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Abstract

It has been found in simulation studies that jackknife estimators of
skewness have downward biases. In this paper we obtain asymptotic
representations of the jackknife skewness estimators for U-statistics with
remainder term op(n~1) and discuss the biases theoretically. Using the
asymptotic representations, we also obtain Edgeworth expansions with
remainder term o(n—1/2).

Key words and Phrases. H-decomposition, jackknife skewness estimator, third
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1. Introduction

Let X1,---, X, be independently and identically distributed random variables with
distribution function F and T, = T,(X3, - -, X, ) be a statistic related to the parameter
#, such as estimator, test statistic, etc. The skewness of T}, is defined as

_ VmE[T, - E(T,)P?
T e SETE R

which describes in some degree the asymmetry of its distribution about its expectation.
And the skewness is a coefficient of n=1/2 term in an Edgeworth expansion of the distri-
bution of T},. So, the estimator of the skewness plays an important role when obtaining
an approximate upper « quantile or constructing a confidence interval based on the
Edgeworth expansion. Beran (1984), and Hinkley and Wei (1984) have discussed the
Jjackknife estimation of the skewness. The simulation studies by Beran (1984), Schemper
(1987), and Tu and Zhang (1992) show that the jackknife skewness estimators have large
downward biases. And Beran (1984) further has found that the biases in skewness esti-
mators have a significant impact on the accuracy of the jackknifed Edgeworth approxi-
mation and the correctness of confidence intervals based on this approximation. In this
paper we will obtain asymptotic representations of the jackknife skewness estimators
and discuss the biases theoretically.
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It will be possible to study the skewness estimator for a general statistic under the
conditions of van Zwet (1984), which ensure that higher order terms are negligible. But
the study will be very complicated and difficult. So, since many statistics in common
use are members of U-statistics or approximated by them, we will consider the skewness
of U-statistics.

Let h(z,---,z,) be a real valued function which is symmetric in its arguments.
For n > r let us define U-statistic by

-1
n
Uﬂ—(,,,,) Czh(XiU"'inr)

where )~ indicates that the summation is taken over all integers iy, - - -, i, satisfying
1< <+ < i <n. For a standardized U, Hoeffding (1948) proved the asymptotic
normality
. -1 _ < —

nlingo Plo, (Up—0) <z} = ®(x)
where 8 = E[h(Xy,---,X,)], 2 = Var(U,) and ®(z) is a distribution function of the
standard normal. Thus we can construct an asymptotic confidence interval of 8 as

Un - &nza/2 <0< Un+ a'nza/z (1)
where 62 is an estimator of the variance 02 and z,/2 is an upper a/2 level quantile of
the standard normal distribution. Further Callaert, Janssen and Veraverbeke (1980),

and Bickel, Goetze and van Zwet (1986) obtained an Edgeworth expansion for the dis-
tribution of U-statistic. The Edgeworth expansion Hy(z) is given by

Ha(z) = ®(z) - n™/2(2) 2(z* — 1) (2)

where ¢(z) is a density function of the standard normal and k3 is a skewness of U,

_ VAE(U, -6  n2E(U, - 6)®
T (@ (ne)p

They showed that

sup |P{07 ! (Un = ) < 2} = Ha(2)] = o(n™/?).

Thus we can construct another confidence interval
. K30n . K3ln , -
Un — 0n2aj2 — 6—3\/—5(2(3/2 - 1) <0 <Up+0nzqy2 — 6—3ﬁ(z§/2 -1) (3)
where &3 is an estimator of k3. But, as pointed out by Hall (1992, Chap.3), both
convergence rates of coverage probabilities in (1) and (3) are O(n~'/2). Thus we cannot

improve the convergence rates. To improve the rates, we have to consider the confidence
interval based on the Edgeworth expansion of a studentized U-statistic

Sn ={(Up —8)/6n.
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Maesono (1995a) has obtained the Edgeworth expansion of the studentized U-statistic
substituting a jackknife estimator 2. The expansion is similar to (2) and include the
skewness k3 of S,,. From Maesono (1994, 1995b), we can calculate the skewness «3 and
then we can obtain an estimator #%. In this paper we will discuss asymptotic properties
of jackknife estimators k3 and &% theoretically.

Let U,(f) denote U-statistic computed from a sample of n — 1 points with X; left
out and U,(,i’j) computed from a sample of n — 2 points with X; and X left out. The
jackknife estimator k3 of the skewness k3 of the standardized U-statistic is given by

. Pn
K3 = W (4)
where "
o _n—1 () _ 1712
o= ;[Un Un] (5)
and
18 < X
jin = =S 0 - 02 ©)
i=1

3(n — 1)2 . . A . .
P2 S WO~ 0P ~ V)i — (n =~ OO + UP) + UG,
i#j
And the jackknife estimator &3 of the skewness of S, is given by
v Iy
" ey ™

where

N 2(n — 1)3 ¢ i 3
i = 2S00 - vn) ®)
3(n —1)? () ) () 4 Gy 4 )
—Se D (U = Un)(UF) = Un) [l — (n = DU + UF)) + UL,
i#j

The properties of the jackknife variance estimator 62 defined by (5) are precisely studied.
Arvesen (1969) has obtained the exact representation of 62, which is very complicated,
and Efron and Stein (1982) have showed that 62 has a positive bias. Further Maesono
(1994) has obtained an asymptotic representation and an Edgeworth expansion with
remainder term o(n~1/2). Also the bias reduction for the jackknife variance estimator has
been studied by Hinkley (1978), and Efron and Stein {1982). For the jackknife estimator
of the third central moment, some properties have been studied. Using an adjustment
of the coefficient of the estimator, Tu and Gross (1994) discussed the bias reduction of
[, and showed the effectiveness by simulation. There are also some another simulation
studies for fi,. Recently Maesono (1995¢) has obtained an asymptotic representation
and an Edgeworth expansion of fi,. Hinkley and Wei (1984) discussed the properties of
the estimator k3 by simulation.
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In this paper the asymptotic representations and the Edgeworth expansions of
k3 and K3 are established, and the biases of k3 and &% are studied theoretically. In
Section 2, we discuss the asymptotic representations of 2, fi, and #,. In Section 3,
the asymptotic representations and the biases of k3 and k% are established and their
Edgeworth expansions are obtained. Finally, in the case of variance estimation, we
study the biases of k3 and &% in Section 4.

It is desirable to study asymptotic mean square errors of i3 and k3. But to calculate
the errors, we should obtain more precise representations of the estimators. So, it may
be studied in the future. Hereafter for the sake of simplicity, we will consider the kernel
of degree 2. The generalization to the kernel with arbitrary degree will be obtained with
notational complications and tedious calculations.

2. Preliminaries

At first we prepare the H-decomposition of U-statistic. The H-decompo-
sition or ANOV A-decomposition is a basic tool of the analysis of variance, the jackknife
inference, etc.(see Appendix). Under the assumption that E|h(X;, X2)| < oo, let us
define

91(z) = E[h(r,Xz)] -0, 92(2,y) = h(z,y) — 0 — g1(z) — 91 (v)
and

A=) qi(X), A=) ga( X, X;).
i=1

Cu,2

Then we have

Up—-90= %Al + ;(712_—1),42,
Note that
Elg2(X1,X2)|X1] =0 a.s.
So, if one of {i1,12} is not contained in {j;,---,jmn}, for m-variate function o which

satisfies E|ags| < oo, we get
E[gk(xil ) Xiz)a(X,h y T 1ij)] =0.

Using this equation we have the variance o2 of U,, (see Lee (1990, p.31))

4 2
oh = ;E% + mﬁ% 9

where
& = E[gi(X1)] and & = E[g3(X1, X2))-

To discuss asymptotic properties of a statistic, it is convenient to obtain an asymp-
totic representation with remainder term o,(n~!) which means

P{lop(n™1)| > n™!(logn) ™} = o(n").
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Let T, R and T'= T + R be random variables, H(.) be a bounded function, and v be a
positive constant. Then

sup |P{T <z} — H(z)] < sup|P{T <z} - H(z)|+ P{|R| >~}
+ max{H(z —v) - H(z), H(z +7) - H(z)}.
So, op(n~1) is very useful for discussing the Edgeworth expansion and other asymptotic
properties. It follows from Markov’s inequality that if
E|R|P = O0(n~'=P=7) for some B>1 and v >0, (10)
we have
P{IR| > n~1(logn)~"} = o(n""). (11)

It is trivial that en™'~Y = 0,(n~!) for constant ¢ and v > 0.

Let us define
pn = n2E(U, — 0)3.

Then the third central moment of U, is given by p,/n? and fi, defined by (6) is a
Jackknife estimator of y,. From Maesono (1995¢), we have an asymptotic representation
of fi,. Let us define

e1 = Elg7(X1)), e2 = Elg1(X1)91(X2)g2(X1, X2)],

es = E[g1(X1)95(X1, X2)], e = Elg2(X1, X2)g2(X1, X3)g2(X2, X3)),

Ai(z) = 4{gi(2) — e1} + 24{g:1(=) E[91(X2)g2(=, X2)] — €2}
+12E(g3(X2)g2(z, X2)] — 126291 (z) + 24E[91(X2)g2(z, X3)g2( X2, X3)],

Aa(z,y) = 24{g1(2)91(v)g2(,y) + €2

—E[(g1(z)g2(2, X2) + 91(y)92(y, X2))g1(X2)]}
—12{g} ()91 (y) + gi (¥)91(x) — E1g1(x) — €391 (v)}
+12{[g} () + g ()]g2(z,y) — E[g}(X2){g2(z, X2) + g2(y, X2)}]}
—2463g5(2, y) — 48E[(g1(2)92(y, X3) + 91(¥)92(, X3))91(X3)]
+24E[91(X3)g2(z, X3)g2(y, X3)]
+24{E[(91(=) + 91(¥))92(z, X3)g2(y, X3)

+91(X3)92(z, y)(g92(2, X3) + 92(y, X3))]

—2E[(g2(=, X3) + 92(y, X3))91(X2)g2(X2, X3)]}

+24E[g2(x, X3)g2(y, X4)g2(X3, X4)]
and
6= —3e; — bes + Bes + 2eq4.

Since the product of U-statistics is a linear combination of U-statistics, applying the H-
decomposition and the moment evaluation (19) in Appendix repeatedly Maesono (1995¢)
obtained the following lemma.
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LEMMA 2.1. If E|h(X1, X2)|°%¢ < oo for some e > 0, an asymptotic representation
of fin defined by (6)

2 < 2 86
0 = n — A “ —_— 1 , _— _1 .
Hn = fn + n ?:1 1(X;) + n(n—1) CE :’\2(X » X5) " op(n™7)

PROOF. See Maesono (1995c¢).

It is easy to see that E[A(X1)] = E[X2(X1,X2)] = 0 and E[X2(X1, X2)|X;] =
0 a.s. From the moment evaluation (19) in Appendix, we can show that if E|A5(X1, X2)|?
< oo for ¢ > 2,

Bl Xa(Xi, X;)l < en?. (12
Cn,2

Maesono (1995b) has studied the bias é in the case of variance estimation.

Maesono (1994) has also obtained asymptotic representation of ng2 as follows.

LEMMA 2.2. If E|h(X1, X2)|*¢ < 00 for some € > 0, an asymptotic representation
of the jackknife variance estimator né?2 defined by (5) is given by

p 2 262
-2 _ 2 § : . § : Y. 2 -1
n0'n—-n0'n+;i=1f1(Xz)+n(n_1)C f2(Xz;X])+ n +Op(n )

where
fi(z) = 2[gi(2) — €] + 4E[g1(X2)g2(2, X2)]

and

fa(z,y) —4g1(2)91(y) + 4Eg2(z, X3)92(y, X3)]

4g2(z, y){91(z) + 91()} — 4E[{g2(z, X3) + g2(y, X3)}91(X3)]

+

PROQF. See Maesono (1994).

It is easy to see that E[fi(X1)] = E[f2(X1, X2)] = 0and E[f2(X1, X2)|X1] =0 a.s.
And using H-decomposition, we can show that if E|fs(X;, X3)|? < oo for ¢ > 2,

Bl £(Xi, X;)0 < ent. (13)
Chr,2

As pointed out by Efron and Stein (1981), n6? has a positive bias 262/n. Replacing

no2 — nol by a U-statistic with degree 2 and additional n~! term, we can study the

asymptotic properties of the jackknife estimator of the variance.
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Next we will consider the skewness x5 of the studentized U-statistic S,,. Maesono
(1994) has proved an asymptotic representation of S,,. Let us define
3B 8

p = E[fi(X1)g9:(X1)],

27 267
a1(z) = rr(2) gf—{(fl(w)gl(x) )
H(Elfa(e, X2)g1(X2)] — ggfl(z» + Elga(z, X2)f1(X2)]},

a2(z,9) = ga(z,3) ~ é[ﬁ(z)gl(y) +A@a @)

and
as(2,9,2) = —é{flmg?(y, )+ W), 2) + Fi()a(z,9)

%fl(y)fl(zn + 01()falz, 2) - E%fl(z)fl(zn

+01(2) [ falz,y) — %fl(z)fl(yn}

+91(2)[f2(y, 2) —

Then we have the following lemma.
LEMMA 2.3. If E|h(X1, -, X, )|® < 00 and €2 > 0, for the studentized U -statistic
Spn = (Un — 6)/6,, we have

Sn = /nU; — _\/5—53’7 +0p(n7")

where

Uy = ;152{91(&') + a—l(ﬁzl}

n

2 2
+ mc‘;ﬂaz(Xi,Xj) Ay e gas(xi,xj,xk)_

PrOOF. See Maesono (1994).

Since S, is an asymptotic U-statistic, the skewness k3 = n?E(U})3 follows from
Maesono (1995b). Let us define

es = E[g1(X1)), es = E[g7(X1)g1(X2)g2(X1, X2)],
er = Elg1(X1)91(X2)g2(X1, X3)g2(X2, X3)],
es = E[g7(X1)], es = E[g7(X1)g7 (X2)g2(X1, X2)],

er0 = E[g}(X1)g1(X2)g2(X1, X2)],
e11 = Elg7(X1)91(X2)g2(X1, X3)g2(X2, X3)],
e12 = Eg1(X1)91(X2)91(X3)g2( X1, X2)92(X2, X3)]
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and
e13 = Eg91(X1)91(X2)92(X2, X3)g2(X1, X4)g2(X3, X4)].

From direct computations, we have an asymptotic skewness k3.

LEMMA 2.4. If E|h(X1,---, X, )[° < 00 and &2 > 0, we have

.k . 1
k5 = nlEWU)?= é?(—%l — 3es)
1,1 39
+ n 1{—5(—— —.562—363—264)
3 3
f [ 362(61 + 262) — Zeg + 569 3e10 — 3e11 — Je10 — 6613]
1 ;
9 11 e
El [361( + -2-66 + -5-67) + 362(?5 + 10ee + 1267)]
—‘2—§(6’1 +e2)°} + O(n™?). (14)

PRrROOF. See Appendix.

Using Lemma 4 and 5 in Maesono (1995c), we can obtain the asymptotic represen-
tation of 7,,. Let us define

A (z) = —8{g}(2) — e1} — 24{g1(2) E[g1(X2)g2(z, X2)] — €2}
—24E[g7(X2)g2(z, X2)] + 246791 () — 24E[g1(X2)g2(, X3)g2(X2, X3)],

Az(z,y) = —24{g1(x)91(y)g2(z,y) + e2

—E[(91(z)g2(z, X2) + 91(y)92(y, X2))91(X2)]}
+24{g7 ()91 (v) + 97 ()91 (z) — €g1(2) — €791 ()}
—24{[9}(2) + 93(¥)]g2(2,y) — ElgT(X2){g2(z, X2) + 92(y, X2)}]}
+482g5(z,y) + T2E[(91(2)g2(y, X3) + 91(y)92(x, X3))91(X3)]
—48FE[g1(X3)92(x, X3)g2(y, X3)]
—24{E[(91(z) + 91(y))92(2, X3)92(y, X3)

+91(X3)92(, y)(92(, X3) + 92(y, X3))]

—2E{(g2(x, X3) + 92(y, X3))91(X2)g2(X2, X3)]}

—24E[g2(z, X3)92(y, X4)92(X3, X4)]

and
6 = 661 + 1262 - 1263 - 364.

Similarly as fi,, we can easily obtain a representation of oy,
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LEMMA 2.5. If E|h(X1, X2)|8%¢ < oo for some € > 0, an asymptotic representation
of i, defined by (8) is

(n7).

bp = 8(—2e; — 3ez2) + — ZA*(X)'*' )Z/\*(X,,X)
i=1

3. Asymptotic results for jackknife skewness estimators

3.1. Asymptotic representations and biases

In this section, using the asymptotic representations of né2, fi, and b, we will
discuss the representations of &3 and &% and obtain the Edgeworth expansions of them.
Similarly as Lemma 3 in Maesono (1994), we have the following lemma.

LEMMA 3.1. If E|h(X1, X2)|® < oo and & > 0, we have

3 3 3 <
(no?)3(ng2)™2 = 1‘@.2”)( mz [f2(Xi, X;) (15)

1, 15E[f3(X1)] 3
Qfl(X)fl(X’)] n ;[),leg(‘tl)l Ez}+o,,(n-1)
PROOF. Since . 2
(no?)¥(no2)% = (14 "R -3

we can use a Taylor expansion

(1+x)_% =1- %z+%x2
where 0 < [9] < |z|. From the equation (9), we obtain that (no2)~! = (4¢})~'+O(n"1)
and (no2)~2 = (467)~2+0(n~1). Similarly as the proof of Lemma 3 in Maesono (1994),
it follows from Lemma 2.2 and Lemma 5.2 that under the moment condition

35 -2 3

62 — 2 1 E 2 X
(o ndh L a S A (X5) + _{fn(g;*—l) top(n)
n C,,’z
and .
n n -
16(1 + 19)*—(7{’—)3 = Op(’n 1).

Thus we have the equation (15).
From the equation (9) and Theorem 1 in Maesono (1995b), we can show that

2
(n03)F = gz~ g

_ -2
57~ 3angy T O

and

+0(n7?).

8(3
fn = 8(61 + 362) + _ﬁ{:—_&ﬁ
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Thus we have

e+ 362 1 3ez+es  3E2(eq + 3ey) _s
ks = {ii n 63 4€§ } + O(n ) (16)

Using Lemma 3.1, we can obtain the asymptotic representation of &s.

THEOREM 3.2. If E|h(X1, X2)|'°*¢ < oo for somee > 0 and €2 > 0, an asymptotic
representation of the jackknife skewness estimator k3 in (4) is given by

Ra = K3+ £3ZC1(X)+ o 1)ESZQ(X,,XH 53+op( )y an

where
(@)= e )—‘“ﬁ%@m )
Gz, y) = g)\z(z»y) - @{fl(x))\l(y) + fi(y)Ai(2)}
3(e1 + 3ep) 5(e1 + 3ep)
—f—fz( y) + Tfl(x)fl(y)
and

I5E[f(X,)] 3¢ 3

d=bt (@t =pa ~12) " Tog

Elfi(X1)M(X1)]

PROOF. See Appendix.

Similarly as Theorem 3.2, using Lemma 2.5 and Lemma 3.1, the asymptotic repre-
sentation of &% in (7) is obtained as follows.

THEOREM 3.3. If E|h(X1, X2)|'° < 0o for some € > 0 and £} > 0, an approzi-
mation of the jackknife skewness estimator k% defined by (7) is

w*
ll
w-l-

d*
63 ZCl 1)63 ZCZ Xz,X ) 53 +0p( 1)

where

1 3(2 3
(o) = i)+

Gl = P4 - lhENE) + ANE)

3(2e1 + 3 5(2¢1 +3
~(—'18“‘€12—62)f2(x’y)+(—6182?_82—)-f1(1:)f1(y)

fl(-’ﬂ),
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and
519 909
{—€1+ 128 —983—64}
21 3 3 21 39 27 21
+—§{§2(661+ —e)+ o 63+4€9+—4-610+-4—811+ 2612‘1-—613}
1
——l-{e (E)_ +3?£e +27ge )+ e 237 +1005e + 11973 )
At VA T TN T T3 6T T3 7

5
9 3
251 (61 + 2e5)°.

REMARK. d/€} and d*/€} are asymptotic biases of k3 and k3. d* is more compli-
cated than d. In the case of variance estimation, we will study the biases d/&3 and d* /€3
in Section 4.

3.2. Edgeworth expansions

Since the jackknife skewness estimators k3 and k3 are asymptotic U-statistics, using
the Edgeworth expansion for U-statistics, we can obtain the Edgeworth expansion with
remainder term o(n~1/2),

THEOREM 3.4. If E[h(X1, X2)['%F* < 0o for some € > 0 and limsupyy_ o

|Elexp{it(1(X1)}]| < 1, an Edgeworth expansion Qn(z) for the jackknife skewness esti-
mator k3 defined by (4) satisfies

sup |P{M <z}-Qn(a)j= o(n‘lﬂ)

26,
where
_ #(z) ) 3d
Qn(z) = ®(z) - f + K3),
k3 = (&) HERI (X)) + 3E[<1(X1)<1(X2)<2(X1, X))}
and

(&) = E[¢}(X1)].

PRrROOF. Let us define
_ Zf:g (X)) + —2— 3" G(Xi, X)
_n‘,:1 1 n(n—l)c A4y

Then from the equation (17), we have

V1€l (ks — k3) \/ﬁfj d
2%, 26, 251\/_

+ \/_op(n
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Since U, is a U-statistic with degree 2, using the Edgeworth expansion for U-statistics
(see Bickel et al. (1986)), we have

(L
&1

K3

6v/n

<z} =®(z) - #(z)(2? = 1) + o(n=1/?).

2

It is easy to see that

\/’!—lﬁn d ) = \/Hﬁn _ d _ -1/2
PO T e s =Py Sem ) = @™,

Since
P{|Vnoy(n™)| > n='/%(logn)"1} = o(n~1/2),

from Lemma 2.2, we have the desired result.

It is easy to obtain an Edgeworth expansion for &}.

THEOREM 3.5. If E|h(X1, X2)|'°** < 0o for some & > 0 and limsupy,_,
|Elexp{it¢1(X1)}]| < 1, an Edgeworth ezpansion Q) (z) for the jackknife skewness esti-
mator K3 defined by (7) is

- 3d*
Qi) = o) ~ § 5w + T R

where
&5 = (ED3HECHX)P + SEIG (X1)41 (X2)¢5 (X1, X2)]}

and

(€)= Bl (X))
And Q3 () satisfies

wup [P <0y - 030 = o)
e 1
4. Example

Let 02 = Var(X,). Then U-statistic with kernel h(z,y) = (z—y)2/2 is an unbiased
estimator of o2. We will discuss the biases of the jackknife estimators of the skewness

of U-statistic 9 1
—_— —(X; - X;)2.
n(n—1) Cz: 2( i)

It is easy to see that

1
0= 02, 91(1:) = 5(172 - 0'2) and gz(m,y) = —zy.
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For the sake of simplicity, we will consider the case that the distribution F(z) is sym-
metric about the origin. Let us define

mp = E[Xf]

Then because of symmetry of F| if k is odd number, mi = 0. Using this fact, we can
obtain that

512 = Z(m4—0'4), 63:0’4, €] = %(m5—302m4+206),
1

e = 0, e3= 5(02m4 -0%), eq=—0f,
es = —llg(mg — 40%mg + 60%my — 30°),
€g = gli(mlo - 5(727728 + 100’4m6 - 100‘67714 + 40’10),
e = er=eg=¢€p=¢€;1 =€13=€13=0,

i) = 2€ei(@) - €}, M) = 4{gi(2) —e1} - 12691 (2),

E[fi(X1)] = %(mg — 40%mg + 80%my — m2 — 40%)
and
E[fi(X1)M(X1)]

1
= Z(mm — 502mg + 140*me — 300%m4 + 12(72111‘21 — 4mame + 12010).
Here we will study the following three underlying distributions.

Normal distribution: If the distribution is normal, that is X; ~ N(0,0?),
my =30, me=150°, mg=1050® and mio = 9455'°.

Logistic distribution: We consider the logistic distribution which has the density
function

T

Te Vi

In this case we have that

21 2
VaT‘(Xl)—_—G’Z, m4=—5—0'4, me = —;—90’6,
2
= 3452908 and myg 0(1521)55 o

Laplace distribution: Finally we consider the Laplace distribution which has the
density function

V20

1~
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Also we have that

Var(X1) = 02, my=60% mg=900°,

mg = 25200° and my, = 1134000'°.

Table lists the values of k3 and «3 until the order n~! and the biases d/¢} and
d* /€3 of order n~1.

Table
K3 d/€3 K3 ' d* /&3
Normal | 2.83+n~11.41 | —54.45 —5.66 —n~1146.37 209.22

Logistic | 5.11+n~10.52 | —785.04 | —10.22 — n=1923.78 | 1517.35
Laplace | 6.62+n~10.68 | —1626.00 | —13.24 — n~11922.95 | 3168.54

The asymptotic biases of the above cases are all downward, which mean the biases make
the absolute value of the parameter small. It seems that if the distribution has heavy
tail, the biases are large.

5. Appendix

At first we review H-decomposition or AN OV A-decomposition which is a basic tool

of the studies of the analysis of variance, the jackknife inference, etc. Let v(zy, -, z,)
be a function which is symmetric in its arguments and E[v(X1,---,X,)] = 0. Let us
define

pl(l'l) = E[V(.’L‘],Xz, T 1X")]’

pg(zl,l'z) = E[V(zl’x% T ’Xf‘)] - p1(2:1) - pl(‘”?)’ Tty

and

r—1
Pr(xlyx%"'rl‘r) = V($111'2)"')xr)—Zzpj(zil;ziza”'azij)'

j=1C, ;
Then we can show that
E[pk(Xl,~~~,Xk)|X1,---,Xk_1]:0 a.s. (18)
and .
n—k

SRR

Chn,r k=1
where

Ak = Z pk(Xz'ly"' 7Xik)'
an

Using moment evaluations of martingales (Dharmadhikari, Fabian and Jogdeo (1968)),
we have the upper bounds of the absolute moments of A as follows.
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LEMMA 5.1. Forq > 2, if Elv(X1,--, X;)|? < oo, there erists a positive constant
¢, which may depend on v and F but not on n, such that

gk
2

ElAgl? < cn (19)

PROOF. Using the equation (18), we can show that 3 .  px(X;,, -+, X;,) has a
martingale property and ch_l,k_l pe(Xi,, -+, Xi,_,, Xn) has a martingale property
and so on. Then applying the result of Dharmadhikari et al. (1968) repeatedly, we can
obtain the inequality (19).

From (10), (11) and (19), we can easily obtain the following lemma which is useful
for obtaining the asymptotic representation.

LEMMA 5.2. (i) If E|v(X1,--+, X,)|*T¢ < 0o fore > 0, we have

nTT Y (X, o, X)) = 0p(n 7). (20)
Cn.r

(1) If Elv(X1, -+, X,)]?*t¢ < 0o fore >0 and p1(X1) = p2(X1,X2) =0 a.s., we have

n" Zu(Xl,u~,X,) =op(n71). (21)

cn,r

Proof of Lemma 2.4.

Let us define

1 n
Ur=U; — —— a1 (X;).
n n n2£1; 1( )

From direct computation, we can show that

n’E(Uy)? n?E(U)? + QnE3E’[gf(X1)al(X1)]
1

+ %E[al(Xl)gl(XZ)QZ(XI, X))+ 0(n™?).

Since U} is a U-statistic with kernel degree 3, it follows from Maesono (1995b) that

n?E(Uy)* = e1 + 9E[g1(X1)g1(X2)a2(X1, X2)]
+ 2Bl (X))@, X)) + Elar(X1, Xa)az (X2, Xs)az(Xa, Xs)]
+E[g91(X1)a2(X2, X3)az(X1, X2, X3)]}.

From long but direct computation, we can get the skewness «3.

Proof of Theorem 3.2.
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From the definition we have

wa(ne)d(no?) 73 + i (o) e}
n

K3

p1+p2 (say).

i

Using the equations (13), (15) and (16), we can show that

_ €1 +3€2

3 3
P1 = K3 & {Z@;ﬁ(xﬂ—mg;'?[fz(xnxj)

15E[f3(X1)] 36
3264 4¢2

e1 + 3ez
n&}

Let us define b(z,y) = fa(z,y) — 5£1(2) f1(y)/(4€?). Since E[b(X1, X2)|X1] =0 a.s., we
can obtain the same order upper bound of the inequality (13) for > b(X;, X;). From
the equation (12), we can show that under the moment condition

EIY " Xe(Xi, X5) Y b(Xi, X;)|'Fe = O(n?*%).
C

Chn,2 n,2

} + 0p(nY).

5 .
—4—&5f1(X,-)f1()&j)]} + {

Therefore it follows from the equations (10) and (11) that

O(n™) D~ Xa(Xi, X;) D b(Xi, X;) = 0p(n71).
C.

Cn,2 n,2

Further we have
O(n™%) Y M(X:) Y b(Xi, X;)
i=1 Chn,2

= 0(n™%) ) {(X:) + M(X;)1b(Xs, X;)
Cha,2

+0(n7%) D {A(X)b(XG, X&) + M (X5)6(Xs, X) + M(Xk)b(Xi, X;)}-
Cha,s

Since E[{A1(X;) + A1(X;)}b(Xi, X;)] = 0, from the equation (20) we have

O(n™%) 3~ {M(Xa) + M (X;)}b(Xi, X5) = 0p(n7Y).
Cn,2

Since
E[Al(X,‘)b(Xj,X}c) + /\1(Xj)b(Xi,Xk) + Al(Xk)b(X,;,Xj)!X,',Xj] =0 a.s.,
it follows from the equation (21) that

O(n™2) D {A(Xi)b(X;, Xe) + A (X;)b(Xi, X&) + M (Xe)b(Xs, X;)}
Chn,s

= op(n-l).
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Similarly we can show that
O(n™%) Y~ fi(Xi) D Aa(Xi, Xj) = 0p(n™h).
i=1 Chr,2

Since
—2—;’;5—2 ifl(xi) zﬂjh(m
= g, Zfl KN - 5 3 S ULCMOG) + 050
and under the moment condition
BlO(n~?) i{fl(xiwxf) ~ BlAG)M KON = 05 %),

from the equations (10) and (11) we have

_J?Zfl(xi)z)\l()()
= W Z{fl(x M(X5) + F(X)M (X))

3

~om 52E[f1(X1)/\1(X1)]+op(n‘1)

Using the equation (20), we can ignore the rest terms which multiply by const.n™!.

Finally since (no2)~3/2 = 1/(8¢3) + O(n~!), we have

p2 = £3+4 £3ZA1(X)
+4n(n e 4 Z{’\Z(X"X ) — 5% [fi(X)A(X;) + flX)A (X))}

3

" T6ngs ——= E[f1(X1)M(X1)] + 0p(n7").

This completes the proof of theorem.
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