
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

THE LEARNABILITY OF SIMPLE DETERMINISTIC
FINITE-MEMORY AUTOMATA VIA QUERIES

Sakamoto, Hiroshi
Graduate School of Information Science and Electrical Engineering, Department of Informatics,
Kyushu University

https://doi.org/10.5109/13472

出版情報：Bulletin of informatics and cybernetics. 30 (1), pp.93-108, 1998-03. Research
Association of Statistical Sciences
バージョン：
権利関係：

 Bulletin of Informatics and Cybernetics, Vol. 80, No. 1, 1998

THE LEARNABILITY OF SIMPLE
DETERMINISTIC FINITE-MEMORY

 AUTOMATA VIA QUERIES

 By

Hiroshi SAKAMOTO *

 Abstract

 In this paper, we establish the learnability of simple deterministic
finitememory automata via membership and equivalence queries. Sim
ple deterministic fmitememory automata are a subclass of finitememory
automata introduced by Kaminski and Francez (1994) as a model gen
eralizing finite automata to infinite alphabets. Continuously, Sakamoto
and Ikeda investigated several decision problems for finitememory au
tomata as well as for the deterministic class. By this result, we can arrive
at a meaningful learning model for simple deterministic finite-memory
automata. We provide the announced learning algorithm, show its cor
rectness, and analyze its running time. The algorithm is partially based
on Angluin's (1987) observation table. In particular, for every target
and each finite alphabet E, the algorithm outputs a hypothesis that is
consistent with the target over E. Finally, we obtain the main result of
this paper, i.e., the class of simple deterministic finite-memory automata
is exactly learnable via membership and equivalence queries.

1. Introduction

 Active learning goes at least back to Shapiro (1983) who developed an algorithmic
debugging system that uses variety of types of queries to the user to pinpoint errors in
Prolog programs. Subsequently, Sammut and Banerji (1986) proposed a learning system
using membership queries. Theoretical investigation of learning via queries started with
Angluin's (1987) pioneering paper. In particular, Angluin showed the class of regular
languages represented by deterministic finite automata (DFAs) to be learnable by using
polynomially many membership and equivalence queries. During the last decade, vari
ous researchers continued along this line. Burago (1994) and Ishizaka (1989) extended
Angluin's result, i.e., they showed that more powerful classes of languages including regu
lar languages are learnable via membership and equivalence queries in polynomial time.
Gavalda (1993) investigated the learnability of concepts via equivalence queries only.
Bergadano and Varricchio (1995) introduced new setting of learning regular languages,

* Graduate School of Information Science and Electrical Engineering , Department of Informatics,
 Kyushu University, Fukuoka 812-8581, Japan

 Email: hiroshi®i.kyushuu.ac.jp, Phone: +8192642-2697

94H. SAKAMOTO

and showed that regular languages are polynomially learnable via shortest counterex
amples returned from equivalence queries. Sakakibara (1990) assumed a kind of data
structure for context-free grammars. Consequently, the context-free grammars became
polynomial time learnable via structural membership and structural equivalence queries.
We aim to extend this line of research into a direction previously not considered, i.e., we
study the identification of languages defined over an infinite alphabet. In actual applica
tions of computational models, the data size is rapidly growing and the process of input
data is controlled by natural numbers. Any practical device will have some bound on
these numbers and such bound may be determined in some complicated, architecture
dependent way. Consequently, these restrictions have to be taken into account whenever
the system on hand is used. Thus, more compact and useful model of computation is
needed to ignore these bounds and to consider arbitrary natural numbers.

 Recently, Kaminski and Francez (1994) introduced such a new model of compu
tation, the socalled finitememory automata, with the intention of expanding DFAs to
infinite alphabets. Using a very restricted memory structure, finitememory automata
can deal with languages defined over infinite alphabets. However, Kaminski et al (1994)
showed that when restricted to any finite alphabet, the computational power of finite
memory automata equals that of DFAs. Intuitively, this means the following. Consider
an infinite sequence of finite alphabets, denoted by E1i E2, ..., such that Ei C Ei+i
and = (Ei+i II + 1. Then, corresponding to the sequence of alphabets, we can
easily imagine an infinite sequence of regular languages, denoted by L1, L2, ..., such
that Li C Li+i. Generally, each DFA Mi for Li is greater than Mj for all j < i.
This is caused by the fact that the size of an alphabet for a DFA is fixed in advance.
However, the model of finitememory automata can successfully describe the infinite
number of regular languages by just one acceptor. More precisely, if all Li have the
same property, then they can be represented by a finitememory automaton A such that
L(Mi) = Ei (1 L(A). Then, the most interesting feature of the model is the ability to
represent DFAs in a more compact way, in case the alphabet is too large to be treated
as if it is finite, in other words, by hiding the information what symbols construct an
alphabet, the computational model of finitememory automata becomes independent of
the size of alphabets. Moreover, we should note that the representation of finitememory
automata is finite similarly to other natural computation models (e.g., DFAs, pushdown
automata, and Turing machines).

 In this paper, we introduce a subclass of finitememory automata called simple
deterministic finitememory automata (simple DFMAs). The aim of this paper is to
investigate the principle of learnability of languages defined over an infinite alphabet
within Angluin's (1988) MATmodel, i.e., the learning problem of simple DFMAs via
membership and equivalence queries. In order to solve this problem, first we establish
reasonableness of the setting considered. Several decision problems for finitememory
automata were investigated by Sakamoto and Ikeda (1998). According to their results,
the membership problem for finitememory automata is NPcomplete and it becomes P
complete in deterministic case. On the other hand, Sakamoto et al (1998) showed that
the equivalence problem of deterministic case is decidable in PSPACE. Thus, it seems

The Learnability of Simple Deterministic FiniteMemory Automata via Queries95

to be reasonable to require the equivalence oracle, too. Next, we discuss the learnability
of simple DFMAs using membership and equivalence queries. Our learning algorithm
is partially based on Angluin's (1987) observation table technique. However, since the
size of an alphabet is potentially infinite in our setting, it is impossible to directly apply
her notion. But as it was mentioned above, the model of finitememory automata is
a natural extension of DFAs, i.e., for every finite alphabet and every finitememory
automaton, there exists a DFA consistent with the automaton over that alphabet. For
the class of simple DFMAs, we show such a DFA to be computable using membership
and equivalence queries by using an observation table. Furthermore, we also provide
the method to transform the DFA to a simple DFMA, thereby preserving consistency.
Consequently, for each finite alphabet and each target, the algorithm can compute a
simple DFMA consistent with the target over that alphabet. As was shown by Sakamoto
et al (1998), two finitememory automata A and B are equivalent if A and B are
consistent over a finite alphabet of cardinality k, where k is a number dependent on
A and B. Then, we conclude that our algorithm can learn every simple DFMA using
membership and equivalence queries.

 This paper is organized as follows. In the next section, basic definitions and no
tations are provided. The complete description and the correctness of the learning
algorithm are provided in Section 3. In this section, we also estimate the running time
of the algorithm. Open problems are discussed in the final section.

2. Preliminaries

 Let IN be the set of all natural numbers. An alphabet is a set of symbols. In
particular, by Q = {ai I i E IN}, we denote an infinite, countable alphabet. Let S2* be the
free monoid over S2 (Hoperoft and Ullman (1979)). The elements of S2* are called strings.
Let a E Q* be a string; we use la), [a] and a[i] to denote the length, the range and the
i-th symbol of a, respectively, where the range of a is the set of symbols appearing in a.
The unique string E of length 0 is called the empty string. Let w = 0037 E Q*. Then, /3
is said to be a substring of w. In particular, /3 is said to be a proper substring, a prefix
and a suffix of w if w ,Q, a = E and y = e, respectively. The set of all prefixes of
a is denoted by pre(a). Let n E IN; then we set S2n = {a E S2*, Ial = n}. Moreover,
we set Sl+ = Q* \ {E}. Now, let E C S2 be a finite alphabet. By IIEII, we denote the
cardinality of E. Any set L C Q* is called a language. A class of languages is a collection
of languages containing at least one nonempty language.

 For a mapping , we write 0-1 to denote the inverse of 0, provided it exists. For
an alphabet E, a mapping r is said to be a permutation over E if 7r is a one-to-one and
onto mapping over E.

 Let # be a special symbol not belonging to Q. An assignment is a finite string
xi x2 • • • xn E (Q U In)" such that if xi = xj and i j, then xi = # for 1 < i j < n.

DEFINITION 2.1. (Kaminski and Francez (1994)) A finitememory automaton is a
6-tuple A = (Q, qo, in, p, µ, F), where Q is a finite set of states, qo E Q is the initial state,
to E (C2 U {ti})k is an assignment of length k called the initial assignment, o is a mapping:

96H. SAKAMOTO

Q {1, 2, . , k}, p C Q x {1, 2, . , k} x Q is the transition relation, and F C Q is the
set of final states.

 For a finitememory automaton A defined as above, every pair of a state and an
assignment is called a configuration. In particular, the pair 00, 11) is referred to as the
initial configuration. All configurations with final states are called final configurations.

 We define a relation F as follows: Let ui = xix2 • • • xk and u2 = yi y2 • yk be
assignments, and let p, q E Q. Then, (p, ui) F (q, u2) if there exists an a E S2 such that:

 (a) a = xi for some 1 < i < k, ui = 112, and (p, i, q) E p,-or

 (b) a V [nil] and there exists a j E {1, 2, ... , k} such that o(p) = j, u2[j] = a and for
 all i E {1,2,...,k}\{j}, ui[i] = u2[i] and (p,j,q) E p.

 Intuitively, when reading a symbol a the finitememory automaton A may change
its actual configuration (p, ui) as follows. If a is equal to the i-th symbol of 111 and
(p, i, q) E p, then A may change its configuration to (q, 112). If a V [iii], then ui [o(p)]
is replaced by a and all ui [i] for i o(p) remain unchanged resulting into the new
assignment u2. Now, A may change its configuration to (q, 112) provided (p, o(p), q) E p.

 When necessary, we write (p, ill) Ha (q, u2) by specifying the symbol a. The reflex
ive, transitive closure of I is denoted by F*. We say that A accepts w = wiw2 wn E Q*
(wi E C2, 1 < i < n) if there exists a sequence of configurations co, ci, ... , ct. such that co
is the initial configuration, ctz is a final configuration and ci_1 F-wt ci for each 1 < i < n.
The language accepted by A is denoted by L(A).

 Let A be a finitememory automaton and w E 12* . Then, we use A(w) to denote
a state that A has reached after processing w. Analogously, we write uw to denote an
assignment of A after having read w. That is, (A(w), uw) denotes a configuration of A
such that (qo, u) Hu' (A(w), uw).

 Let A and B be simple DFMAs. We say that A and B are consistent over an
alphabet E if for every string w E E*, w E L(A) iff w E L(B). This is denoted by
A E B. In particular, when the alphabet is S2, we say that A and B are equivalent,
denoted by A ^~ B. We also use the same notation for DFAs, that is, DFAs M and M'
are consistent over E, denoted by M ^~E M', if for every string w E E*, w E L(M) iff
w E L(M'). The following proposition tells that the classes of finitememory automata
and finite automata are equivalent if a finite alphabet is fixed.

PROPOSITION 2.2. (Kaminski and Francez (1994)) For every regular language L
on E, there exists a finitememory automaton A such that L = L(A) fl E*. Moreover,
for every finitememory automaton A and each finite alphabet E, the language L(A)nE*
is regular.

 The definition above is nondeterministic in the sense that there may exist two or
more computations for a string. The deterministic model is obtained by restricting A
and 6 to total functions as follows.

The Leamability of Simple Deterministic FiniteMemory Automata via Queries97

 DEFINITION 2.3. (Kaminski and Francez (1994)) A finitememory automaton is
said to be deterministic if for each p E Q and each 1 < i < k, p(p) is defined and there
exists exactly one q E Q such that (p, i, q) E p.

 In this paper, we introduce another class of finitememory automata, called simple.
Intuitively, a simple finitememory automaton is considered that each window of the
initial assignment is initialized by the blank symbol #.

 DEFINITION 2.4. A finitememory automaton A = (Q, qo, ii, o, p, F) is said to be
simple if its initial assignment contains no symbol in S2, that is, a E {#}*.

 We briefly call a deterministic finitememory automata 'DFMA' below. The fol
lowing propositions are useful for further discussions within this paper.

 PROPOSITION 2.5. (Kaminski and Francez (199)) Let A = (Q, qo, ua, A, p, F) be a
finitememory automaton and 71 a permutation on S2 which is identical for symbols in
[la]. Then, 7r(L(A)) = L(A), where irL(A) = U{ir(w){w E L(A)}.

 Since an initial assignment of a simple DFMA does not contain any symbol from
S2, this proposition implies that the class of languages accepted by simple DFMAs is
closed under permutations.

 Similarly to the case of finite automata, a finitememory automaton can be de
scribed as a directed graph whose nodes denote states. There is an edge from nodes si
to si if there exists a number k such that a relation (si, k, si) is defined in the transition
relation. Such an edge is labeled k. Also, if for a node s, the value of g is defined, then
s is labeled p(s).

 We exemplify the graph representation of a finitememory automaton (cf. Fig. 1.).
The three nodes denote states qo, q1 and q2 from the left. Each label of the nodes
denotes the mapping o, that is, O(qo) = 1 and so on. Each label of edges denotes the
transition relation p, for example, the edge from qo to qi means (qo, 1, qi), (qo, 2, qi) E p.
The initial assignment is #t and the final state is q2. The string aba is accepted by the
computation (qo, $$#) ha (q1 i a#) f-b (qi, ab) Ha (q2i ab). The finitememory automaton
accepts the language {Oa la E C2,13 E S2*}. A corresponding DFA on E = {a, b} is also
shown in Fig. 1.

 In this paper, we assume two oracles, called membership and equivalence queries.
A membership oracle answers the question, given a simple DFMA A and a string w,
whether or not w E L(A). An equivalence oracle answers the question, given simple
DFMA A and B, whether or not L(A) = L(B). Additionally, an equivalence oracle
returns a counterexample in L(A)AL(B) if not, where L(A)AL(B) is the symmetric
difference of L(A) and L(B).

 Since we can simulate a computation of a finitememory automaton for any string
by a standard algorithm, the membership problem is decidable. However, it is not trivial
whether or not the equivalence problem for finitememory automata is decidable. Then,
we must confirm the soundness of our setting.

98H. SAKAMOTO

Initial assignment is ##

Figure 1: A finitememory automaton and a corresponding DFA

 Recently, Sakamoto and Ikeda (1998) investigated several decision problems for
finitememory automata. In particular, the problem whether two finitememory au
tomata are equivalent is shown to be PSPACEcomplete. Thus, the equivalence prob
lem for finitememory automata is decidable. However, the completeness of deterministic
case is open.

 THEOREM 2.6. (Sakamoto and Ikeda (1998)) The membership problem for finite
memory automata is NPcomplete and it is Pcomplete if the automata are determinis
tic. The equivalence problem for deterministic finitememory automata is decidable in
PSPA CE.

3. Learnability of simple DFMAs

 Our learning algorithm contains two procedures, denoted by ANC and CONS .
Their complete descriptions are given in Fig. 2 and 3, respectively. First, we analyze

the procedures and show their correctness.

3.1. The procedure ,ANC and its correctness

 Angluin (1987) introduced the notion of an observation table. An observation table
for a DFA M on E is denoted by a triplet (S, E,T), where S (resp., E) is a nonempty,
finite, and prefixclosed (resp., suffixclosed) set of strings from E (a set is prefixclosed if
each prefix of each element of the set is in the set, and suffixclosed is defined analogously)
and T is a mapping from (S U S • E) • E to {0, 1} such that T(w) = 1 if w E L(M) and
T(w) = 0, otherwise. By row(s), we denote f : E H {0, 1} defined by f(e) = T(s • e)
for s E (S U S • E). An observation table is said to be closed if for each t E S • E, there
exists an s E S such that row(t) = row(s), and is said to be consistent if for each a E E
and si, s2 E S such that row(si) = row(s2), it holds that row(si • a) = row(s2 • a).

 If (S, E, T) is a closed, consistent observation table, then we define a corresponding

The Learnability of Simple Deterministic FiniteMemory Automata via Queries99

Input: an observation table (S, E, T) on E
Begin
 While(M := M(S, E, T) is not permutation closed) do

 Find w E L(M)LL(Maib) for some a, b E E.
 Let S := S U {pre(w)} and extend T to (S U S • E) • E

 using membership queries.
 Compute a closed, consistent observation table (5, E, T).

 End While
 Output M and halt.

End

Figure 2: Procedure .AA1O

DFA M(S, E, T) on E such that Q = {row(s)ls E S}, the set of states, qo = row(s), the
initial state, F = {row(s)ls E S, T(s) = 1}, the set of final states, and b(row(s), a) =
row(s • a), the transition relation.

 Next, we show that M(S, E, T) is welldefined. Since S is a nonempty prefix
closed set, it must contain E and hence qo is defined. Also, since E is a nonempty
suffixclosed set, it must contain E. Thus, if Si and s2 are elements of S such that
row(si) = row(s2), then T(si • e) = T(si) = T(s2) = T(s2 • e) and hence F is well
defined. To see that S is welldefined, suppose that si and s2 are elements of S such
that row(si) = row(s2). Then, since the observation table (5, E,T) is consistent, for
each a E E, row(si • a) = row(s2 • a), and since it is closed, this common value is equal
to row(s) for some s E S.

 For any further details, the reader is referred to Angluin (1987). In particular, the
following proposition is useful for our discussion.

PROPOSITION 3.1. (Angluin (1987)) If (S, E, T) is a closed, consistent observation
table, then the DFA M(S, E,T) is consistent with the finite function T. Any other DFA
consistent with T but inequivalent to M(S, E, T) must have more states.

 The procedure .ANJ takes as input an observation table. It computes a closed,
consistent observation table using membership queries. When such a table is obtained,
it makes a corresponding DFA M. Next, it decides whether or not M satisfies the
following notion.

DEFINITION 3.2. A DFA M over E is said to be permutation closed if for every
permutation 7r : E >- E, L(M) = ir(L(M)), where ir(L(M)) = U„,EL(M){lr(w)}.

 Let M be any DFA over E. Then, there exists a finitememory automaton A =

(Q, ui, qo, o, p, F) such that M ^-'E A (Kaminski and Francez (1994)). Let £ : S2 U {#} 1-->
S2 U {#} be an automorphism such that £(#) = #. Then, for each w E Q*, w E L(A)
if £(w) E L(A) (Kaminski and Francez (1994)). Since each initial assignment of each

100H. SAKAMOTO

simple DFMA has no symbol in S2, we have that M is permutation closed on E if there

exists a simple DFMA A such that M A. We prove that it is decidable whether or

not M is permutation closed over E.

 DEFINITION 3.3. Let M = (Q, E, qo, b, F) be a DFA. Define Map, = (Q, E, qo, balb, F)
such that 6,14, 0= = b(p, a) if c = b, or balb(p, c) = 60,,b) if c = a, or 6604, c) = b(p, c)
otherwise.

 For M and k > 1, let us define a set of DFAs, denoted by Mk, recursively as:
M1 = {Ma~b~a,b E E} and Mk+1 = {M'Ib~M' E Mk, a, b E E}. Then, clearly, M is

permutation closed if M M' for each M' E Mk and each k > 1. We say that M is
kpermutation closed if M M' for each M' E Mk.

 LEMMA 3.4. M is 1permutation closed if M is permutation closed.

 PROOF. The left direction is trivial. Assume that for all M' E M1, M M'. This
assertion is shown by induction on k for Mk. Let M' E M2. Then, there exists an
Mi E M1 such that M' = (Mi)alb for some a, b E E. By the definition, w E L(Mi)
if ir(w) E L(M'), where 7r is the permutation {a H b, b H a}. On the other hand ,
there exists Mi E M1 such that Mi = Malb. Analogously, w E L(M) if ir(w) E L(Mi) .
By the assumption, Mi M7. It follows that ir(w) E L(Mi). Thus, w E L(Mi) if
ir(w) E L(Mi) if 7r(7r(w)) = w E L(M'). Thus, M' M because Mi M. It follows
that M is 2permutation closed.

 Assuming the induction hypothesis on some k > 2, we can similarly prove that for
each M' E Mk+1, M ^ M'. Thus, we conclude that M is permutation closed.^

 LEMMA 3.5. The procedure AVG stops and outputs a permutation closed DFA.

 PROOF. Let (S, E, T) be an input for a finite alphabet E. Since no equivalence
query is used in AA/ , E is fixed in the execution of AA/ . Let MEM = n. There exists
a minimum DFA M. over E that is consistent with the target over E. Let m* be the
number of states of M..

 After computing the DFA M := M(S, E, T) for a closed, consistent observation
table, assume that M E M' for some M' E M1. Let in be the number of states
of M. Since M is a minimum DFA that is consistent with T, there are at least in
counterexamples for M M'. Let M' = Maib for some a, b E E.

 When we extend S, E and T, a next closed, consistent observation table (S , E, T)
is computed. Let M := M(S, E,T). Again, M is a minimum DFA consistent with T .
By adding a counterexample, at least one new entry comes into (S , E, T), that is, the
number of states of M is greater than in.

 When m < m*, after found at most m*n(n— 1)/2 counterexamples, we computes a
DFA M such that M Maib for all a, b E E, because = n(n — 1)/2+1 (M itself
is in M1). When in > in*, clearly, M M*, that is, M is permutation closed. Hence,
AVG eventually terminates and outputs a permutation closed DFA for any input. ^

The Learnability of Simple Deterministic FiniteMemory Automata via Queries 101

Input: a permutation closed DFA M = (Q, E, q0i 6, F), where 11E11 = n.
Begin
 Set u := r (p, i, q) E µ if 6(p, ai) = q and P = 0.

For (j=1;j<m;j++)do
 If there exists p E Q such that 6(q0i w) = p for some w E (E \ {ai })* and

O(p) is not defined in e, then
 Let P := A U {e(p) = j}.

 End If

 End For

 Output A := (Q, u, q0, o, µ, F).
End

Figure 3: Procedure CONS

3.2. The procedure CONS and its correctness

 The procedure CONS takes as input a permutation closed DFA M on E and com
putes a simple DFMA .A from M. A permutation closed DFA M is shown in Fig. 4.
Using this DFA, let us demonstrate the computation of COATS . First, a DFA M' on the
alphabet {1, 2} is directly obtained from M by replacing labels a and b with 1 and 2,
respectively. Taking account of the permutation t : {a 1, b 1-4 2}, we can identify M
and M'. Starting with the initial state of M, if a state p is reachable with reading no
1, then we assign o(p) = 1 for all such states. After that, all other states are assigned
2 because they are reachable with reading no 2. Including the initial assignment ##, a
simple DFMA A in Fig. 4 is computed. Note that A is consistent with M.

 The aim of this subsection is to prove that M E A. For this purpose, we introduce
the following notion concerned with a DFA M = (Q, E, q0i 6, F), where p, q E Q.

 DEFINITION 3.6. Let Wp = {w E E* IS(q0i w) = p} and Wq = {w E E* 16(q0, w) =
q}. Then, we write p Et q if there exists a one-to-one and onto mapping £: E 1-4 E such
that Wq = P(Wp) = UwEWp{1(W)}.

 LEMMA 3.7. If p Ot q, then £(Wp) fl Wq = 0.

 PROOF. By Proposition 3.1, we can assume that M is a minimum DFA. Suppose
that there exist w1, w2 E Wp such that Awl) E Wq and £(w2) E Wq, for some e: E } E,
where q A q'. For each w E E*, S(q0i wlw) E F iff 6(q0i w2w) E F. Since £(L(M)) =
L(M), we have that, for each w E E*, S(qoi t(wiw)) E F if 6(q0i t(w2w)) E F, that is,
S(q, E(w)) E F if S(q', t(w)) E F. Since .£ is an automorphism, UWEE•t(w) = E*. Thus,
for each w E E*, 6(q, w) E F iff S(q', w) E F. Note that M is minimum. Contradiction. ^

 For a string w E E*, let 6(q0i w) = p and A(w) = q. We can regard q as a state of
M. Since p q implies p, q E F or p,q E Q \ F, in order to prove that M ^JE A, it is
sufficient to show that for each w E E*, 6(q0, w) -t A(w).

102 H. SAKAMOTO

Initial assignment is ##

Figure 4: A permutation closed DFA and a corresponding simple DFMA

 LEMMA 3.8. Let M be an output of Avg and A an output of CONS for the input
M. Then, A M, where M is defined on E.

 PROOF. This proof is done by induction on the length of w E E*. For a string w
of length m such that w = wlw2 • • • wm, let (pa_1 i u _1) Fwi (pi, u%) for (pi-1, ji, pi) E p
(1 < i < m), where (pc', uo) = (0,u). Define a string wa = a1(j1i2 • • • jm) E Em,
where A = {a2 '--> ilaa E E}.

 We first show that A(w) = A(wA) for w E E. This is true for each a E E. Then,
assume A(w) = A(wa) on each w E En, that is, (pi_1i ua_1) hA 1(i2) (pj, ui), where
uo=u.

 For a E E, if a = un, [k], then there exists 1 < i < m such that (pi-1iu,) Fa
(p2, ua). By the induction hypothesis, (pi_1i ui) FA-1(k) (pt, u1). Thus, if (pm, um) Fa
(Pm+1, um+1) for some (pm, k, pm+1) E p, then (pm, 1) FA-1(k) (pm+i, u;,z+i). Oth
erwise, e(pm) = k and (pm, um) Fa (pm+1i um+1), where (pm, k, pm+1) E p. By the
induction hypothesis, A-1(k) [iim]. Thus, (pm, um) FA-1(k) (Pm-F1, 4,+1). Hence,
A(wa) = A((wa)A).

 Next, we show that for each w E E*, S(qo, w) Et A(w). The base step is clear. Then,
assume that S(qo, w) = p, A(w) = p' and p =e p'. Since A(w) = A(wA) = S(qo, WA) = p',
there exists f-1(wa) E En such that 6(go,f1(wa)) = p. We denote (wa)A = wAaA.

 By Lemma 3.7, we note that if p =e q, then for each a E E, S(p, a) =e b(q, a). If
a E V1(wa)], then £(t1(wA)a) = waaa = (wa)A. Thus, by lemma 3.7, S(qo, wa) =
S(qo, t1(wa)a) =t A((wa)A) = A(wa).

 If a V1(wa)], then aA [WA]. Thus, there exists £' = (t \ {a ^—> b}) U {a 1,
aA} for some b E E such that £'(e1(waa)) = waaa = (wa)A. Thus, by Lemma 3.7,
S(qo, wa) = S(qo, 1(wa)a) =e' A(wAaA) = A(wa). Hence, this proof is completed. ^

The Learnability of Simple Deterministic FiniteMemory Automata via Queries 103

3.3. The algorithm D.FMA and its correctness

 The aim of this subsection is to show that for any simple DFMA A and B, there
exists a number k depending on A and B such that A ^-E B for a finite alphabet E of
cardinality k implies A B. First, we consider reflecting a string w E Cr to a string
w' E E* such that the transition of states of A on w is preserved. That is, we propose
a method computing for every w E S2* a string w' E E* such that A(w) = A(w') for
a sufficiently large but finite E. In order to formalize this idea, we need the following
definition.

 DEFINITION 3.9. Let A = (Q, u, qo, o, p, F) be a simple DFMA and E a finite
alphabet of cardinality k = lul. Then, for w E 12+, we define sets 7.4 recursively
as follows: For each a E 12, a~ = E, and for each w E 5-2+ and a E S2, (waV =
U w,EwE {w'a'}, where

a'EE

 a' = uw , [i] ,if a =uw[i] or a[uw] , a = uw a [i] and[uw]
 a' = uu,' [i] or a' E E[uw] ,if a cl [uw] ,a = uw a [i] ,tat,[i] �HanditE [uw]

 a' E E[uw']if a V [uw], a =uwa[2], uw[i] =#

 For the reader's understanding, we show an application of this notion taking the
example in Fig. 1. Note that this is a simple DFMA (denoted by A). Since iui = 2, set
E = {ai, a2}. Now, a5a6a11as E 52+. By definition, al E (a5A = E. Since ua5 = a5#,
uasa6 = a5a6 and ua1 = al #, this case corresponds to the third condition of the definition.
Then, a2 E E \ [ua1] follows aia2 E (a5a6) . Since ua,as = a5as, ua,5a6a11 = a5a11 and
uaia2 = ala2, this case corresponds to the first condition of the definition. Then,
a2 = uaia2[2] follows a1a2a2 E (a5a6all)}2. Similarly, ala2a2a2 E (a5asallas) •
 On this simple DFMA A, the first symbol of every input is substituted in the first

window of the assignment. Once A reads other symbols, they are substituted in the
second window. Thus, there is no computation such as (p, a#) F.b (q, b#). Hence, in this
example, the second condition of the definition does not happen.

 On the other hand, the string a2alalal is also in (a5a6alla6) and the two strings
ala2a2a2 and a2alalal can simulate the computation (qo, ##) Fa5a6alla6 (ql, a5a6). That
is, a5a6alla6 E L(A) ifF ala2a2a2, a2alalal E L(A). Next, we formalize the property of
strings in 4.

 LEMMA 3.10. Let w E Cr and w' E wI2, where the length of the initial assignment
of A is k. Then, for each 1 < i < k, ADP] = # if w,„,, [i] = #.

 PROOF. The proof is done by induction on the length of w E SZ+. For the induction
basis, let a E S2. Then, aj2 = E and since u E {#}*, it is also true that for each a' E a2,
ua [i] = # iff ilia, [i] = #. Assume the induction hypothesis for each w E Sr. Let w' E 4.
Taking a symbol a E S2, consider (waV.

 In case a = uu,[i], or a cl [uw], a = uwa[i] and # [taw] (the first case of Definition
3.9), there exists a, ab E pre(w) such that ua[i] = It and uab[i] = b. Let a'b' E (abV.
By the induction hypothesis, ua [i] = # implies u,, [i] = It as well as uab [i] = b implies

104H . SAKAMOTO

 u1&bi [i] = b'. Thus, uwi #. By the definition, w'a' E (waV for some symbol a' E E
such that a' = uw, [i]. Hence, for each 1 < j < IuI, uwa[j] = iff uw'e[j] =

 In case a V [uw], a = uwa[i], uw # and # E [uw] (the second case of Definition
3.9), since uw [i] #, by the induction hypothesis, uw, [i] = a' � #. Thus, w'a' E (waA.
Similarly to the above case, uwa[i] = # if uw,a, [i] = #. In addition, It E [uw]. By the
induction hypothesis, uw[j] = uw,[j] = # for some j # i. Since IIEII = Jul, there exists
an b' E E \ [uw,], namely, w'b' E (waV . Moreover, uw, [i] = a' and uw'b, [i] = b'. Hence,
Ulwa[2] = # iff uwIbi[i] = #.

 The last case is proved analogously. Therefore, we have proved that (wa) C En+'
and that for each w'a' E (wa4 and each 1 < i < k, uwa[i] = # if uw,a,[i] = #. The
proof is completed.0

 By Lemma 3.10, for each wa E C2+ and each w'a' E (waA, if (p, uw) I-a (q, uwa),
then (p, uw,) ha' (q, uw'a'). Hence, we have the following lemma.

 LEMMA 3.11. For each w E Q+ and w' E wi , A(w) = A(w').

 For each simple DFMA A and B and for each finite alphabet E , we can decide
whether or not A B. Hence, it is sufficient to prove that A B implies A B
for the equivalence problem, where IIEII = max {IuAI, IuBI}. Moreover, by Lemma 3.11,
this condition is simplified to that for each w E 52+, there exists w' E E+ such that
w'ew~n4.

 LEMMA 3.12. Let A and B be simple DFMAs with initial assignments uA and mB,
respectively. Let E be an alphabet of cardinality k = max{Iml,ImBI}. Then, for each
wE52+, n4�0.

 PROOF. Suppose that IuAI > IuBI We show the desired result by induction on the
length of w. For the induction base, let a E E. Clearly, for each a E 52, a = aE = E.
Now, assume the induction hypothesis on 52n, n > 1 . Let wa E 52n+1

 Let a E [uw] fl [uB]. Then, there exists w' E fl 4 such that w'uw,[i] E (waV
for a = uw [i] and w'uB, [j] E (wa)E for a = uB[j], where 1 < i < IuA I and 1 < j < IuB I.
Since a E [uw], we can assume that w = aa/3 for some a E 52* and /3 E (52\{a})*.
By the induction hypothesis, there exists a'a'/3' E (aa/34 fl (aa/3)B. Since a V [/3]
and a E [uw] fl [14], uaa[i] = uw[i] = uBa[i] = uB[j] = a. Thus, by Lemma 3.10,
ua,a, [i] = uw, [i] = = uB, [j] = a'. Thus, w'a' = w'uw, [i] E (wa) and w'a' =
w'uB, [j] E (wa)B. That is, (waV fl (wa)B � 0.

 Let a E [us] \ [uw]. Since a E [w], let w = aa/3 for some a E 52* and /3 E (52\{a})*.
By the induction hypothesis, let a'a' E (aa)B. By Lemma 3.10, there exists j such
that uBa [j] = a if uB,a, [j] = a'. Let w' = a'a'/3' E 4 . Since a V [/3], by Lemma
3.10, a' V [/3']. When we take w'a' E (wa)B, since a E [uaa], we can assume that
a = uaa [i] and a' = ua,a, [i]. Since a V [uw], by Lemma 3.10, uaa [Z] = a � u[i] implies
ua,a, [i] = a' � uw, [i]. Since a' V [/3'], we have that a' V [uw,]. Thus, w'a' E (wa4
because w' E w~, a V [4] and a' V [uw,]. Consequently, w'a' E (wa4 fl (wa)B.

The Learnability of Simple Deterministic FiniteMemory Automata via Queries105

Let A* be a target and A a simple DFMA such that L(A) = 0.
Initialize: S=E=E=E'={e} and T:(SUS•E)•EI--4{0,1}.
Begin
 While (an equivalence query returns a counterexample w) do

 Let E' := E U [w], S := S U {pre(w)}, and
 extend T to (S U S E') • E using membership queries.

 Compute M' :=ANG(S, E, T).
 If(E=0orM^'EM'),then

 Let M := M', E := E', and A := CONS (M).
 End If

If (E 0 and M M'), then
 Let M := for L(MO = E* fl L(M') and A := CONS (M).

 End If

 End While

 Output A and halt.

End

Figure 5: Algorithm D.T.MA for a target A*

 Let a [1-1w] U [uB]. If [uB,] is a proper subset of E, that is at least one window
of uB, contains no symbol in E, then a symbol a' E E \ [uB,] is not in [uw,]. Thus,
w'a' E (waM fl (wa)B. If [ui ,] = E, then, by Lemma 3.10, uB[j] = b and uB4[j] = a
implies u13, [j] = b' for some b' E E and 1 < j < I. Then, let w' = a'b'/3', where
b' [M. Since b' En[uta'bi]and b' [3'],w'Ew~flwE implies w'b'=a'b'3'b' E
(wbV fl (wb)E, where b = uB[j]. Since a V [11B], # [uB] and b E [inB], by the definition,
(wb)B = (wa)E . Similarly, (wbV = (wa)1A if b [uw], and (wbV C (waM otherwise.
Thus, w'b' =E (waV fl (wa)E, namely, (waV fl (wa)t # 0. Therefore, we have that for
eachwESZ'~+1,Wn �0.^

 THEOREM 3.13. Let A and B be simple DFMAs with initial assignments wit and
iaB, respectively. Let E be an alphabet of cardinality k = max{lutA1, 1udB1}. Then,
A B iff A B.

 PROOF. The if-part is trivial, thus we have to prove the onlyif-part. Let w E L(A).
By Lemma 3.11, C L(A). Since A ̂ -E B, C L(B). By Lemma 3.12, there exists
w' E fl wB. By Lemma 3.11, B(w') = B(w). Thus, w E L(B). The converse
direction is proved analogously.^

 Let A be a hypothesis computed from a DFA MA =(QA,EA,qo5A,FA)in one
stage. After a counterexample for A A* is returned, assume that a DFA MB =

(QB, EB, qo ,6B FB) is computed.

 LEMMA 3.14. If MA ':=dEA A*, then MA -EA MB.

106H. SAKAMOTO

 PROOF. Let MA := M(SA, EA, TA) and MB := M(SB, EB, TB). Assume that
MA -EA A. Let a counterexample w be returned. Then, there exists a E [w] such that
a E EB \ EA. If each nonempty prefix of w contains a, then SA = {s E SB la V [s]},
EA = {e E EB la V [e]} and TA = {(a, b) E TB la V [a]}. It follows that MA ̂ -'EA MB.
Suppose that there exists s E SB f EA such that s V SA. If there exists s' E SA such
that TA(s' • e) = TB(s • e) for all e E EA, then MA ̂ --EA MB, because MA ''EA A.
Then, let TA(s' • e) = TB(s • e) for all s' E SA and all e E EA. Since MA ̂ -'EA A*, there
exists s" E SA such that row(s) = row(s") on (SA,EA,TA).Since SA C SB, s" = s
implies TA(s" • e) = TB(s • e) for all e E EA. This contradiction follows MA ̂ -'EA MB. ̂

 LEMMA 3.15. Let IIEAII > Iur I. If MA EA A*, then MA Y EA MB.

 PROOF. Let A =(QA,uA,qo,gA,~A,FA) be the hypothesis from CONS (MA).
Assume that MA T EA A*. Then, a counterexample w E E* for some E D EA is returned.

Let B = (QB, uB, qo , PB, pB, FB) be a next hypothesis computed by CONS (MB).
Without loss of generality, we can assume that w E L(A*) \ L(A). Note that IuA I = IuB I,
because B is computed from the DFA M such that L(M) = L(MB) l E. Here, we
recall Definition 3.9. Since I IEA I I > IuA I = 11-1B13 (w4A and (w)IZA are welldefined.
By Lemma 3.12, there exists w' E (w)-A (1 (w)EA. Since w E L(A*) and w V L(A), by
Lemma 3.11, w' V L(A) and w' E L(B). Thus, MA /A MB. The proof is completed. ̂

 THEOREM 3.16. Every simple deterministic finitememory automaton is exactly
learnable using membership and equivalence queries.

 PROOF. Let A* be a target. By Lemmas 3.14 and 3.15, every counterexample
contributes to learning a simple DFMA A such that A ~EA A*, where I IEA I I > IuA' I.
Thus, by Theorem 3.13, we conclude this theorem.^

 THEOREM 3.17. The running time of the algorithm D.FMA to compute a target A*
is bounded by O(m4n3tm n), where m is the length of a longest counterexample returned,
n is the number of states of the minimum DFA M such that L(M) ^'E L(A*) for
IIEII = m, and t,,,,,n is the time to compute M by Angluin's (1987) algorithm.

 PROOF. When a counterexample is returned, the procedure ANG first computes
a closed, consistent observation table using membership queries. Once such a table
is obtained, the procedure ANg computes a corresponding DFA M from the table and
check whether or not the DFA is permutation closed. The time is tm,n (Angluin (1987)).
If M is not permutation closed, we must find at most nm(m — 1)/2 strings of length at
most n. Thus, the time used by ANC is bounded by O(m2n2trn n,).

 It is easy to see that the time used by CONS is bounded by O(mn). Thus, the
update-time of the algorithm DYMA is O(m2n2t„Z,fz + mn). At most mn counterex
amples of length at most in are returned by the time a DFA M such that M ^—'E A*
is computed, where IIEII = in. Thus, the total running time of DTMA is bounded by
O(m2n(m2n2tm,,n + ran)) = O(m4n3tm,n).^

The Learnability of Simple Deterministic FiniteMemory Automata via Queries107

4. Concluding remarks

 Simple DFMAs, a subclass of finitememory automata have been defined and in
vestigated. Kaminski and Francez (1994) discussed various potential applications and
benefits of their computational model; thus we refer the reader to their article for further
information in this regard. The main new feature of finitememory automata is their
ability to perform computations over an infinite alphabet. The attractiveness of this
computational model naturally suggested the problem to study the learnability of such
computing devices. We have chosen, in this paper, the query learning model introduced
by Angluin (1988) for providing the first answer to this problem. In particular, we have
established the learnability of simple DFMAs via membership and equivalence queries.
Moreover, we could prove the equivalence problem for simple DFMAs to be decidable.
While answering membership queries has to be considered as an unobjectionable abil
ity to be required of a teacher, the latter result considerably supports our viewpoint
that the equivalence queries for simple DFMAs are reasonable. Additionally, the insight
obtained in solving the equivalence problem turned out to be helpful for designing the
desired learning algorithm.

 Nevertheless, several problems remain open. Obviously, the most interesting ques
tion is whether or not our results are generalizable to the whole class of deterministic
finitememory automata. Inspecting our proofs we see that almost all results obtained
heavily depend on the following closure property: for every simple DFMA A and ev
ery automorphism £ : Q Q, it holds that £(L(A)) = L(A). This closure property is
concerned with initial assignments of simple DFMAs including only the distinguished
symbol #. However, an initial assignment of a finite memoryautomata may contain
some alphabet symbols. When a deterministic finitememory automaton reads an input
symbol contained in its initial assignment, it may pay special attention to this symbol
compared with other symbols not contained initially in its assignment. In this sense, ev
ery symbol is fairly judged by simple DFMAs but not by general DFMAs. On the other
hand, there is no other difference between definitions of DFMAs and simple DFMAs
except their initial assignments. Thus, we conjecture that the problem of learning the
whole class of DFMAs is reducible to task of identifying initial assignments. We already
made some progress along this line, but the final solution could not be obtained yet.

 Acknowledgment. The author is very grateful to Prof. Thomas Zeugmann who
read all part of an earlier version of this paper with great patience, and spent so much
time and energy for a careful proofreading. Without his helpful comments, this paper
would never have been completed. The author thanks the referees of BIC for their
helpful comments.

 References.

Angluin, D. (1987), Learning regular sets from queries and counterexamples, Information
 and Computation, 75:87 — 106.

Angluin, D. (1988), Queries and concept learning, Machine Learning, 2:319 — 342.
Burago, A. (1994), Learning structurally reversible context-free grammars from queries

108H. SAKAMOTO

 and counterexamples in polynomial time, Proceedings of the 7th Workshop on the
 Computational Learning Theory, New Brunswick, USA, pp.140 — 146, ACM Press.

Bergadano, F. and Varricchio, S. (1995), Learning behaviors of automata from shortest
 counterexamples, Proceedings of the 2nd European Conference on Computational

 Learning Theory, In Vitanyi, P. (Ed.), Barcelona, Spain, pp.380 — 391, LNAI 904,
 SpringerVerlog.

Gasarch, W. I. and Smith, C. H. (1992), Learning via queries, Journal of the ACM, 39
 (3):649 — 674.

Gavalda, R. (1994), On the power of equivalence queries, Proceedings of the 1st Euro
 pean Conference on Computational Learning Theory, In Taylor, J. S. and Anthony,

 M. (Eds.), Clarendon Press, Oxford, Royal Holloway University, London.
Hop croft, J. E. and Ullman, J. D. (1979), Introduction to automata theory, languages,

 and computation, AddisonWesley.
Ishizaka, H. (1990), Polynomial time learnability of simple deterministic languages, Ma

 chine Learning, 5(2)151 — 164.
Kaminski, M. and Francez, N. (1994), FiniteMemory automata, Theoretical Computer

 Science, 134:329 — 363.
Kinber, E. B. and Zeugmann, T. (1989), Refined query inference, Proceedings of the 2

 nd International Workshop on Analogical and Inductive Inference, In Jantke, K. P.
 (Ed.), LNAI 397, pp.148 — 160, SpringerVerlog.

Sakakibara, Y. (1990), Learning context-free grammars from structural data in polyno
 mial time, Theoretical Computer Science, 76:223 — 242.

Sakamoto, H. and Ikeda, D. (1998), Intractability of decision problems for finitememory
 automata, Proceedings of the International Colloquium of Universal Machines and

 Computations, to appear.
Sammut, C. and Banerji, R. (1986), Learning concepts by asking questions, In Michalski,

 R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Machine Learning: An artificial
 intelligence approach, Vol. 2, Morgan Kaufmann, San Mateo, Ca.

Shapiro, E. (1981), A general incremental algorithm that infers theories from facts, Proc
 eedings of the 7th International Joint Conference on Artificial Intelligence, pp.446

 — 451, Morgan Kaufmann, San Mateo, Ca.
Shapiro, E. (1982), Algorithmic program diagnosis, Proceedings of the 9th ACM Sympo

 sium on Principles of Programming Languages, pp. 299 — 308, ACM Press.
Shapiro, E. (1983), Algorithmic program debugging, Cambridge, MA: MIT Press.

Received December 25, 1997

