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ASYMPTOTIC PROPERTIES OF JACKKNIFE 

SKEWNESS ESTIMATORS AND EDGEWORTH 

             EXPANSIONS

       By 

Yoshihiko MAESONO*

                      Abstract 

   It has been found in simulation studies that jackknife estimators of 
skewness have downward biases. In this paper we obtain asymptotic 
representations of the jackknife skewness estimators for Ustatistics with 
remainder term op(n-1) and discuss the biases theoretically. Using the 
asymptotic representations, we also obtain Edgeworth expansions with 
remainder term o(n-1/2).

    Key words and Phrases. Hdecomposition, jackknife skewness estimator, third 
central moment, Ustatistics, variance estimator. 

1. Introduction 

    Let X1i • • • , Xn be independently and identically distributed random variables with 
distribution function F and Tn = Tn (X1, • • , Xn) be a statistic related to the parameter 
0, such as estimator, test statistic, etc. The skewness of Tn is defined as 

                         __E[Tn — E(Tn)]3                           W
ar(Tn)13/2 

which describes in some degree the asymmetry of its distribution about its expectation. 
And the skewness is a coefficient of n-1/2 term in an Edgeworth expansion of the distri
bution of Tn. So, the estimator of the skewness plays an important role when obtaining 
an approximate upper a quantile or constructing a confidence interval based on the 
Edgeworth expansion. Beran (1984), and Hinkley and Wei (1984) have discussed the 

jackknife estimation of the skewness. The simulation studies by Beran (1984), Schemper 
(1987), and Tu and Zhang (1992) show that the jackknife skewness estimators have large 
downward biases. And Beran (1984) further has found that the biases in skewness esti
mators have a significant impact on the accuracy of the jackknifed Edgeworth approxi
mation and the correctness of confidence intervals based on this approximation. In this 
paper we will obtain asymptotic representations of the jackknife skewness estimators 
and discuss the biases theoretically. 
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   It will be possible to study the skewness estimator for a general statistic under the 
conditions of van Zwet (1984), which ensure that higher order terms are negligible. But 
the study will be very complicated and difficult. So, since many statistics in common 
use are members of Ustatistics or approximated by them, we will consider the skewness 
of Ustatistics. 

    Let  h(x1,  •  •  • , x1) be a real valued function which is symmetric in its arguments. 
For n > r let us define Ustatistic by 

-1 
Un= nrEh(Xil,•••,Xir) 

Cn,r 

where >c nrindicates that the summation is taken over all integersi1,• , i,.satisfying 
1 < < • • • < i,. < n. For a standardized Un, Hoeffding (1948) proved the asymptotic 
normality 

lim P{.7,~1(Un — 8) < x) = 4)(x) 
n—co 

where 8 = E[h(X1, • • •, X,.)], on = Var(Un) and 4)(x) is a distribution function of the 
standard normal. Thus we can construct an asymptotic confidence interval of 8 as 

Un — Qn za/ 2 < 8 < Un -F ern za/ 2(1) 

where &2 is an estimator of the variance crn and za12 is an upper a/2 level quantile of 
the standard normal distribution. Further Callaert, Janssen and Veraverbeke (1980), 
and Bickel, Goetze and van Zwet (1986) obtained an Edgeworth expansion for the dis
tribution of Ustatistic. The Edgeworth expansion Hn (x) is given by 

Hn(x) = I(x) — n1/20(x)--N(x2 — 1)(2) 

where 0(x) is a density function of the standard normal and K3 is a skewness of Un 

                     N/FtE(Un — 9)3 n2E(Un — 0)3               K3 (c2)3/2 (nun)3/2 • 

They showed that 

              sup,P{crn1(Un — 8) < x} — Hn(x)I = o(n-1/2). 

Thus we can construct another confidence interval 

       Un —&nza/2—63~n(Z2/2—1) <8< Un+&nza/2—63~n(z212 — 1) (3) 
where k3 is an estimator of ic3. But, as pointed out by Hall (1992, Chap.3), both 
convergence rates of coverage probabilities in (1) and (3) are 0(n-1/2). Thus we cannot 
improve the convergence rates. To improve the rates, we have to consider the confidence 
interval based on the Edgeworth expansion of a studentized Ustatistic 

Sr, = (Un — 0)/ä-n.
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Maesono (1995a) has obtained the Edgeworth expansion of the studentized Ustatistic 
substituting a jackknife estimator  Qn. The expansion is similar to (2) and include the 
skewness ,3 of Sn . From Maesono (1994, 1995b), we can calculate the skewness IC; and 
then we can obtain an estimator k3. In this paper we will discuss asymptotic properties 
of jackknife estimators k3 and k3 theoretically. 

    Let Unt) denote Ustatistic computed from a sample of n  1 points with Xi left 
out and Urc '?) computed from a sample of n  2 points with Xi and Xi left out. The 
jackknife estimator k3 of the skewness K3 of the standardized Ustatistic is given by 

k3 = n&n3~2(4)                         (n) 

where 
n-1n 

n =----E[u4i) — Unr(5) 
                                              i=1 

and 

             (n3rb    µn =—`n_1)2((4a) — Un)3(6) 
                           i=1 

+3(n n 1)2 En) — Un)(U(j) — Un)[nUn — (n  1)(UAa) + OP) + UV)]. 
i�./ 

And the jackknife estimator k3 of the skewness of Sn is given by 

       */Sin=(7) 
3(n&2

n)3~2 

where 

          2(n  1)3 n    =vn—-------E(U(Z)  Un)3(8) 
                           i-1 

3(n  1)2 I(U(a)  Un)(U(i) — Un)[nUn — (n  1)(U i) + Oil)) + U 1'1 ]. 
ifj 

The properties of the jackknife variance estimator &n defined by (5) are precisely studied. 
Arvesen (1969) has obtained the exact representation of &n2, which is very complicated, 
and Efron and Stein (1982) have showed that &n has a positive bias. Further Maesono 

(1994) has obtained an asymptotic representation and an Edgeworth expansion with 
remainder term o(n-1/2). Also the bias reduction for the jackknife variance estimator has 
been studied by Hinkley (1978), and Efron and Stein (1982). For the jackknife estimator 
of the third central moment, some properties have been studied. Using an adjustment 
of the coefficient of the estimator, Tu and Gross (1994) discussed the bias reduction of 
µn and showed the effectiveness by simulation. There are also some another simulation 
studies for µn. Recently Maesono (1995c) has obtained an asymptotic representation 
and an Edgeworth expansion of /in. Hinkley and Wei (1984) discussed the properties of 
the estimator k3 by simulation.
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    In this paper the asymptotic representations and the Edgeworth expansions of 
 ic3 and k are established, and the biases of ic3 and k are studied theoretically. In 

Section 2, we discuss the asymptotic representations of 6-,n2, fin and fin. ,In Section 3, 
the asymptotic representations and the biases of k3 and k3 are established and their 
Edgeworth expansions are obtained. Finally, in the case of variance estimation, we 
study the biases of k3 and k in Section 4. 

    It is desirable to study asymptotic mean square errors of #c3 and 4. But to calculate 
the errors, we should obtain more precise representations of the estimators. So, it may 
be studied in the future. Hereafter for the sake of simplicity, we will consider the kernel 
of degree 2. The generalization to the kernel with arbitrary degree will be obtained with 
notational complications and tedious calculations. 

2. Preliminaries 

    At first we prepare the Hdecomposition of Ustatistic. The H-decompo
sition or ANOVAdecomposition is a basic tool of the analysis of variance, the jackknife 
inference, etc.(see Appendix). Under the assumption that Elh(Xi, X2)l < 00, let us 
define 

gi(x) = E[h(x, X2)]  0, 92(x, y) = h(x, y)  9  gi(x)  9i(y) 

and 

Al = E91(Xi), A2 = E 92(Xi,Xj)• 
i-1Cn,2 

Then we have 

                    Ur, 0 =nAi + n(n21)A2 • 
Note that 

E[92(Xi,X2)IX1] = 0 a.s. 

So, if one of {i1, i2} is not contained in {ji, • • , j,n}, for mvariate function a which 
satisfies Elag2I < oo, we get 

E[gk(Xil, Xi2)a(X.ji, ... Xjm)] = 0. 

Using this equation we have the variance o-n2 of Un (see Lee (1990, p.31)) 

                       =nsl+n2 

                                        n 

            ()12(9) 

where 

               = E[g (Xi)] and 2 = E[92(X 1, X2)]. 

    To discuss asymptotic properties of a statistic, it is convenient to obtain an asymp
totic representation with remainder term op (n-1) which means 

P{Iop(n-1)I > n1(logn)-1} = o(n-1).
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Let  T, R and T = T + R be random variables, H(.) be a bounded function, and y be a 
positive constant. Then 

sup IP{T < x}  H < sup IP{T < x}  H(x)1 + P{IR' > y} 

                       + max{H(x  -y)  H(x), H(x + y)  H(x)}. 

So, op(n-1) is very useful for discussing the Edgeworth expansion and other asymptotic 
properties. It follows from Markov's inequality that if 

EIRIP = 0(n-1 '3-1') for some ,3 > 1 and y > 0,(10) 

we have 

                  P{IRI > n-1(log n)-1} = o(n-1).(11) 

It is trivial that cn-1-1' = op(n-1) for constant c and y > 0. 

    Let us define 
Pm = n2E(Un  9)3. 

Then the third central moment of Un is given by pn/n2 and µn defined by (6) is a 
jackknife estimator of fin. From Maesono (1995c), we have an asymptotic representation 
of Tin. Let us define 

el = E[91(X1)],e2 = E[91(X1)91(X2)92(X1,X2)], 
       e3 = E[91(X1.)92(X1, X2)],e4 = E[92(X1, X2)92(X1, X3)g2(X2, X3)], 

a1(x) = 4{4(x)  el} + 24{91(x)E[91(X2)92(x, X2)]  e2} 
+12E[gi (X2)92(x, X2)]  12i91(x) + 24E[gl(X2)92(x, X3)92(X2, X3)], 

)2(x, y) = 24{91(x)91(y)92(x,y)+ e2 

                E[(91(x)92(x, X2) + 91(y)92(y, X2))91(X2)]} 
          12{gi(x)91(y) + 9i(y)91(x)  gi(x)  (y)} 

+12{[gi(x) +9i(y)]92(x,y)  E[9i(X2){92(x,X2) +92(y,X2)}]} 
           24a92(x, y)  48E[(91(x)92(y, X3) + 91(y)92(x, X3))91(X3)] 

+24E[gi(X3)g2(x, X3)92(y, X3)] 
+24{E[(gi(x) + 91(y))92(x, X3)g2(y, X3) 

+91(X3)92(x, y)(92(x, X3) + '2(y, X3))] 
                 2E[(92(x, X3) + 92(y, )(3))91(X2)92(X2, X3)]} 

+24E[g2(x, X3)92(y, X4)92(X3, X4)] 

and 
b = -3e1  6e2 + 6e3 + 2e4. 

Since the product of Ustatistics is a linear combination of Ustatistics, applying the H
decomposition and the moment evaluation (19) in Appendix repeatedly Maesono (1995c) 
obtained the following lemma.
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    LEMMA 2.1.  If  Elh(X1  i  X2)16+£ < oo for some E > 0, an asymptotic representation 
of µn defined by (6) 

                          n 

      µn=µn+n~A1(Xi) +nn21)E A2(Xi, Xj)+86+op(n-1). 

    PROOF. See Maesono (1995c). 

   It is easy to see that E[)1(X1)] = E[A2(X1, X2)] = 0 and E[A2(Xi, X2)1X1] = 
0 a.s. From the moment evaluation (19) in Appendix, we can show that if EIA2(X1, X2)Iq 
<co for q>2, 

                El E A2(Xi,Xj)Iq < cnq.(12) 
cn ,2 

Maesono (1995b) has studied the bias b in the case of variance estimation. 

    Maesono (1994) has also obtained asymptotic representation of n&n as follows. 

    LEMMA 2.2. If Elh(Xi, X2)14+£ < oo for some E > 0, an asymptotic representation 
of the jackknife variance estimator n&n defined by (5) is given by 

n 

     n&n2= non+2E f1 (Xi) + 2 f2(Xi,Xi)+22op(n-1) 
ni =1n(n —1)cn                                                                                           n,2 

where 

             fi(x) = 2[9i (x) — i] + 4E[gi(X2)92(x, X2)] 

and 

f2(x, y) = —491(x)91(y) + 4E[g2(x, X3)92(y, X3)] 
+ 492(x, y){91(x) + 91(y)} — 4E[{92(x, X3) -I 92(y, X3)}91(X3)] 

    PROOF. See Maesono (1994). 

   It is easy to see that E[f1(X1)] = E[f2(X1, X2)] = 0 and E[f2(X1i X2)IX1] = 0 a.s. 
And using Hdecomposition, we can show that if El f2(X1, X2)I9' < oo for q > 2, 

                El > f2(Xi,Xj)lq < cnq.(13) 
cn ,2 

As pointed out by Efron and Stein (1981), n&n has a positive bias 2a/n. Replacing 
n&2 — no-n2 by a Ustatistic with degree 2 and additional n-1 term, we can study the 

asymptotic properties of the jackknife estimator of the variance.
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    Next we will consider the skewness of the studentized Ustatistic  Sn. Maesono 
(1994) has proved an asymptotic representation of Sn. Let us define 

T = 3E[24111 (X1)]~CC22, P=E[f1(X1)91(X1)], 
                               S1 

al (x) = rgi(x)  -2 {(f1(x)91(x)  p) 
                            S1 

+(E[f2(x, X2)91(X2)]  fi(x)) + E[92(x, X2)fl(X2)]}, 

        a2(x, y) = 92(x, y)  -2fl(x)91(y) + fl(y)91(x)] 

and 

a3(x, y, z) =  C2 lfl(x)92(y, z) + fl(y)92(x, z) + fl(z)92(x, y) 

+91(x)[f2(y, z)  2 f1(y)fl(z)] + 91(Y)[f2(x, z)  -2 fl (x)fl (z)] 
    1S1 

+91(z)[f2(x, y)  fl(x)f1(y)]} 

Then we have the following lemma. 

   LEMMA 2.3. If Efh(X1, • • , Xr)19 < oo and 'i > 0, for the studentized Ustatistic 
Sn = (Un  O)/ern, we have 

Sn  V zUn 
Viop(n-1) 

                                      n where 

                      n Un= nl1E{91(xi) + al(Xi) } 
Z-1 

+ -------------2 
1a2(Xz,X~)nn  12n  21a3(Xi,X~,Xk) n(n  1)~G•n,2()()G'n,3 

    PROOF. See Maesono (1994). 

    Since Sn is an asymptotic Ustatistic, the skewness tc3 = n2E(U7i3 follows from 
Maesono (1995b). Let us define 

e5 = E[91(X1)], e6 = E[9i(X1)91(X2)92(X1, X2)], 
e7 = E[91(X1)91(X2)92(X1, X3)92(X2, X3)], 

          e8 = E[9i(X1)], e9 = E[9i(X1)9i(X2)92(X1, X2)], 
e10 = E[9i(X1)91(X2)92(X1,X2)], 
e11 = {9,1 (X1)91(X2)92(X1, X3)92(X2, X3)], 

           e12 = E[91(X1)91(X2)91(X3)92(X1, X2)g2(X2, X3)]
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and 
           e13 =  E[91(X1)91(X2)92(X2,  X3)92(Xi,  X4)92(X3,  X4)]• 

From direct computations, we have an asymptotic skewness k . 

   LEMMA 2.4. If Elh(X1i • • •,Xr)I9 < oo and a > 0, we have 

1 

          = n2E(Un)3 = (-2e1  3e2) 

          1393 
         + n-1{1i(8el2e2 3e3  2e4) 

            +5[-32(e1 + 2e2)4e8+2e9 3e10  3e11  9e12  6e13] 
         +[3ei (8+2es +2e7) + 3e2(2 + 10es + 12e7)] 

5 — 
2g (el + e2)3} + O(n-2).(14) 

    PROOF. See Appendix. 

    Using Lemma 4 and 5 in Maesono (1995c), we can obtain the asymptotic represen
tation of /in. Let us define 

,V1 (x) = -8{4(x)  el }  24{91(x)E[91(X2)g2(x, X2)]  e2} 
       24E[gi(X2)92(x,X2)] + 24 gi(x)  24E[gi(X2)92(x,X3)92(X2,X3)], 

)2(x, y) = 24{91(x)91(y)92(x, y) + e2 
                E[(91(x)92(x, X2) +

r91(y)92(y, X2))91(X2)]} +24{gi(x)91(y)+9i(y)91(x) b191(x)  'i91(y) } 

          24{[9i (x) + 9i (y)]92(x, y)  E[9i (X2){92(x, X2) + 92(Y, X2)}]} 

+48 i92(x, y) + 72E[(gi(x)92(y, X3) + 91(y)92(x, X3))9 1(X3)] 
          48F[91(X3)92(x, X3)g2(y, X3)] 

          24{E[(gi(x) + 91(y))92(x,X3)92(y, X3) 

+91(X3)92(x, y)(92(x, X3) + 92(y, X3))] 
                 2E[(g2(x, X3) + 92(y, X3))91(X2)92(X2, X3)]} 

          24E[g2(x, X3)92(y, X4)92(X3, X4)] 

and 
                          = 6e1 + 12e2  12e3  3e4. 

    Similarly as fin, we can easily obtain a representation of fin.
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   LEMMA 2.5.  If  EI  h(X1  i  X2)  I6+£ < 00 for some E > 0, an asymptotic representation 
of 14, defined by (8) is 

      2 n*28b*1 
  fin = 8(-2e1  3e2) + nAT +nn  1a*2(Xz,X~) +n + op(n).              2=1() Cn,2

3. Asymptotic results for jackknife skewness estimators 

3.1. Asymptotic representations and biases 

    In this section, using the asymptotic representations of n&2, µn and vn, we will 
discuss the representations of k3 and k3 and obtain the Edgeworth expansions of them. 

   Similarly as Lemma 3 in Maesono (1994), we have the following lemma. 

   LEMMA 3.1. If EIh(X1i X2)I9 < oo and ti > 0, we have 

  (ncrn) 2 (n&n)2= 1 —n2E f1(X2)           44n(n312                                )1[f2(XaXj) (15)                ~1i =1( Cn 2 

                 5
.f1(X=)f1(Xi)] + 1 { 15E[fi(X1)]3} + op(n-1).       41;

1 32V. Lk 

PROOF. Since 
                2323n&n — nun3                   (nQn)2(n&n)2= (1+)_                                        n Qn 

we can use a Taylor expansion 

                                35              (1+x)2=1-2x+Sx216(1+/9) 2x3 
where 0 < It9 < IxI. From the equation (9), we obtain that (ncr)-1 = (401+O(n-1) 
and (no-n)-2 = (40-2+0(n-1). Similarly as the proof of Lemma 3 in Maesono (1994), 
it follows from Lemma 2.2 and Lemma 5.2 that under the moment condition 

        (nan2~n)2=2n2-----4E f1(Xa)f1(X1) +E4n41)+ °I)(7/-1)                 no-n11 C
n,2 

and                 22 
                 35(1

+V)-2(n&nncn)3= o(n-1). 16nunp 

Thus we have the equation (15). 

    From the equation (9) and Theorem 1 in Maesono (1995b), we can show that 

(no-n)-2 = 8 3 32n~5+ O(n-2) 

                                              1 and 

pn = 8(ei + 3e2)8(3e3 + e4)               + +0(n-2).
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Thus we have 

             _ el+3e21 3e3 + e4 30e1 + 3e2)2 K3
i-I                n{i4e?}+ 0(n-2). (16) 

Using Lemma 3.1, we can obtain the asymptotic representation of K3. 

   THEOREM 3.2. If Elh(X1 i X2) 110+£ < oo for some E > 0 and i > 0, an asymptotic 
representation of the jackknife skewness estimator K3 in (4) is given by 

k3 =k3 +23 b1(Xi) + 23(2(XX7) +ds+on(n-1)(17) 
nli _1n(n —1)~1cn2n41l 

where 

           b1(x) _-8 (x)—3(ei23e2)fl(x),   b~
1 

(2(x, y) = g'\2(x, y) — 1 ~2 {.n(x)A1(y) + fi(y)t 1(x)} 

                      3(ei + 3e2) 5(el-}3e2)  f
2(x,y) +fl (x)fi (y) 

and 

      d = S + (el + 3e2){ 15E321(X1)]42}— 62E[fl (Xi)t1(X1)]• 
             ~1111 

    PROOF. See Appendix. 

    Similarly as Theorem 3.2, using Lemma 2.5 and Lemma 3.1, the asymptotic repre
sentation of k3 in (7) is obtained as follows. 

   THEOREM 3.3. If Elh(Xi, X2)110+£ < oo for some & > 0 and > 0, an approxi
mation of the jackknife skewness estimator k defined by (7) is 

kg=g+2E(1(Xi)+23b2(X. c* 
          nla -1n(n — 1)1 cn 2nSl 

where 

         C(x) =1(x) + 3(2e1 a 3e2) fi(x),        88~1 

(2 (x, y) = g'`2(x, y) — 322{f'(x)AT (y)+(OAT (x)} 

                                       1 3(2e1 + 3e2) 5(2e1 3e2)  
                     glf2(x, y)+8ifl (x)fi (y)
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and 

    d* ={64e1+90ge29e3—e4} 
     1 2213 3 21 39 27 21 

       +i{,,2(6e1 +2e2)+2e8 +4es +4elo +4e11+2e12 +4e13} 

       139 231 279237 1005 1197 

     — 

       —{el(
64e5 +16e6 +16e7)+ e2(128 es +32--e6 +32e7)} 

        +25tt6(el + 2e2)3. 
             S1 

 REMARK. d/ i and d* /ej are asymptotic biases of i3 and ic3 . d* is more compli
cated than d. In the case of variance estimation, we will study the biases dg 13. and d*/ I 
in Section 4.

3.2. Edgeworth expansions 

    Since the jackknife skewness estimators ic3 and k3 are asymptotic Ustatistics, using 
the Edgeworth expansion for Ustatistics, we can obtain the Edgeworth expansion with 
remainder term o(n-1/2). 

    THEOREM 3.4. If EIh(Xi,X2)I1.0+£ < oo for some 6 > 0 and limsup~t~~~ 

IE[exp{it(i(Xi)}]I < 1, an Edgeworth expansion Qn(x) for the jackknife skewness esti
mator k3 defined by (4) satisfies 

              sup IP{ V (1 (k3 — K3) < x} — Qn(x)I = o(n-112) 
     x 21 

where 

Qn (x) =~(x) —6 ()(K3x2+3d — k3) 
1c3 = ((1)3{E[(1 (Xi)] + 3E[(1(X1)(1(X2)(2(X1, X2)]} 

and 

((1)2 = E[(1(X1)]• 

    PROOF. Let us define 

             Un = n2E(1(Xi) + 2n(n — 1)E (2(Xi,Xj). 
8-1Cn,2 

Then from the equation (17), we have 

IFte (k3 — k3) =V'aUn+ + ~OP(n-i). 
            2(12e1 2(1~/7~
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Since Un is a Ustatistic with degree 2, using the Edgeworth expansion for Ustatistics 
(see Bickel et al. (1986)), we have 

P{ ~Un < x} = 4)(x) —k3 0(x)(x2 — 1) + 00.-1/2).
216~/n1 

It is easy to see that 

    P{ Un+ ..d <x} = P{\Un<x— d  }=Hn(x)+o(n-1/2). 
     21 26,/7/2121\ 

Since 
1){1/op(n-1)I > n1/2(logn)-1} = o(n-1/2) , 

from Lemma 2.2, we have the desired result. 

    It is easy to obtain an Edgeworth expansion for 4 . 

   THEOREM 3.5. If EI h(X1 i X2) I10+£ < oo for some e > 0 and lim supiti_„„ 
IE[exp{itC1(X1)}]I < 1, an Edgeworth expansion Qn(x) for the jackknife skewness esti
mator k defined by (7) is 

              Qn(x) =~(x) —62(kx2+3d— k3) 
                               \7Li 

where 
((rrr(          k3=(4l)3{E[C1 (X1)]3+ 3E[~i(X1)b1(X2)brr                                        2 (X1, X2)]} 

and 

(*)2 = E[(i(X1)]2. 

And (4,(x) satisfies 

            sup IP{  — 4) < x} — Qn*(x)I = o(n-1/2). 
21

4. Example 

   Let cr2 = Var(Xi). Then Ustatistic with kernel h(x,y) = (x—y)2/2 is an unbiased 
estimator of cr2. We will discuss the biases of the jackknife estimators of the skewness 
of Ustatistic 

                      

2--------E 1(X{  x.)2.                         n(n1)c n22 

It is easy to see that 

0 = 0.2, g1 (x) =2(332Q2) and g2(x, y) = —xy.
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For the sake of simplicity, we will consider the case that the distribution F(x) is sym
metric about the origin. Let us define 

                                           k                        mk=E[Xfl. 

Then because of symmetry of  F, if k is odd number, mk = 0. Using this fact, we can 

obtain that 

               = 4(m4  cr4),2 = o-4,ei =g(ms  3cr2m4 + 2c6), 

                                                      s 

            e2 = 0, e3 =2(Q2m4 0s), e4 = -o , 

es =16(m8  4cr2ms + 60-4m4  3o8), 
           e8 =32(mio 5a2m8+100.4m6  1006m4+ 40.10), 

es = e7  es  e10  e11  e12  e13  0, 

fi(x) = 2{gi(x)  i}, Ai(x) = 4{gi(x)  ei}  12agi(x), 

E[fi (Xi)] = 4(m8  40.2m6 + 8o4m4 m4 4.8) 
and 

E[f1(X1)Ai(X1)] 

       =4(mio  50.2m8 + 14o4ms  30o6m4 + 120-2n4  4m4ms + 120.10). 

   Here we will study the following three underlying distributions. 

    Normal distribution: If the distribution is normal, that is Xi ti N(0, o.2), 

m4 = 3o-4, ms = 15(76, m8 = 105cT8 and mio = 945(710. 

   Logistic distribution: We consider the logistic distribution which has the density 
function 

                                        _ 

                                                               ax 

                                     irefo 

Niacr(1+e-mio). 

In this case we have that 

             2214279s Var(Xi) =m4 =5ms =7 

                  Mg=3429 c8 and m=                                   206955 u10        85i011 

    Laplace distribution: Finally we consider the Laplace distribution which has the 

density function 
1 

e'clxl.
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Also we have that 

                    Var(Xi) =  Q2, m4 = 6o-4, m6 = 900.6, 

m8 = 25200.8 and m10 = 113400o10 

   Table lists the values of K3 and ic3 until the order n-1` and the biases d/ei and 
d* /ei of order n-1.

     Table  

3 dl e? tcsd* le?  
Normal 2.83 + n-11.41 -54.45 -5.66  n1146.37 209 .22  
Logistic 5.11 + n-10.52 785.04 -10.22  n1923.78 1517.35 

Laplace 6.62 + n-10.68 1626.00 -13.24  n11922 .95 3168.54

The asymptotic biases of the above cases are all downward, which mean the biases make 
the absolute value of the parameter small. It seems that if the distribution has heavy 
tail, the biases are large. 

5. Appendix 

    At first we review Hdecomposition or ANOVAdecomposition which is a basic tool 
of the studies of the analysis of variance, the jackknife inference, etc. Let v(x1i • • • , xr) 
be a function which is symmetric in its arguments and E[v(Xi , • • • , Xr)] = 0. Let us 
define 

P1(x1) = E[v(xi, X2, ... ,X,•)], 

P2(x1, x2) = E[v(xl, x2, . • • , Xr)] — pi(xl)  P1(x2), . • • , 

and 
r-1 

Pr(xl, x2, • • , xr) = v(xl  x2, • • • , xr) — E E P7 (xil , xi2, ... , Xi3 ). 
j=1  Cr,7 

Then we can show that 

E[Pk(Xl, . . . , Xk)IX1, ... , Xk-1] = 0 a.s. (18) 

and 
                               r n-~ 

E v(Xi,,. .,Xir)  Ak 
 -k 

        Cn,rk=1 

where 

                          Ak = E Pk(Xil, ... , Xik). 
Cn,k 

Using moment evaluations of martingales (Dharmadhikari, Fabian and Jogdeo (1968)), 
we have the upper bounds of the absolute moments of Ak as follows.
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    LEMMA 5.1.  For  q > 2, if E)v(Xi, • • • , Xr)l9 < oo, there exists a positive constant 
c, which may depend on v and F but not on n, such that 

ElAki4 < cn4.(19) 

    PROOF. Using the equation (18), we can show that ic n,k pk(Xil, • • • , Xik) has a 
martingale property and Ec n-1,k_pk(Xi„• • ' , Xik_l, X,1) has a martingale property 
and so on. Then applying the result of Dharmadhikari et al. (1968) repeatedly, we can 
obtain the inequality (19) . 

   From (10), (11) and (19), we can easily obtain the following lemma which is useful 
for obtaining the asymptotic representation. 

   LEMMA 5.2. (i) If Eiv(X1, • • • , Xr)I2+£ < oo for E > 0, we have 

n-r-1 E v(Xi, ... , Xr) = op(n-1).(20) 
                                       Cnr 

(ii) If Elv(X i, • • • , Xr)12+F < oo for E > 0 and pi (Xi) = p2(Xi, X2) = 0 a.s., we have 

n-r E v(Xi, ... , Xr) = op(n-1).(21) 
                                               Cn,r 

    Proof of Lemma 2.4. 

    Let us define 
                         1 n On* = Un —Eal(Xi). 

n2~1i =1 

From direct computation, we can show that 

n2E(Un )3 = n2E(Un )3 + 2-----~3E[9i(X 1)a1(X 1)] 
nS

. 

+ , E[ai(Xi)gi(X2)92(X1, X2)] + O(n-2). 

Since Or: is a Ustatistic with kernel degree 3, it follows from Maesono (1995b) that 

n2E(U,z)3 = el + 9E[gi(Xi)9i(X2)a2(Xi, X2)] 

+ n? {E[gl (Xi)a2(X1, X2)] + E[a2(Xi, X2)a2(Xi, X3)a2(X2, X3)] 
          +E[gi(Xi)a2(X2, X3)a3(Xi, X2, X3)]}. 

From long but direct computation, we can get the skewness ,3. 

    Proof of Theorem 3.2.
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   From the definition we have 

                    33  k3  =I£3(no)32(no)32+Wbµ,~)2(no(no)2 
(na-)2 
              = P1 +P2 (say). 

Using the equations (13), (15) and (16), we can show that 

                                     n P1 = tc3—e133e2{4n2Ef1(Xi)4nn31-----------tt2>[f2(Xi,Xj) 
            S1~1i-1()S1 Cn,2 

5e 1+3e215E[f1(Xi)]  _33a1 
         4 ih(Xi)fl(Xj)]}ni{                                   32&I 4i}+ op(n). 

          _ Let us define b(x,y) = f2(x, y) — 5f1(x) f1(y)/(40. Since E[b(X1i X2)IX1] = 0 a.s., we 
can obtain the same order upper bound of the inequality (13) for > b(Xi, Xi). From 
the equation (12), we can show that under the moment condition 

El E )2(Xi, X.i) E b(Xi, X.i)11+£ = O(n2+2F). 
Cn,2Cn,2 

Therefore it follows from the equations (10) and (11) that 

O(n-4) E )t2(Xi, Xi) E b(Xi, X,) = op (n-1). 
Cn,2Cn,2 

Further we have 

0(n-3) E Ai (Xi) > b(Xi, Xj ) 
i=1Cn,2 

     = O(n-3) {A1(Xi) +'t1(Xj)}b(Xi, XX ) 
Cn,2 

     + 0(n-3) E{)t1(Xi)b(Xj, Xk) + al(Xj)b(Xi, Xk) + A1(Xk)b(Xi, X,)}. 
                            Cn,3 

Since E[{a1(Xi) + A1(Xj)}b(Xi,Xi)] = 0, from the equation (20) we have 

O(n-3) E { \1(X1) +)1(X,)}b(Xi, X?) = op(n-1). 
Cn,2 

Since 

E[al(Xi)b(X;, Xk) + al(X;)b(Xi, Xk) + a1(Xk)b(Xi, Xj)IXi, X.i] = 0 a.s., 

it follows from the equation (21) that 

O(n-3) E {A1(Xi)b(X.9, Xk) + )t1(Xj)b(Xi, Xk) + A1(Xk)b(Xi, X7 )} 
Cn,3 

       = Op(n-1).
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Similarly we can show that 

 n 

 O(n-3)  >  fi(Xi) E A2(Xi, Xi) = op(n-1) 
                  i=1Cn ,2 

Since 

    3nn 

        2n2if1(Xi) E \1(Xi) 
           i1i=1 

       2n221f1(X1)\1(Xa)2n2------2E{fl(Xi)Ai(Xi)+fi(Xj)~^i(Xi)}        1a_11c n,2 

and under the moment condition 

                 1nI       EIO(n-2) — E[fi(X1)Ai(Xi)]}I2+£ = 0(n-3-2f), 
                     i=1 

from the equations (10) and (11) we have 

       3 n n 
              2n2a.E fi(Xi) E A1(Xi) 

    _  3  ( 
               2n(n  1)12L.~{fi(Xi)\i(XX) + f1(Xj)~i(Xi)} 

               -
2------n~12E[fi(X1)A1(Xi)] + op(n-1). 

Using the equation (20), we can ignore the rest terms which multiply by const.n-1. 
Finally since (no-n)-3/2 = 1/(8 i) + O(n-1), we have 

1 P2 = 3+----3EA1(Xi) 
ni4ni i

_i 

      + 13E {a2(Xi, Xj)3C2[fi(Xi)\1(Xj)+f1(Xj)\1(Xi)]}         4n(n  1)?c n 24S1 

         16n~5E1)~1(X 1)] + op(n-1).             1[fi(X 

This completes the proof of theorem.
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