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  AN ALGEBRAIC CHARACTERIZATION OF 

CARTESIAN PRODUCTS OF FUZZY RELATIONS

                      By 

              Hitoshi FURUSAWA * 

                      Abstract 

   This paper provides an algebraic characterization of mathematical 
structures formed by cartesian products of fuzzy relations with  sup-min 
composition. A simple proof of a representation theorem for Boolean 
relation algebras satisfying Tarski rule and point axiom was given by 
Schmidt and Strohlein, and cartesian products of Boolean relation alge
bras were investigated by JOnsson and Tarski. Unlike Boolean relation 
algebras, fuzzy relation algebras are not Boolean but equipped with semi
scalar multiplication. First we present a set of axioms for fuzzy relation 
algebras and add axioms for cartesian products of fuzzy relation algebras. 
Second we improve the definition of point relations. Then a representa
tion theorem for such relation algebras is deduced.

Keywords : fuzzy relations, cartesian products, relation algebras, representation theo
rem. 

1. Introduction 

   In 1941 Tarski proposed a problem, that is, "Is every relation algebra isomorphic 
to an algebra of all Boolean (ordinary) relations on a set?". The positive answers of the 
question, called representation theorem for relation algebras, have been investigated. 
Schmidt and Strohlein (1985,1993) gave a simple proof of the representation theorem 
for Boolean relation algebras satisfying Tarski rule and a point axiom. A representation 
theorem for fuzzy relation algebras satisfying a point axiom was proved by Kawahara 
and Furusawa (1995), and categorical representation theorems of fuzzy relations were 
proved by Kawahara, Furusawa and Mori (1996). 

   The investigation on fuzzy theory has begun by Zadeh in 1965. Then fuzzy relations 
have played an important role in mathematics, science and engineering. A methodology 
for processing fuzzy information in relational structures was provided by Pedrycz (1991). 
And Sanchez (1976) provided methodology for solution of certain basic fuzzy relational 
equations. Theory of fuzzy relational equations often give a theoretical back ground to 
the fuzzy relational modelling. 

   Fuzzy relations in this paper are homogeneous ones on a set X with truth values 
(membership degrees) in the unit interval [0,1]; that is, (membership) functions a : 
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X x X —*  [0,1]. The set of all such fuzzy relations on X constitutes a fuzzy relation 
algebra with sup-min composition. Fuzzy relation algebras are not Boolean algebras. A 
notion of fuzzy algebras is a generalization of algebras formed by functions with truth 
values in the unit interval, that is, functions a : X —> [0,1]. Hence a fuzzy algebra 
is a complete distributive lattice with semiscalar multiplication by scalars in the unit 
interval. 

Jonsson and Tarski (1952) characterized cartesian products of relation algebras 
by using a notion of ideal relations. Ideal relations are universal with respect to the 
composition with the greatest relation V. A representable relation algebra has no ideal 
relation except for the zero relation 0 and the greatest relation V. 

   The aim of this paper is to provide an algebraic characterization of cartesian prod
ucts of fuzzy relations by adding two axioms to a set of axioms given by Kawahara and 
Furusawa (1995). One of axioms is called an axiom of cartesian products, introduced by 
Jonsson and Tarski (1952), and the other is called a point axiom for cartesian products. 
Ideal relations in fuzzy relation algebras are required to be crisp. The second one is 
defined by improving notion of point relations and the point axiom provided by Kawa
hara and Furusawa (1995). Finally a representation theorem for fuzzy relation algebras 
satisfying the axiom of cartesian products and the point axiom for cartesian products is 
proved.

2. Fuzzy Algebras 

    In this section we first introduce a notion of fuzzy algebras as a mathematical 

structure formed by fuzzy sets, and describe some properties of fuzzy algebras. In short 

fuzzy algebras are complete distributive lattices which have semiscalar multiplications 

and a semiBoolean property. Throughout of the paper real numbers k E [0,1] will be 
called scalars, where [0, 1] is the unit interval, that is, the set of all real numbers k with 
0<k<1. 

    DEFINITION 2.1. A fuzzy algebra A = (A, C, U, fl, •, 0, V) is an algebraic structure 
over a nonempty set A satisfying the following: 
Al. [Complete Distributive Lattice] A tuple (A, C, U, fl, 0, V) is a complete dis
tributive lattice with the least element 0 and the greatest element V. That is, 
(a) Cisa partial order onA,(b)VaEA:0CaEV,(c)UAbaCa V\:baCa, 
(d) aCflaba VA:aCba, (e) afl(UAba)=UA,(aflbA). 
A2. [SemiScalar Multiplication] An operation • : [0,1] x A —> A is a semiscalar 
multiplication of A. That is, 

(a) Oa = 0 and la = a, (b) k(k'a) = (kk')a, (c) k(UAaa) = UAkaA and k(flaaa) = 
flakaa, (d) (naka)a = flakaa, (e) If ka C kb and 0 < k, then. a C b. 
(The semiscalar multiplication k a of a E A by a scalar k E [0,1] will be written as ka, 
unless confusion occurs.) 
A3. [SemiBoolean Algebra] If a fl kV = ka for all scalars k, then there is an element 
b such that aUb=V and aflb=0. ^
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   Note that complete distributive lattices are equivalent to complete Brouwerian 
lattices or complete Heyting algebras. 

   A fuzzy algebras A = (A,  C, U, fl, -, 0, V) with V = 0 is trivial and not worth 
mention. Throughout the rest of this section all discussions will be done in a fixed fuzzy 
algebra A with V # 0. 

PROPOSITION 2.2. Let a, b be elements of a fuzzy algebra A and k, k' scalars. Then 
the following holds: 

 (a) If a C b, then ka C kb. 

 (b) If k < k', then ka C k'a. In particular, ka C a and kO = 0. 

 (c) ka U k'a = (k V k')a 

 (d) If k0 = 0, then k = 1. 

 (e) If kV Ck'V, then k<k'. 

   PROOF. (a) If a C b, then ka = k(a n b) = ka fl kb C kb by A2(c). (b) If k < k', 
then ka = (k A k')a = ka n k'a C k'a by A2(d). In particular, ka C la = a by A2(a) 
and k < 1, and also 0 C kO C 10 = 0 by A1(b) and A2(a). (c) Assume k < k'. 
Then ka U k'a = k'a = (k V k')a by (b). (d) Assume kV = V and 0 < k < 1. Then by 
A2(b) it is trivial that kn0 = V for all natural numbers n. Hence it holds that V = 
nn<oknV =(An<okn)0 = 00 = 0 by A2(d), which contradicts the hypothesis V 0 0. 
(e) Assume kV C k'V and k' < k. Then 0 < k'/k < 1 and kV C k[(k'/k)V]. Therefore 
V C (k'/k)V by A2(e) and so 1 = k'/k by (d), which contradicts the assumption k' < k. 

    Following Kawahara and Furusawa (1995) the concept of crisp elements in fuzzy 
algebras is defined as follows: 

DEFINITION 2.3. An element a of a fuzzy algebra A is crisp if a n kV = ka for all 
scalars k. ^ 

    In the above definition of crisp elements of fuzzy algebras it is trivial that ka 
a n kV by 2.2(a) and 2.2(b). Note that V n kV = kV since kV C V by A1(b). This 
means that the universal element V is crisp. Also the zero element 0 is clearly crisp. 

    PROPOSITION 2.4. Let a,b be elements of A and k a scalar. Then the following 
holds: 

 (a) If a and b are crisp, then so are a U b and a n b. 

 (b) If a U b = V and an b = 0, then both of a and b are crisp. 

 (c) If b is crisp and ka C b for k > 0, then a C b. 

 (d) If a and b are crisp and a C b, then an kb = ka for each scalar k.
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    PROOF. (a) Let a and b be crisp. Then  (aUb)nk0 = (ank0)U(bnk0) = kaUkb = 
k(a U b) by A1(e) and A2(c). Also (an b) n kV = (an kV) n (b n kV) = ka n kb = k(a n b) 
by A2(c). (b) Assume a U b = V and an b = O. First note that ka C a and a n kb = 0 by 
2.2(b). Then ankV = ank(aUb) = (anka)U(ankb) = ka by A2(c) and A1(e). (c) Note 
that ka C kV by 2.2(a). As b is crisp we have ka C b n kV = kb. Hence a C b by A2(e). 
(d) Let a and b be crisp with a C b. Then a n kb = a n (b n kV) = (a n kV) n b = ka. ^ 

    From the last proposition 2.4(a) and 2.4(b) it is immediate that the set of all crisp 
elements in a fuzzy algebra A forms a Boolean algebra. 

3. Fuzzy Relation Algebras 

    Section 3 provides a set of the axioms R1-R5 for fuzzy relation algebras and some 
basic properties of fuzzy relation algebras are described. A fuzzy relation algebra R , 
which will be defined below, is an algebraic structure over a nonempty set set R . In 
other words fuzzy relation algebras are fuzzy algebras with composition and involution. 
Elements of R are denoted by Greek letters such as a, 0, . • • and so on. The composite 
of a relation a followed by a relation 0 will be noted by a/3, unless confusion occurs. 

DEFINITION 3.1. A fuzzy relation algebra R = (R, C, U, n, ; ,~ , ., O, V, id) is an 
algebraic structure over a nonempty set R satisfying the following: 
Ri. [Fuzzy Algebra] A tuple (R., C, U, n, •, 0, V) is a fuzzy algebra. 
R2. [Involutive Monoid] A tuple (.F, ; ,a , id, 0) is an involutive monoid with a unit 
element id and a zero element O. That is, 
(a) (a()y = a(01y), (b) aid = ida = a, (c) aO = Oa = 0, (d) (a0)0 = a, 
(e) (a0)0 = ,3 a1, (f) If a C 0, then ab C 00. 
R3. [Distributive Law] a(U)„QA) = UAa/3A. 
R4. [Dedekind Formula] a,3 117  C a(/3 n aay). 
R5. [Compatibility with SemiScalar Multiplication] 
(a) k(a/3) = (ka)(k/3), (b) (ka)0 = (ka)(,Q n kV), (c) (ka)ti = kaa. ^ 

    All elements in a fuzzy relation algebra R are called relations for short . 

    PROPOSITION 3.2. Let a, 3, /3' be relations and k, k' scalars. Then the following 
holds: 

 (a) If ,3 C ,3', then a/3 C a,3' and ,3a C ,3'a. 

 (b) 00 = O, V = V and id = id. 

 (c) (a U 0)0 = as U /3a and (a n /3)11 = as n /30. 

 (d) (ka)/3 C k(aV) and a(k/3) C k(0,3). 

   PROOF. (a) If /3 C 0', then a/3 C a/Ua/3' = a(,3U0') = a/3' by R3. (b) 00 C 0 = 
0 since 0 C 011, and V = V C VO since VII C V, and idti = idaid = = (idaid)a = 
id" = id. (c) First note that as U ,30 C (a U /3)0. Hence a U ,3 = a" U /i C (aa U 00)11
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and (a U  /3)0 C (aa U 00)00 = as u /30. (d) (ka)/3 = (ka)(/3 n kV) C (ka)(kV) = k(aV) 
by R5(b) and R5(a). ^ 

   Note that a(na,QA) E nA(a/3a) and VV = V holds immediately by the last propo
sition 3.2(a). 

    The next proposition mentions basic properties of crisp relations. 

   PROPOSITION 3.3. Let a and /3 be relations and k a scalar. Then the following 
holds: 

 (a) If /3 is crisp, then (ka)/3 = k(a/3). (If a is crisp, then a(k13) = k(a/3)). 

 (b) If a and /3 are crisp, then so are all and a/3. 

(c) If O=aU/3, an/3=O and Va=a, then V,(3=/3. 

   PROOF. (a) Assume that /3 is crisp. Then (ka)/3 = (ka)(13 n kV) = (ka)(k/3) = 
k(a/3) by R5(b) and R5(a). (b) Assume that a and /3 are crisp. Then as n kV = 
(ank0)0 = (ka)a = ka0 by R2, R5(c), 3.2(c) and 3.2(b). And a/3nk0 C a[/3nall (kV )] C 
a[/3 n k(VV)] C a(0 n kV) = a(k,3) = k(a)(3) by R4, 3.2(d), 3.2(b) and (a). (c) Note 
that 0 = id/3 C V0 by R2(b) and A1(b), and V$ n a C V(/3 n Oga) C V(/3 n Da) = 
V(011 a) = VO = 0 by R4, A1(b) and R2(c). Hence V/3 = V/3 n V = V$ n (a U /3) = 
(V/3 n a) U (V/3 n /3) = /3. ^ 

   From proposition 2.4(a), 2.4(b) and 3.4(c) the set of all crisp relations in fuzzy rela
tion algebra 7Z forms a (Boolean) relation algebra in the sense of Schmidt and Strohlein 

(1985). 

4. Ideal Relations 

Jonsson and Tarski (1952) investigated ideal relations in Boolean relation algebras. 
In this section we define ideal relations in fuzzy relation algebras, and consider some 
properties of ideal relations. Though in Boolean relation algebras ideal relations are just 
universal with respect to the composition with the greatest relation V, ideal relations 
are also required to be crisp in fuzzy relation algebras. In the next section ideal relations 
play an important role. 

DEFINITION 4.1. A fuzzy relation is an ideal if is crisp and V V = t;. ^ 

Note that VVV = V by Al and 3.2(a). So the universal relation V is ideal. Also the 
zero relation 0 is ideal by R2. 

    PROPOSITION 4.2. Let , r~, be ideal, a, /3 relations and k a scalar. Then the fol
lowing holds: 

 (a) U r~, n ij and e are ideal. 

 (b) = V=V
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 (c)  e  _ 

(d) = n~ 

 (e) a/3 n _ (a n )(/3 n ). 

   PROOF. (a) V(e U rj)V = vev U vnv = u 7/ by R3. V( n i)v C v v n vijv = 
n~ = nvriv C V(va vanil)v = V(enil)V by R4 and 3.2(b). VEav = (V V)a = e# 

by 3.2(b) and R2. (b) Because = vcv, v = vvcv = . (c) = = n 
V C #(V n V) C v v = by (b) and R4. Similarly it is shown that C a. (d) 

= rl n v C ( n viia)rl C ( n rl)V = n 7/ by R4, (b), (c) and (a). Conversely 
n'q = C (0/0 n by (b), R4 and (c). (e) a/3 n e C (a n 0)/3 = 

(a n n c (a n 00)[/3 n (a n C (a n /30)(0 n aae) C (a n V)(/3 n v) = 
(an0(/3n ) Ca/3n Ca/3n byR4and (b). ^ 

   Now we consider the function ¢k : R —+ R such that Oe(a) = a n e for a fixed 
ideal relation e and any relation a. The following proposition show that Oc : R — RZ 
preserves all operations of fuzzy relation algebras except for nullary operations. 

    PROPOSITION 4.3. Let be an ideal relation, a,13 relations and k a scalar. Then 
the following holds: 

 (a) If a C /3, then ¢c (a) C (h(0). 

 (b) qc(a U /3) _ qk(a) U (h(,Q) and (h (a n /3) _ b (a) n (M/3). 

 (c) /t(all) = (h(a)a. 

 (d) cb(ka) = kq~ (a) 

 (e) (h(a0) = Ot(a)(1)63) 

   PROOF. (a) Assume that a C /3, then (/)c (a) = a n e C /3 n e = (0). (b) 
ch (a U /3) = (a U /3) n = (a n u (/3 n ) = (h (a) U (h(0). Similarly it is shown that 
Oc(a n /3) = ¢b (a) n (h(/3). (c) Ot(alt) = as n = (a n e)a = (h(a)p by 4.2(d). (d) 
(/)c (ka) = ka n e = k(a n V) n = ka n (kV n ) = ka n k = k(a n e) = kgh(a) since e 
is crisp. (e) (a/3) = a/3 n = (a n )(/3 n e) = Ot(a)gt(/3) by 4.2(e). ^ 

   If e is not crisp, proposition 4.3(d) doesn't hold. Because there is a scalar k such 
that kV n # k by the definition of crisp relations. That is a difference between 
fuzzy relation algebras and Boolean relation algebras in the sense of Jonsson and Tarski 
(1952). 
   For a fixed relation e we denote a set of all relations a such that a C R(e). If e 

is an ideal relation, R.(e) is the image of the function qe which appeared in the before 
proposition 4.3. Note that id n e is a unit element in 1Z(e) since a(id n e) C aid = a and 

     a = aid = aid n V C a(id n ape) C a(id n ee) C a(id n V) = a(id n ) 

for each a E R(e). Then a tuple (R(e), C, U, n, ; ,p , •, 0, id n e, e) is a fuzzy relation 
algebra and q is a homomorphism from R. onto R(e).
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5. Cartesian Products of Fuzzy Relation Algebras 

 Jonnson and Tarski (1952) showed that a cartesian product of Boolean relation 
algebras is again a Boolean relation algebra. And they also characterized cartesian 
products of Boolean relation algebras. It is clear that a cartesian product of fuzzy 
relation algebras issoif we consider a relation a =fl2EI ai and semiscalar multiplication 
ka = k Hie/ ai =the/ kai, where a symbol f is used as a cartesian product notation, 
and I is a finite set. (Throughout the rest of this paper we use a symbol IT as a cartesian 
product notation.) In this section we characterize cartesian products of fuzzy relation 
algebras. 

DEFINITION 5.1. Let I be an arbitrary finite set. Then a fuzzy relation algebra R 
satisfies the axiom of cartesian products if: 
R6. [Axiom of Cartesian Products] There exist finite number of ideal relations 
Vi 0 0 (i E I) such that: 
(a)UjEIDi=V. (b)Ifi,jEl and i j, then Vinvi=0. ^ 

   Let R be a fuzzy relation algebra satisfying axiom of cartesian products and Oi a 
function from R to R(Di) such that (5i(a) = a n Vi for each i E I and each relation 
a E R. Then the function ci : R -* R(Vi) is homomorphism and a tuple (R(V ), 
, U,11, ; ,a , , Oi, idi, Vi) is a fuzzy relation algebra, where Oi = O n vi and idi = id n Di, 
since Vi is an ideal relation. 

    PROPOSITION 5.2. Let a, /3 be relations in a fuzzy relation algebra R satisfying the 
axiom of cartesian products and i, j E I. If a C Vi, /3 C V3 and i j, then a/3 = 0 

   PROOF. Let i, j E I and i j. Then V Vj = Di n vi = 0 by 4.2(d) and R6(b). 
Thus a/3 = 0 since a C Vi and /3 C V3 . ^ 

   We show that every relation in a fuzzy relation algebra R satisfying the axiom of 
cartesian products can be represented as a supremum of relations in R(Vi) for i E I. 

    THEOREM 5.3. Let R be a fuzzy relation algebra satisfying the axiom of cartesian 
products. Then every relation a E R has a unique representation a = UiEI4i(a). 

    PROOF. a = al-1V  = an (UiEIV i) = UiEJ(a n V i) = Uied)i (a) by R6(a). Next we 
show the uniqueness of the representation. Assume that a = UiElai, where ai E R(Di) 
for each i E I. Then aj = ajidj = (Uie/ai)idj = [UiEI(anVi)}id; = UiEI[(anVi)idj] = 
a n 0i = of (a) for each j E I by proposition 5.2. ^ 

    Now we consider a function : R -> 11uEI R(V) such that 1P(a) = f IiEI (ki(a). 

    PROPOSITION 5.4. Let R be a fuzzy relation algebra satisfying the axiom of carte
sian products. Then the function Hie/ R(Di) is a bijection.
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    PROOF. First note that a = UiEigi(a)and,Q= UiEIbi(,Q)by proposition 5.3. If 
 0(a) Cco), then a C ,(3 since ¢i(a) C 0i(/3) for each i E I, which show that 1p is 

injective. For a cartesian productfiai E fliEi R(Vi) of relations ai E1Z(Vi)if we 
set a = UiEiai, then ai =0,(a) by proposition 5.3. Therefore 0(a)=fl ,, ai,which 
show that is surjective. ^ 

   The following proposition show that the function b : R —4 TI E/ R(Di) preserves 
all operations of fuzzy relation algebras. 

    COROLLARY 5.5. Let a,13 be relations in a fuzzy relation algebra R satisfying the 
axiom of cartesian products and k a scalar. Then the following holds: 

 (a) co) = 11,Ei Oi, Y'(V) = fl Vi and 'kid) = Hie/ idi. 

 (b) If a C /3, then 0(a) C 1(/3) 

 (c) U 0) = 0(a) U 0(0) and 0(a n 0) = 0(a) n 0(/3). 

 (d) b(a0) _ 11)(a)a• 

 (e) 1P(ka) = k/(a). 

 (f) 0(a/3) = 0(a)0(/3)

   PROOF. It is trivial by the definition of and proposition 4.3. ^ 

   Consequently we have proved that a fuzzy relation algebra R satisfying the axiom 
of cartesian products is isomorphic to a cartesian product Hie/ R(Vi) of fuzzy relation 
algebras R(Di).

6. Representation Theorem 

    In Kawahara and Furusawa (1995) point relations in a fuzzy relation algebra defined 
as a crisp relation x such that xax C id, id C xxa and Vx = x. But this definition is 
not suitable in the case of cartesian products of fuzzy relation algebras . In this section 
we improve the definition of point relations. Point relations will be denoted by lower 
case Roman letters such as x, y, • -. Throughout of this section we assume that a fuzzy 
relation algebra R satisfies the axiom R6 of cartesian products. 

    DEFINITION 6.1. A point relation x is a crisp relation such that xltx C id , Vx = x 
and xV=Di for some i EI. ^ 

Remark that there is a unique i E I such that xV = Vi by R6. 
   Let x be a point relation, then x C xV = Vi for some i E I . Hence the relation x 

is an element of R(Di). Since R(Vi) is a fuzzy relation algebra with the unit element 
idi, it holds that xidi = idix = x. The next proposition show that point relations in R 

are in fact point relations in R(Vi) in the sense of Kawahara and Furusawa (1995).
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   PROPOSITION 6.2. If x is a point relation such that xV  =  V  i, then the following 
holds: 

 (a) x n kVi = kx for each scalar k. 

 (b) xtix C idi. 

 (c) idi C xxa . 

 (d) Vix=x. 

   PROOF. (a) Since x and Di are crisp with x C xV = Di, it is deduced from 
proposition 2.4(d). (b) xpx C (xV)a(xV) = V Vi C Vi. Thus xax C id n Di = idi by 
the definition. (c) idi = id n Di = id n xV C x(xl1id n V) = xxa. (d) Vix C Vx = x = 
idix C V2x. ̂  

Let Xi be a set of all point relations x such that xV = Vi. Then it is immediate that 
Xi is a set of all point relations in R(Di) in the sense of Kawahara and Furusawa (1995) 
by the before proposition. 

   By making use of the last definition of point relations in fuzzy relation algebras 
satisfying the axiom R6 of cartesian products we add the following axiom: 

    DEFINITION 6.3. A fuzzy relation algebra R satisfies the point axiom for cartesian 

products: 
R7. [Point Axiom for Cartesian Products] For each nonzero relation a there is a 
scalar k > 0 and point relations x, y such that a n xtt y = k(xa y) and xt y 0 0. ^ 

    Let x, y be point relations in the sense of Kawahara and Furusawa (1995). Assume 
that xpy = 0, then y = idy C xxay = 0, which contradicts id C yya. Therefore in it 
holds that xay # 0. But there are point relations x E Xi, y E Xj with i j in a fuzzy 
relation algebras R satisfying R6. Then it holds that xa y = 0 by proposition 5.2 since 
x C Vi and y C Vi. So we need the additional condition xil y # 0 to the point axiom 
in Kawahara and Furusawa (1995). 

    If R is a fuzzy relation algebra satisfying the axiom of cartesian products and 
the point axiom for cartesian products, R(Di) satisfies the point axiom in the sense of 
Kawahara and Furusawa (1995) for each i E I. 

    PROPOSITION 6.4. Let R be a fuzzy relation algebra satisfying the point axiom for 
cartesian products. Then there is a scalar k > 0 and point relations x, y E Xi such that 
a n xay = k(xay) for each nonzero relation a E R(Vi) and each i E I. 

    PROOF. Let a be an arbitrary nonzero relation in R(Di). Then there is a scalar 
k > 0 and point relations x, y such that a n xity_ = k(x0y) and xay # 0 by the point 
axiom R7. It is necessary point relations x, y are in a set Xj in order that x0y 0 0 
holds. Assume that j # i, then a n xp y C vi n V3 = 0. This is a contradiction to 
an xay = k(xay), since xay 0 0 and k > 0. Therefore x, y E Xi. ^
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    In Kawahara and Furusawa (1995) we proved that every relation a in a fuzzy 
relation algebra satisfying the point axiom can be represented as a supremum of pairs 

of point relations with semiscalar weights, and also such a fuzzy relation algebra is 
isomorphic to an algebra of fuzzy relations on a set. Following Kawahara and Furusawa 

(1995) we define functions  Xi  : R(Vi) -* Rel(Xi) as Xi(a)(x, y) = k with a n xtly = 
k(x0y) for each a E R(Vi), x,y E Xi and i E I, where Rel(Xi) is a set of all fuzzy 
relations on Xi. By proposition 6.4 if R satisfies the axiom of cartesian products and 

the point axiom for cartesian products, R(Vi) is a fuzzy relation algebra satisfying the 

point axiom in the sense of Kawahara and Furusawa (1995) for each i E I. Thus every 
relation a E R(Vi) has a unique representation 

                     a = Ux,yEx;Xi(a)(x,y)(xliy), 

and Xi is an isomorphism from R(Vi) to Rel(Xi). 
    By the above discussion the following two propositions hold. 

    COROLLARY 6.5 REPRESENTATION THEOREM. Let R be a fuzzy relation algebra 
satisfying the point axiom for cartesian products. Then every relation a E R has a 
unique representation 

                  a = UiEr Ux,yEX; Xi(Oi(a))(x, y)(xay)• 

    PROOF. For each i E I and each relation a E R, a relation qSi(a) has a unique 
representation qi(a) = Ux,yEx;Xi(5i(a))(x, y)(x0y) since qi(a) E RZ(Vi), and also a 
relation a has a unique representation a = UiErci(a) by theorem 5.3. Thus relation a 
has such a unique representation. ^ 

    COROLLARY 6.6 ISOMORPHISM THEOREM. Every fuzzy relation algebra 1Z satis
fying the point axiom for cartesian products is isomorphic to the cartesian product 
ILEr Rel(Xi) of fuzzy relations Rel(X1). 

   PROOF. Since the function' is an isomorphism from R to HiEr R(Vi) and the 
function Xi is an isomorphism from R(Vi) to Rel(Xi) for each i E I. Therefore the 
composite function (I LE/ Xi) o'& is an isomorphism from R to HiE1 Rel()(i). ^ 

   It is clear that a fuzzy relation algebra R satisfying the point axiom for cartesian 
products is isomorphic to (ordinary) fuzzy relations Rel(X) on a set of all point relations 
in R if a set I is a one point set. So we can say that the characterization in this paper 
is natural extension of Kawahara and Furusawa (1995).
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