION 3.3. Let 1Z be a relation algebra. 

 (a) A relation k is called scalar if and only if k C id and kV = Vk. 

 (b) A relation a is called crisp if for all nonzero scalar relations k and all relations /3, 
k/3 C a implies /3 C a.^ 

It is trivial that 0 and id are scalar relations, and that V is crisp (but 0 and id are not 
necessarily crisp). 

    The concept of crisp relations has been defined in Kawahara, Furusawa and Mori 

(1996) on the assumption of the existence of a unit object. The concept of the crispness 
can also be found in Kawahara and Furusawa (1995) and Furusawa (1997), where it is 
defined via semiscalar multiplication. In this paper we need neither a unit object, nor 
semiscalar multiplication. Instead we used the concept of scalar relations to define crisp 
relations. 
    Next we provide some basic properties of scalar relations and crisp relations. 

    PROPOSITION 3.4. Let k be a scalar relation and a, /3 relations. Then the following 
holds:
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 (a) ka =  a n kV and ak = a n Vk. In particular, k = id n kV. 

 (b) ka = ak. 

 (c) (k n k')a = a(k n k'), (k U k')a = a(k U k'). 

 (d) If kV C k'V, then k C k'. 

 (e) If a and ,Q are crisp, then so is a n /3. 

   PROOF. (a) Since k C id and a C V, ka C a n kV = k(ka a n 0) = kka a = ka by 
R4 and 3.2(e). Similarly it can be shown that ak = a n Vk. (b) From (a) it holds that 
ka = a n kV = a n Vk = ak. (c) (k n k')a = (kk')a = a(kk') = a(k n k') by 3.2(e) 
and (b). (k U k')a = ka U k'a = ak U ak' = a(k U k') by R3 and (b). (d) Assume that 
kV C k'V. Then k = id n kV C id n k'V = k' by (a). (e) If k7 C a n /3, then k7 C a 
and le-y C /3 by Ri. Since a and /3 are crisp, y C a and y C /3. Thus 7 C a n /3 by R1. 

                                                               0 

    In addition to the definition of crisp relations, scalar relations also play an important 
role in other respects. Let us denote the set of all scalar relations by L. Then L is closed 
under the operations supremum U and infimum n by proposition 3.4(c) and axiom Rl. 
So the tuple (L, C, n, U, 0, id) is a complete distributive lattice, and it is a sublattice of 
the relation algebra R with the least element 0 and the greatest element id.

4. Strict Point Axiom 

    This section introduces a new concept of point relations and a strict point axiom. 
A concept of point relations was introduced in Schmidt and Strohlein (1985), (1993) to 
give a simple proof of a representation theorem for Boolean relation algebras and apply 
such algebras to computer science. Kawahara and Furusawa (1995) made the concept 
more strict to prove a representation theorem for fuzzy relation algebras. The concept 
of point relations is defined in this paper in the spirit of Kawahara and Furusawa (1995), 
but we have to pay attention to the difference between the notions of crisp relations in 
Kawahara and Furusawa (1995) and in this paper. 

    Before define the concept of point relations, we describe properties of relations 
which correspond to the vector relations in Schmidt and Strohlein (1985), (1993). 

    PROPOSITION 4.1. Let a be a crisp relation such that Va = a. Then the following 
three conditions are equivalent : (a) id C aaa, (b) V = aaa, (c) V = aV. 

   PROOF. (a)=(b) If id C aaa, then V = Vid C Vaaa = aaa. (b)~(c) If V = aaa, 
then V = aa0 C aV. (c)(a) If V = aV, then id = id n V = id n aV C a(aaid n V) = 
aaa.^ 

   The concept of point relations in relation algebras is defined as follows:
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    DEFINITION 4.2. A point relation x is a crisp relation such that  xbx C id, id C_ 
xx° and Vx = x. (Point relations will be denoted by lower case Roman letters such as 
x, y, z, • • •.) The set of all point relations is denoted by X.^ 

   Note that a point relation x is nonzero from its totality id C xxa . For point relations 
x and y, the relation xtt y is nonzero since y C x(xq y) by the totality id C xxtt of x. 

    PROPOSITION 4.3. Let x, xo, y, yo be point relations and k a nonzero scalar. Then 
the following holds: 

 (a) If kx C y, then x = y. 

 (b) If kxg y C xoyo, then x = xo and y = yo. 

   PROOF. (a) Since y is crisp, it holds that x C y. Using id C xx1 , xp C ya and 
yp y C id we have y C xxa y C xyb y C x. (b) Assume that kxtl y C xoyo . Then 
ky = kVy = kVxay = Vkxpy C Vxoyo = yo by 4.1 and so y = yo by (a). Similarly 
x=xo.^ 

    By making use of our last definition of point relations in relation algebras, we add 
the following axiom: 

DEFINITION 4.4. A relation algebra R. satisfies the strict point axiom if: 
R5. (a) For each nonzero relation a there are a nonzero scalar relation k and two point 
relations x and y such that xayp = kV. 

(b) UrEXxgx = id.^ 

   Note that the condition (b) of the strict point axiom R5 is equivalent to UxEX x = V. 
In what follows we assume that the fixed relation algebra R. satisfies the strict point 
axiom R5. 

    PROPOSITION 4.5. Let a be a relation, x and y point relations. Then the following 
holds: 

 (a) If a is a nonzero relation, then there exist a nonzero scalar relation k and point 
    relations x and y such that kxa y C a. 

 (b) If x y, then x n y = 0 and xylt = 0. 

 (c) xaya = kV if and only if an xg y = k(xa y). 

 (d) If a C xay, then there exists a scalar relation k such that a = kx0y. 

    PROOF. (a) If a � 0, then then there exist a nonzero scalar relation k and point 
relations x and y such that xayg = kV by the strict point axiom R5. Since x and y are 
point relations, kxa y = kx0V y = xa kV y = xtt xaya y C a by 3.4(b). (b) Assume that x 
y and x n y 0. Then there exist a nonzero scalar relation k and point relations xo and 
yo such that kxoyo C x n y by (a). From 3.4(e) x n y is crisp, so it holds that xoyo C x n y.
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Thus  yo = Vxoyo C V(x fl y) C Vs fl Vy = x fl y by 4.1. Therefore x = yo = y by R1 
and 4.3(a). Finally, if x fl y = O, then xya = xya fl 0 C (x11 Vy)ya = (x fl y)ya = O. (c) 
Assume that afl xa y = k(xa y). Then it holds that xaya = xaya fl V = xaya fl (xx0)(yyt) = 
x(a fl xay)ya = x[k(xay)]ya = k(xxa)(yya) = kV by 4.1, 3.2(d) and 3.4(b). Next assume 
that xaya = kV. Then a fl xa y C xa (xaya fl id)y C xa xaya y = x0(kV)y = k(xa y) by 
R4, 4.1 and 3.4(b). Conversely, k(xay) = k(xOVy) = x0kVy = 50(xaya)y C a by 3.4(b). 
Thus k(xa y) E a fl xa y. (d) It is trivial that if a = 0 then a = O(xa y). Next assume 
that a � O. Then, by the strict point axiom and (c), there are a nonzero scalar relation 
k and point relations xo, Yo such that a 11 xoyo = k(xoyo). Hence k(xoyo) E a E xay, 
and so x = xo and y = yo by 4.3(b), which implies a = k(xa y).0 

    By (d) of the last proposition, for every relation a and for every two point relations 
x, y there exists a scalar relation k such that a fl xay = k(xay), and so xaya = kV 
by (c) of the last proposition. Also, by proposition 3.4(d), such a scalar relation k is 
unique. For a relation a and point relations x, y, we define 0(a)(x, y) to be the unique 
scalar relation k with xaya = kV. Thus, by proposition 3.4(d), (a)(x, y) is the unique 
scalar relation such that xaya ='(a)(x, y)V. Therefore '(a) defines an Lrelation on 
the set X of all point relations in R since the set L of all scalar relations is a complete 
distributive lattice.

5. Representation Theorem 

    First we prove a representation theorem for relation algebras satisfying the strict 
point axiom R5. The representation problem of Boolean relation algebras was pro
posed by Tarski (1941) and investigated for a long time, see Schmidt and Strohlein 
(1985), (1993) and Maddux (1991) for more details on the history of the investigation of 
the representation theorem for Boolean relation algebras. Also Kawahara and Furusawa 

(1995) proved an algebraic representation theorem of fuzzy relations, and Kawahara, Fu
rusawa and Mori (1996) proved such theorems for Dedekind categories (or allegories) and 
Zadeh categories. The following theorem also is a representation theorem for Dedekind 
categories with just one object. 

    THEOREM 5.1 REPRESENTATION THEOREM. Let R be a relation algebra satisfying 
the strict point axiom. Then every relation a has a unique representation 

a = UX,yExxab(a)(x, y)y 

    PROOF. Since id = UXExxax and id = UyExyay by the strict point axiom, we have 

                     a = idaid 
                      = (UXExxax)a(UyExyay) 

                            = U,
,yExxaxayay 

                        = UX,yExxa'ka)(x, y)Vy 
                         = Ux,yExxa0(a)(x, y)y •
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Finally we show the uniqueness of the representation. Assume that a =  U,,yExx°kx,yy. 

Then for all xo, yo E X we have t(a)(xo, yo)V = xoayo = Ux,yExxoxakx,yyyo = kr,y by 
4.5(b).^ 

    From the last theorem we can deduce the next property of the function 0 : 1Z —> 
RelL(X). 

    COROLLARY 5.2. For every relation algebra R. satisfying the strict point axiom, the 
function 0 : R. --^ Re1L(X) is bijective. 

   PROOF. If b(a) = b(i3), then by the last theorem we have 

          a = Ux, xxp0(a)(x, y)Vy = Ux,yExxp b(3)(x, y)Vy = , 

which shows that is injective. Given an Lrelation R E Re1L (X ), we set aR = 
Ux,yEx xI R(x, y)V y. Then by the uniqueness of the representation in the last theorem 
we have R(x, y) _ b(aR)(x, y), which shows that 0 is surjective.^ 

   The following proposition shows that 0 : R –* Re1L (X) preserves all operations of 
L-fuzzy relations, that is, 0 is a homomorphism of relation algebras from 1Z to Re1L (X). 

    PROPOSITION 5.3. Let a, J3 be relations. Then the following holds: 

 (a) 0(0) = Ox, (V) = Vx and /(id) = idx. 

 (b) If a C ,(3, then 0(a) C op). 

 (c) tk(a U /3) = 0(a) U b(Q), 

 (d) 0(a n /3) = 0(a) n 003). 

 (e) 0(a°) = 0(a)u

 (f) 0(a/3) = 0(a)0(0) 

    PROOF. (a) The first follows from b(0)(x, y)V = xOy0 = OV, the second follows 
from '(V)(x, y)V = xVya = idV by 4.1. Remarking /(id)(x, y)V = xidy0 = xya, the 
last follows from (id)(x, y)V = idV if x = y and 0(id)(x, y)V = OV, otherwise by 4.1 
and 4.5(b). 
(b) If a C /3, then '(a)(x, y)V = xay0 C x0y0 = O(0)(x, y)V. 
(c) It follows from 

0(a U ,Q)(x, y)V = x(a U MO 
                             = xaya U x,3y0 

                       = ''(a)(x, y)V U 0(0)(x, y)V 
                      = [0(a)(x, y) U 0(3)(x, y)}V 

                      = [0(a) U i(/3)}(x, y)V •
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(d) It follows from 

 b(a  n  /3)(x,  y)V = x(a fl ,Q)ya 
                             = xaya fl x,3ya 

                        = 1,b(a)(x, y)V n 0(,3)(x, y)V 
                       = [' 5(a)(x, y) n 0(/3)(x, y)]o 

                     = [0(a) n 063)](x, y)0 
by 3.2(d) and 3.2(f) since x and y are point relations and'(a)(x, y), 0(13)(x, y) E id. 
(e) It follows from '(c )(x, y)V = sat yO = (yax0)0 = (0(a)(y, x)V)g = b(a)(y, x)V = 

(a)U(x, y)V since '(a)(y, x) is a scalar relation. 
(f) It follows from 

k(af3)(x, y)V = x(a,Q)yll 
                           = xaid,Qy11 
                          = xa(lizExzaz),Qyp 
                             = UzExxazlz,Qyt 
                      = UzEx (a)(x, z)V ($)(z, y)V 

                      = UzExtga)(x, z)t(/3)(z, y)\ 
                      = UzEx[0(a)(x, z) n 11)(13)(z, y)]0 

                   = ('(a)0(/3))(x, y)0 

since (a)(x, z) and 7,b (/3)(z, y) are scalar relations.^ 

    It is now obvious that -1 is a function and is a homomorphism of algebras of 
Lrelations from RelL(X) to R. Thus we have the following corollary: 

    COROLLARY 5.4 ISOMORPHISM THEOREM. Every relation algebra R satisfying the 
strict point axiom is isomorphic to the algebra RelL(X) of Lrelations on the set X of 
all point relations of R, where L is the distributive lattice of scalar relations in R . ^ 

6. Conclusion 

    In this paper we proved a representation theorem for homogeneous relation algebras 
R satisfying the strict point axiom, which can be considered as Dedekind categories with 
just one object, using concepts of scalar relations and point relations. In Kawahara, 
Furusawa and Mori (1996) the representation theorem for Dedekind category was proved 
without using the concept of scalar relations, but with using the assumption of the 
existence of the unit object. It is shown in this paper by defining the new algebraic 
concept of scalar relations that such a representation theorem can be proved without 
assuming the existence of a unit object.
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