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                     Abstract 

   For a stationary sequence IX,} the Markov assumption G2 , which 
is weaker than the Doeblin's condition Do, is discussed and is used to 
estimate nonparametric density and transition density. Under the G2
assumptions, the rate of convergence to normality of the estimated den
sity is derived. Similar type of results are also derived for estimating the 
joint density and the estimated transition density.
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1. Introduction 

    Non parametric estimators of the density function of a population based on a sample 
of independent observations have been considered by several authors. An excellent 
survey of the results in this area is given by Rosenblatt (1971). Some authors also 
consider the estimates of the density function when the observations are dependent in 
the sense that they are sampled from a stationary Markov sequence. Roussas (1967, 
1969) considers density estimation from Markov processes and obtained consistency and 
asymptotic normality of Kernel type density estimators, under the Doeblin's condition 
Do as given in Doob (1953). 

    In this paper we consider Markov assumption G2 which is discussed and employed 
by Rosenblatt (1970) and Yakowitz (1985, 1989) and others. 

    A stationary Markov sequence {Xi} is a G2sequence if there is a positive number 
p < 1 and a positive integer n such that for any bounded Borel function h(•) satisfying 
E[h(Xi)] = 0, we have 

EX1 [E(h2(Xn)I X1)] < p2E[h2(Xi)].(1.1) 

This assumption is weaker than Do. In fact Rosenblatt (1970) considered an example 
where Do is not satisfied but G2 holds. He also considered Kernel type density estimators 
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when the observations are sampled from a stationary Markov process and observed that 
these estimators have the same character as in the case of independence. He proved the 
asymptotic normality of the Kernel type estimators but does not find out the rate of 
convergence. In this paper our aim is to obtain BerryEsseen type bound of the Kernel 
type density estimator under the Markov assumption G2. Yakowitz and his colleagues 
(1985) while analysing river flow data found that nonparametric model suits more than 
the popular autoregressivemovingavergae (ARMA) model. He also found that under 
some restrictions ARMA model can be transformed into two-dimensional G2Markov 
sequence. In fact it is clear from the discussion of Rosenblatt (1970) and Yakowitz (1985) 
that Markov assumption does not play significant role but stationarity and G2condition 
make the proofs of our results valid and moreover the conclusion of our results is true 
if the first component of a twodimensional Markov sequence satisfies G2condition . 
Under G2assumption we also obtain rate of convergence to normality for estimated joint 
density and transition density. In this connection it is to be noted that Prakasa Rao 

(1977) derived the BerryEsseen bound for estimating only the density under stronger 
Doeblin's condition. BerryEsseen bounds are also obtained by Basu and Sahoo (1988, 
1989) for density estimates under different conditions and set up. In Section 2 we state 
the Markov assumption and consider the method for estimating the unknown stationary 
density. Using the methodology of Section 3 asymptotic normality together with rate of 
convergence of the Section 3 and Section 4 are used to prove the corresponding results for 
the estimate of the transition density in Section 5. Last of all some concluding remarks 
are added to Section 6. Sometimes we use the Vinogradov symbol << to indicate an 
inequality containing some unspecified positive constant factor.

2. The Markov Assumption and the Estimation of the density 

    Let {Xi} be a stationary Markov sequence with a continuous stationary density 
function f (x) > 0 and a continuous transition p.d.f. f (y x). Let fi_i(y, x) and f?_i(y1x) 
denote the joint probability density of X i and Xi and the conditional probability density 
of X i given Xi respectively, for i j 

    Obviously then, 
ii—i(y, x) = fj—i(yix)•f(x)•(2.1) 

Define 

fn (x) = (nh)-1 E K((x — Xi)/h)(2.2) 
                                       j-1 

as the estimate of f(x) where 

     i)h = h(n) > 0 are such that h(n) --> 0 and nh(n)  oo as n -* oo(2.3) 

ii) K(.) is a given bounded continuous density function such that 

K (—u) = K(u), f uK(u)du = 0, Jniki(u)du < oo(2.4) 
                        for i = 0,1, 2; j = 1, 2, 3,
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and iii) f (x) is continuously differentiable upto 2nd order.(2.5) 
We note that fn (x) is the same sort of estimate of f(x) as in the case of independent 
observations with 

V (fn(x)) = (nh)-1 f (x) f K2(x)dx + 0(D. (by computation and also see Rosen
blatt (1970)).(2.6) 

3. Speed of Convergence to Asymptotic normality of the estimated density 

   Consider Wn = (nh)1/2[fn(x)  Efn(x)]/[f(x) f Ii2(x)dx11/2 

nr 

= E(nh)1/2[K((x  Xj)lh)  EK((x  Xj)lh)]l(f(x) J K2(x)dx)112. (3.1) 
j-1 

The asymptotic normality and its speed of convergence is obtained by writing the sum 
as a sum of big blocks separated by small blocks where the big blocks are approximately 
independent and then applying a well known lemma for the sum of two sequences of 
random variables which is stated below : 

    LEMMA 3.1. Let Wn = Zn Yn, n = 1, 2,... where {Wn}n>1 and {Zn}n>1 are se
quences of random variables. Let be .a distribution function with a bounded derivative. 
Suppose {bn}n>1 is a sequence of positive constants satisfying 

sup IP[Z < t]  '(t)I = O(bn), n oo.(3.2) 

       t Then for any sequence of positive constants {an}n>1 we have 

       sup I P[Wn < t]  (t)I = O(bn) + O(an) + P[IYnI > an], n -+ oo. (3.3) 

   c  Write• 

Wn =DA, +B1)+H(3.4) 

where 
lm+(1-1)r 

Al =Tnj/(f(x) f K2(x)dx)1/2 
j=(11)(m+r)+1 

1(m+r) 

          B1 =Tnjl(f(x) f K2(x)dx)1/2(3.5) 
j=1m-F(1-1)r+1 

          H = E Tnjl(f(x) f K2(x)dx)1/2 
                  7 =k(m+r)+1JJ 

and Tnj = (nh)1/2[K((x  Xj)/h)  E{K((x  Xj)/h)}]. 
    Here Al and B1 are big and small blocks respectively with m =-m(n) -* oo and 

r = r(n) -} oo as n -* oo but m(n) = o(n) and r(n) = o(m(n)).
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   Further k = k(n) = [n/(m + r)], the greatest integer containing n/(m + r), tends 
to infinity as n -+ oo, since m, r = o(n). Here H accounts for the additional few terms 
at the end not included in big blocks or small blocks. 

   Assumption : We select m, h, k and r such that 

m(n) = m = O(01°) 
h(n) = h = O(n-1/5) 

        k(n) = k = O(n3/10)(3.6) 
              r(n) = r < 0(n115) such that r = o(m). 

We write Wn as Wn = Zn + Yn where Zn = E Al and Yn = Ei B1 + H. 

    Here Al are treated as independent variables with the same marginal distributions. 

Also E(A1) = 0 and S2 = V( = o(nh) (see Rosenblatt (1970)). Now we have the 

following Theorem. 

    THEOREM 3.1. Let be the distribution function of the univariate standard normal 
distribution then under the assumption (3.6) 

                 sup IP[Zn < t]  (1)(t)1 = O(n-1/5).(3.7) 

   PROOF. Under (3.6) 

Sn = V (E A1) << n4/5).(3.8) 

Now by repeated application of Crinequality we have, 

              rlm1(1-1)r EIA113 = (7/h)-3/2{f(x)1 K2(x)dx}-312El [K((x  XX)/h) 
j=(1-1)(m+r)+1 

         -EK((x  X? )/h)] (3 << m2(nh)-3/2 E[EK3((x  Xj )/h) 

        +E3K((x  Xj)/h)] 
                           r~       = m2(nh)-312 [h / K3 (u) f (x  hu)du + {hfK(u) f (x  hu)du}3] 

   oo      JJJo0 

                          I= M2(71,11)-3/2E[O(h3)+ hf(x) K3 (u)du + {h f (x) + O(h3)}3] 
              by Taylor's expansion and using (2.3), (2.4) and (2.5) 

       = O(m3(n3h)-1/2). 

This implies 

EEIAl13 = O(km3n3/2h-1/2) 
1-1(3.9) 
                           = 0(n) under (3.6).
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Hence by BerryEsseen theorem for independent random variables we get 

  kk 

sup IP[>2 Al < t]  (1)(t)1 < const. E EIAI 13/sn 
    t 11

-1 

k 

Therefore sup 'PEEA1< t] ~(t)1 = O(n-1/5) using (3.8) and (3.9) i.e. 
   t1 

                 sup IP[Zn < t]  cF(t)( = 0(n-1/5). 

       t  

    Hence the Theorem 3.1 is proved. 

   In order to get an estimate of sup +P[E Al < x]  (I)(x)I we have to consider 
           x 1  

k 

the characteristic function of E Al and to compare this characteristic function with 
the product of the characteristic functions of the individual Al's. Following Rosenblatt 

(1970, p. 207) we find that 

l E{exp(it E A1)}  i E{exp(itA1)}1 < (k  1)Mpr(n) -' 0 (3.10) 

where M is a constant and 0 < p < 1 and also k(n)pr(n) O. 
    Now from basic inequality (Loeve) and Esseen's lemma we have, 

 kk 

IP[E Al < x]  4)(x)1 < VIE Al < x]  G(x)I + IG(x)  (I)(x)I (3.11) 
 11 

            /u 
it EA' 

      <_2Jt-1IE[e1]_ 1ir1E(eitAi))dt+24sup G'(x) +O(n-115) 
 o— 

where u > 0 and G(x) is the distribution function of E Al when Al are treated as 

independent but with same marginal distributions as defined in (3.5). 

< -2(k   1)Mpr(n) log lul + sup G'(x) + 0(n-115). 
                                        2u 

For a given 0 < p < 1, selecting a suitable constant satisfying r = 0(log n) and selecting 

u = O(n1/5) and assuming E Al has finite density at x, 

< x]  (I)(x)I = O(n-115 log n) + O(n-1/5)(3
.12) 

                   1 

                               = 0(n1/51og n).
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We can represetn Yn in the following form  

k 

Yn = E Bi + H 
i=1 

 Em+rT2(m+r)m)rn       j=m+1ni + Ej=2m+r+1 Tni + ... + Ejk(=km+r+(k-1)r+1 Tin +Uj=k(m+r)+1 TnJ 

_ (1(x) f K2(x)dx)1/2 

    = E Xnj /(f(x) f K2(x)dx)1/2 where xni = Tnm+1 + ... + Tnm+r 
j<k+1 

               Xnk= n km+k-1r+1 + ... + Tn k(m+r) (3.13) 
                     Xnk+1 = T,n k(m+r)+1 + ... + Tn n• 

under this representation and also under assumption (3.6) we have the following theorem: 

    THEOREM 3.2. 
PnYn I > E] = O(n-1) (3.14) 

where 6 = 0(n1/4(log n)3). 

   PROOF. Since 1IXni l loo = O(r(n)n-2/5) = cn, we have for i < j < k + 1 and 
0 < t < c,71 , following Philipp (1969) 

                    E(etxn?)< et2c2n.(3.15) 

Also following (4.1) of Rosenblatt (1970) 

EletYn — 7r(Eetxni)1 < kMpr(n) (3.16) 

j where M is a constant and 0 < p < 1. 
   Hence it follows from (3.6) and (3.15) that 

E(etYn) << 7 E(etxn;) << et2`n(k+1). (3.17) 
j<k+1 

To conclude the proof we state the following well known result (without proof). 

    RESULT 3.1. If {Vn } is a sequence of random variables such that E(etvn) exists for 
some t > 0 then 

P[IVn I > E] < E(etvn)/et£for all E > 0. (3.18) 

    Now setting t = const. n1/4 log n, E = const. n1/4(log n)3 and using (3.6) and 

(3.17) on the Result 3.1 we get the R.H.S. of (3.14) by choosing r(n) = O(log n) so that 
r(n) < 0(n1/5) is satisfied. 

    Hence the Theorem 3.2.
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    THEOREM 3.3 RATE OF CONVERGENCE TO NORMALITY. If 4. be the distribution 

function of the univariate standard normal distribution and x be a point of continuity of 
f then under assumption (3.6) with r(n) = O(log n) 

       sup I P[(fn(x)  Efn(x))/(~[fn(x)]) < t] '1(1)I = 0(n-1/5). (3.19) 

   PROOF. Note that, by (2.6) for 0 < u > Q(n3/5), P(I /nhV (fn(x))/ f (x) f K2(x)dx 
-1 > u) = 0 as n -* oo. Selecting bn = an = E = 0(n1/4(logn)3), taking to 
be c and lastly applying the result of Theorem 3.1 and Theorem 3.2 on lemma 3.1 and 
on the well known result of Michel and Pfanzagl (1971) we have, 

       sup I P[Wn < t]  43.(t)I = 0(n-1h/5) + 0(n1/4(log n)3) + 0(n-1) 

Therefore, sup IP[{(fn  E(fn))/\ V [fn]} < t]  c(t)I = 0(n-1/5) [proved] 

4. Speed of Convergence to normality of the estimated stationary density 

    Let f(x, y) be the stationary probability density function of (Xi, Xj+1). We as
sume that all joint distributions with a finite number of distinct Xi's are absolutely 
continuous with uniformly bounded continuous density functions. A natural estimator 
for the stationary probability is therefore, 

n-1 
fn(x, y) = (nh2)-1 K((x  Xj)/h, (y  Xj+1)lh) (4.1) 

j where K(x, y) is a bounded continuous density function satisfying f u2K(u, v)dudv < 00 
and f v2K(u, v)dudv < oo. Note that V (fn (x, y)) = (nh2)-1 f (x, y) f K2(x, y)dxdy 
+0(1/nh). Choosing m(n) = O(n18/35), k(n) = 0(n17135), r(n) = O(log n) and follow
ing exactly similar procedure as in Section 3 we have the following theorem. 

    THEOREM 4.1. If 1 be the distribution function of standard normal distribution 
and (x, y) be a point of continuity of 1' then 

 sup I P[{fn(x, y)  Efn(x, y))/(V [fn(x,y)])"2} < t]  4,(t)I = o(n1i7(logn)3) (4.2) 

where h = 0(n-1/5) 

    To reduce the bias term in Theorem 4.2 and Theorem 5.2 we assume well known 
bias reduction criterion f f uivj K (u, v)dudv = 0 for i, j = 0, 1 and i + j � 0. 

    THEOREM 4.2. Under the conditions of Theorem 4.1 and hn = n-a, a = 5, 

       sup I P[fn(x' y)  f (x, y)  <1]  4)(t)I = O(n io+T ), 0 < r < 10 (4.3) 
\/Var{fn(x,y)} 

provided the partial derivatives of f(x, y) upto 2nd order are continuous and 3rd order 
derivatives are finite.
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    PROOF. We know that 

1 n-1 Efn(x, y) = nh2 fJK[(x_Xj)/h(Y_xj+l)/h]f(xj,xj+l)dXjdxj+l, 
                                                                     j-1 

            n-1 r =
nh2JK[(x — x1)/h, (y —yl)/h]f(xl,y1)dxidyl. 

Using a change of variable and Taylor's expansion of f (x, y) yields 

E(fn (x, y)) = n n 1 JfK(uv)f(x_tzh,y_vh)dudv                                     n
n-1f JJK(u,v){f(x,y) — hu ff (x, y) — by fy (x, y) 
h2u2 h2v2 

+ 2 fxx (x, y) +  fyy (x, y) + h2uv fxy (x, y) + 0(h3)]dudv 
          = f (x, y) + 0(h2) 

Therefore, 

jEfn(x, y) — f(x, y)I = 0(h2) = 0(n-2"). (4.4) 
Also, 

Var[fn(x, y)] = 0(
72) = 0(n1(1-2a)) (4.5) 

Define 
fn (x, y) — .f (x, y) = Z + Y* (4.6) 
NiVar{ fn(x, y)} 

where 

          Z* = fn (x, y) — Efn (x, y)and Y*=E.fn (x, y)—.f(x, y)  
               //Var(fn(x, y))n/fiar(fn(x, y)) • 

Using (4.4) and (4.5) we see that 
                                             -2a 

                                                             1«  

               IVI = 0( n------------(12a)/2)=(An2 )•(4.7) 
We select ̀a' such that n-a > n 2 (i.e. ̀ a' is selected such that 6a — 2a — 1 > 0) and 
then 

P[)Y 1 > n-a] = 0.(4 .8) 
Also Theorem 4.1 gives 

               sup P[Zn < t] — (1)(t)I = 0(n1/7(log n)3). 

Now applying the Lemma 3.1 we get 

                 sup IP[.fn (x, y) — .f (x, y) < ti— 0(0 t ar{ fn(x, y)} 

                  = 0(n1/7(log n)3 + n-a).(4.9) 
In particular for a = 0  T, 0 < T <io and a = 5 we get the right hand side of (4.9) 
as O(n—(io—T)) and hence the theorem.
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5. Speed of Convergence to Asymptotic Normality of the Estimated Tran

   sition Density 

   If f(x, y) be the stationary p.d.f. for (X, , Xi+1) then f (y/x) = f (x, y)/ f(x) is the 
transition p.d.f. of Xj+i given X; = x. Let I be an interval on R and F0 be the class 
of all distributions having the density `f' such that, 0 < e1 < inf f (x) < sup f (x) < E2.                            zErEI 

    Further we assume, in this section, K is differentiable. 
    A logical estimator for the transition density is, therefore, 

fn(y/x) = fn(x, y)/fn(x)(5.1) 

where fn (x, y) and fn (x) are as in (4.1) and (2.2) respectively. Under some assumptions 
Yakowitz (1985) proved that, 

(nh2)[/n(y/x)  f(y/x)]'N(0, f(x, y)[1 K2(a,,Q)dad/3]/f2(x)). (5.2) 
Now, (nh2)1/2[fn (y/x)  f (y/x)] 

(nh2)1/2[.fn(x,Y)lf(x) — f(x,y)] f
n(x)/f(x) f(x)(5 .3) 

= (nh2)1/2[fn(x, y)/f(x) — f(y/x)•fn(x)/f(x)J/[fn(x)/f(x)] 
           = Wn /Tn , say 

where 
Wn = (nh2)112[fn(x, y)/f(x)  .f(y/x)fn(x)l.f(x)] (5.4) 

                 = Zn+Yn, 

Zn = (nh2)1/2[fn (x, y)  f (x, y)]/f (x), (5
.5) Y

n = (nh2)1/2f(yIx)[fn(x) — f(x)]/f(x), 
and 

Tn = in(x)/i(x).(5.6) 

Also we have seen in section 4 that 

sup, IP[Zn < t]  4)(t)I = 0(n(1°-T)) 
                         = O(bn), say.(5.7) 

Under the above respresentation we have the following results : 

    RESULT 5.1. For any an > 0,6 > 0 and C1 > 0, 

P[IYn l > an] < 2. exp[-6(Aan  C1h2nh2)2/(Aih2)](5.8) 

if A = f (x)/ f (y/x) < oo and 0 < Al = K(x) < oo. 

RESULT5.2. For any r7>0,6>0 and >0, 

P[lTn  ll > 71] < 2. exp[-n6(9f (x)  C1h2)2/Ai] 

where 0 < Al = K(x) < oo.
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    Before proving the above two results we state and prove the following theorem : 

    THEOREM 5.1. For a stationary Markov G2sequence {Xi} satisfying (1.1), if Fn(y) 
and F(y) are the empirical and true distribution functions respectively then for any d > 0 
and b>0, 

             sup P[I Fn(y) — F(y)I > d] << 2 exp(—nd2b). 

y 

   PROOF. We have Fn(y) — F(y) 

   nn 

        = [ Iy(xi)  E>2 Iy(Xi)]/n where /y(Xi) = 1 if y > Xi 
i-1 1 

          = 0 otherwise 

1 n          =  E Zi where Zi = I(xi)  EI(Xi). 
n i-1 

Here Z1, Z2, ... , Zn are uniformly bounded random variables with E(Zk) = 0, V(Zk) = 
E(Zk)<p2o2<F(y)(1—F(y))<1/4and IZkI<1. 

— 

   Let Z = E Z. Therefore Fn(y) — F(y) = Z/n. 

    Now 

                       t27i2 t3Z3 t4Z4 E(etzk) = E[1+tZk-}2 k
3+ 3t k4+ 41 k+...]        < 1 +2EZk+E[4-IiZk+ ...] 

                   (since Zs s are bounded by one) 
           t2 2~2t3 14 < 1 +2 +p2o[3'+4!...] (because of G2 — property) 

co 

        = 1 + p20.2t2/2 + p20.2 E tn/n! 
n-3 

2 °° to-2 
         = 1+p2cr2—p2g2t2 

2n! 
                                      n=3 

           1 -} (p20.2t2/2)-~P2~2t2to-2---------- (since1<1  1 for n > 3) 6 
n-3(n — 3)! n! — 6 (n — 3)! 

       = 1 + (p2o2t2/2){1 + tet/3} 

       < exp{1p22t2(1+ tet/3)} (since 1 + x < ex for x > 0) 

        < exp{ p2t2 1 + tet/3 . 

Again from Rosenblatt (1970) we have, 
IE(etzi) — lE(etzi)I < (n — 1)Mpn where M is a constant independent of y and 

O < p < 1. This implies 

        —(n — 1)Mpn
Z'r1E(etzi) < M(t) < (n — 1)Mpn +a'r1E(etzi)
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where M(t) = E(etz) = E(etEZ;) = E(letz;) 
   Therefore M(t) < (n —1)Mp"+~exp(2p2Q2t2(1+ tet/3)) 

2. exp{ p2o.2t2(1 + tet/3)} 

               = 2.e' , where c =2p2 .2t2(1 + tet/3) 
                 < e2rie, because 2 < e < 3 

               < exp .{2.n.1 p2cr2t2(1 + tet/3)} 

2 < exp{ tt2p2(1 +tet/3)} 

            = exp{2nt2D2(1 + tet/3)}, where D2 =
2p2. 

Also we have the inequality (see Renyi p. 384) 

P[Z > M +T + log M(t)) < e—T 

where M is the expectation of Z. 
    Here M = 0 and therefore 

              P(Z > {T +2t2D2(1 + tet/3)}/t) < e-T . 
Put t = 2T/D and therefore 

            P(Z > DV(2T){1 +~(2T)e(2T)/D}) < e_T• 
6D 

Now substitution of a = NA2T) gives 

               P(Z > aD{1 + (a/6D)eAlD}) < e—a2/2. 

Applying the obtained result to —Z, we find that 

P(IZI > AD{1 + (A + 6D)eA1D}) < 2e-A2/2. 

In order to write this in a more convient form, we restrict ourselves to the case D < 1. 
We have then 

eA/D <e<3. 

Now we put y = all + a/2D) and then A < -y < all + 7/2D). 

P(IZI > yD) < 2e i-(1+1/2D)-2 

                                                              i.e. 
P(I F"(y) — F(Y)I>-n) < 2e{72/2(1+Y/2D)-2}for all y.
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i.e. 

P(I Fn(y) — F(y)I > d) < 2e—{n2a2/2D2(1+2D )-2} for all y. 

Now replacing D2 by 2 p2 we have 

P(I Fn(y) — F(y)I > d) < 2exp(—np2d2/(d + p2)2) 
                              < 2 exp(—nd2S). 

Since all the upper bounds in our calculations are independent of y, 

              sup P[I FF(y) — F(y)I > d] << 2 exp(—nd26). 

y 

    REMARK. The result in this theorem perhaps follows from P.K. Bhattacharyya 
(1972) but for completeness and independent interest we have given some details. 

    PROOF OF RESULT 5.1. 

P[IYn I > an] = P[(nh2)112/f (x)f (y/x) I fn (x) — f(x)I  > an] 
               = P[(nh2)1/2I fn(x) — f(x)I > E], where E = A.an 

< P[(nh2)1/2{Ifn(x) — Efn(x)I + IEfn(x) — f(x)I } > E]. 

Now, 

E(fn (x)) — f (x) = 0(h2), as in (4.4) 
< Cih2. 

Therefore, 

P[IYn I > an] < P[I in (x) — E fn (x) I > {&/(nh2)1/2 — Cih2 }] 
                = P[I! (x) — Efn(x)I > {e'/(nh2)1/2}] 

where 

        = e — Cih2(nh2)1/2 
         = A.an — Cih2(nh2)1/2 

       < sup PHFF(y) — F(y)Ill
dK((x — y)/h)IIi> E'/(nh2)1/2}](5.10) 

                           y 

                   (integrating by parts). 

Using (2.4), II ay K((x — y)/h) h ll i = roc, ay Ii ((x — y)/h) h dy = Ai . 
   From (5.10) we have, 

P[IYn I > an] < suP P[I Fn(y) — F(y)I > {&'/Ai(nh2)'/2}] 

                  < 2. exp[—nS{e2/(Anh2)}] 
                   = 2. exp[—S{Aan — Cih2(nh2)1/2}2/(h2A?)]•
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   PROOF OF RESULT 5.2. Following the proof of Result 5.1 we have, 

P[ITn — lI > rl] < P[Ifn(x) — f(x)I > 91(x)] 
P[Ifn(x) — f(x)I > 711] where rli = rl..f(x) 
P[I fn (x) — E in(x)I> rli —Cih2] 

_< supy P[I Fn(y) — F(y)I � (r11/A1)],                           
~ CVO                             where~i= iii — C 

= 2. exp[—n7128/4 
                 = 2. exp[—n6(rli — C1h2)2/Ai] 

                 = 2. exp[—n6(7 f (x) — Ci h2)2/4 (proved) 

   Now using (5.7), (5.8) and Lemma 3.1 we have the following result. 

    RESULT 5.3. 

         sup I P[Wn < t] — (1)(t)1= O(bn) + O(an) + P[IYnI > an] 

t n—(*—T) + an + exp[—b(Aan — Cih2V (nh2))2/(Aih2)] (5.11) 

where h = 0(n— s ). 

   Let us state another result which is due to Michel and Pfanzagl (1971). 

   RESULT 5.4. Let (Q, F, P) be a probability space and Wn, Tn be .Pmeasurable func
tions. Then, for any 77 > 0, 

   sup IP(Wn/Tn) < t  ((t)I < sup I P(Wn < y] —'DWI + P[ITn — 11 > ill + rl. 
tV 

where (D(•) is the standard normal distribution function. 

   Now we have the following theorem : 

   THEOREM 5.2. If 4> be the distribution function of a standard normal distribution 
then under the assumption of Theorem 4.2 

 sup sup sup sup I P[{fn(y/x) — f (y/x)}/(V (fn(yl x)))112} >t]—(1.(01  << n— o+T . 
   Fo xEI n>no t 

   PROOF. Applying Result 5.2 and Result 5.3 in Result 5.4 we have, 

                 sup I P[(Wn/Tn) < t] — c(t)I 

t << n— i—o+T + an + exp[—(5(Aan — Cih2^(nh2))2/h2Ai] 

+exp{—nb(r)f (x) — Cih2)2/Ai} + rl. 

Putting an = 0(n—}(log n)1/2) and rl = 0((log n)/n)1/2), we get 

         sup I P{(fn(y/x) — f(y/x))/(V (fn(y/x)))1/2} < t] — (13.(t)I 
 t

/-------           n—o+ n              +T`5(log n)il2 + exp(—b(Aan — Cih2V(nh2))2/h2Ai) 

         + exp(—nt(rl f (x) — Ci h2)2A?) + ((log n)/n)1/2 << n— o+T .
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6. Concluding Remarks 

    Prakasa Rao (1977) considered the problem of estimating the unknown density 
under much stronger condition Do and got the result 0(n-0-7"), 0 < T < . Neither 
the problem of estimating the stationary density nor the transition density has been 
considered by him. Although our rate result is poorer than Prakasa Rao (1977), yet our 
results have some theoretical interest in the sense that there is no work in the available 
literature regarding the rate of convergence to normality for estimating the stationary 
density and transition density under much weaker assumption G2 which has so much 
applications in time series data. 

   Also, in this context, one thing should be noted is that we have taken the window
width hn as 0(n-1) which is optimal in the sense that it minimizes meanintegrated 
square error and this choice of window-width is different from that of Prakasa Rao (1977) 
where he took the window-width as 0(n-§). 

   In Theorem 4.2 and Theorem 5.2 we conjecture that the rates should be 0(n-+ (log n)3). 
Actually in our earlier version we obtained the above rate but unfortunately there was 
a technical flaw. Thanks to the referee for pointing out this.
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