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 ON DUALITY OF DISCRETE TIME 

STOCHASTIC CONTROL PROCESSES

                      By 

      Yutaka KIMURA* and Kensuke TANAKAt 

                      Abstract 

   In this paper, we investigate dynamic programming models with a 
discrete time and an infinite horizon. The main purpose is to seek an 
optimal value and an optimal policy under various conditions. To do 
this, we introduce a modified form of the dynamic model which we call 
a duality of the dynamic one. Then we show that an optimal value of 
the original model is equal to the one of the dual model, and that there 
exists an optimal dual policy for the dual model. Further, in view of the 
dual model we show that there exists an optimal policy for the original 
model.

1. Introduction 

   Dynamic programming problems with a discrete time and an infinite horizon have 
been investigated by many authors. Some of the main earlier works in this area were 
done by Blackwell (1965) and Strauch (1966). Further, Dynkin and Yushkevich (1979) 

gave extensive accounts of dynamic programming with a discrete time parameter. In 
many cases of these researches, the concept of optimal policy is given and, then one 
of our purposes is to seek an optimal value and an optimal policy under the various 
conditions. In order to show the existence of an optimal policy, we will study it under 
some condition, for example, that the action space is compact. See Balder (1989) and 
Schal (1975) in detail. Thus, an optimal policy may not exist if compactness is weakened. 
In this case, we study the properties of eoptimal policies as in Tanaka, Hoshino, and 
Kuroiwa (1995). 

   On the other hand, the various dual models have been studied as another ap

proaches for dynamic model. See Iwamoto 0983), (1984), and Tanaka (1995) in details. 
    In optimization theory, dual optimization problems on a dual space are introduced. 

Using the properties of conjugate functions and hyperplanes on a vector space, the 
relations between the original optimization problems and their duals have been actively 

discussed on the basis of convex analysis. See Aubin (1982), (1993), Luenberger (1969), 
and Rockafellar (1966) in details. 
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   In this paper, we introduce a modified form of the dynamic model, which we shall 

call a "dual" dynamic model. A reward function in the dual model is a conjugate 
function for loss function in the original model. Thus, the reward function has good 

properties which are convex and  w*-lower semicontinuous. Here, using these properties, 
we show that the optimal value of the original problem is equal to the optimal one 
in the dual model. Further, we show that there exists an optimal dual policy in the 

dual model, which we call a weak optimal policy for the original model. To do this, 
Fenchel's inequality and the Fenchel duality theorem in convex analysis (see for example 
Aubin (1993)) play very important roles. 

   This paper is organized in the following way. In Section 2, we formulate a basic 
minimization problem relative to the dynamic programming model and give the defini
tions of optimal value and optimal policy. In Section 3, we give some basic results for 
the dynamic model. In Section 4, we introduce the concept of a dual space, and, then 

give a dual form of the original model. Further, using Fenchel duality theorem, we show 
that there exists an optimal dual policy in the dual model, and we discuss the relation 

between the original model and the dual one.

2. Formulation of a dynamic programming model 

   A dynamic programming model is specified by a set of six elements 

                   (S, A, A(S), q, r, ,Q),(2.1) 

where we assume : 

 (i) S is a Polish space (a complete separable metric space). The Borel measurable 
    space (S,B(S)) is called the state space of the dynamic model, where B(S) is the 

Borel field of S. 

 (ii) A is a real Banach space and (A, B(A)) is called the action space, where 8(A) is 
    the Borel field of A. 

(iii) For each s E 5, A(s) C A is the set of all admissible actions on the state s, where 
   A(S)=USESA(s). We assume that Gr A = {(s, a)ls E S,a E A(s)} is Borel 
    measurable in SA, where SA denotes the Cartesian product of sets S and A. 

(iv) q is a transition probability measure on S given SA, that is, q(. s, a) is a probability 
    measure on (S, B(S)) for each (s, a) E Gr A and q(F ., •) is a Borel measurable 
    function on Gr A for each Borel subset I' E B(S). The law of motion of the 

    dynamic model is given by q. 

 (v) r : Gr A --> IR+ is an one-stage loss function, which is Borel measurable, where 
R+ = {r E Rir > 0}. 

(vi) E (0, 1) is a discount factor .
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In order to consider the dual model, it will be needed that the loss function is bounded 
from below. Thus, we give condition (v). Furthermore, in the specification, we should 
note that the permissible set of actions A(s) depends on the state s E S and  q(-Is, a) is 
independent of the time parameter. 

   Then, a policy 7r for the model is defined as an infinite sequence it = (fo, fi, 
• , fk, • •), each component fk of which is a Borel measurable mapping from S to A 

such that fk(sk) E A(sk) for every sk E S, where sk denotes state on the k-th stage. 
Since each component fk of a policy it in the model is parametrized only by sk, 7r is said 
to be a Markov policy. We denote by II the set of all Markov policies. If it is a Markov 
policy of the form 7r = (f, f, • •), it is said to be stationary and denoted by f°°. 

    The model is interpreted as follows. If a policy it = (fo, fi, • • , fk, • • •) is employed, 
at the successive kstages, k = 0,1, 2, • •, we observe sk E S, and then we choose an 
action ak E A(sk) according to k-th component fk of 7r, that is, ak = fk(sk). As a 
result, we will incur a loss r(sk, ak ). Then, the dynamic model moves to a new state 
sk+1 E S according to the stochastic kernel q(•Isk, ak), and the process is analogously 
developed from 5k+1• 

    In the subsequent discussion, we will often use Sk and Ak for k = 0,1, 2, .. •, as 
copies of S and A, respectively. Given an initial distribution u on S and a policy 
7r = (fo, fl, f2, • • •) together with the stochastic kernel q, there is a sequence of unique 
probability measures Pk'µ on SoSI • Sk (k = 0,1, • • •). In addition, there exists a 
unique probability measure P'r,µ on SoSI • • • such .that, for each k, marginal measure of 

P"'µ on So S1 . • • Sk is Pk'l 
    Then, if we assume that a policy 7r = (fo, fl, ) is used under the discount factor 

/3, the expected loss on the k-stage is given by 

Eµ [r(sk, fk(sk))1 =fr(sk, fk(sk))Pk'A(d(so, s1...,sk)) 
                          p Sl. Sk 

                   = fµ(dso) fq(611.907fo(so))... 
            So1 

                        fSkr(sk, fk(sk))q(dsksk-1, fk-1(4-1)), 
and the total expected discounted loss is given by 

I74) = E /3kEfrl [r(sk, fk(sk))} • (2.2) 
k=0 

Under condition (v), the expectation and summation in (2.2) can be interchanged to 
obtain c 

a II(p) = EµENr(sk, fk(sk)) 
k=0 

We often write I f(A) instead of If... (µ) for a stationary policy f°° = (f, f,. • •). Further, 
if the initial distribution p, assigns mass one to a point s E 5, we use I,,(s) instead of 
Iir(µ)•
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    Then, we consider a basic minimization problem (MP) for the dynamic model : 

            (MP) minimize I7r(s) subject to 7r E H. 

    DEFINITION 2.1. The optimal discounted loss I(s) is defined by 

               I(s) = inf I„.(s), s E S,(2.3) 
irEII 

and this is said to be the optimal value for the initial state s. 

    DEFINITION 2.2. If I(s) = Ms), the policy W E H is said to be optimal for the 
initial state s. If Tr is optimal for every initial state s, it is said to be optimal. 

    In this paper, we will study the problem (MP) under the assumption such that 
the optimal value is finite for all initial states, that is, I(s) E R+ for all s E S. 

3. Basic results for the dynamic programming problem 

    In order to state some basic results for the model with condition (v) , let B(S) be 
the space of all realvalued measurable and nonnegative functions on S. We give an 
operator Tf on B(S) defined by 

Tfv(s) = r(s, f(s)) + ,QE f [vls], v E B(S), s E 5, (3.1) 

where 

Ef[vIs] = j v(s')q(ds'is, f(s)) 
                                 s and, furthermore, give an operator T on B(S) defined by 

              Tv(s) = fof Tfv(s), v E B(S), s E S,(3 .2) 
                        EM 

where M is the set of all measurable mappings f from S to A such that , for each s E S, 
f(s) E A(s). 

   We shall now state some results for problem (MP) on H. For a Markov policy 
it = (fo, fi, • • •) and an initial distribution Its which assigns mass one to a state s E 5 , 
the expected discounted loss up to the t-stage for pa is written by 

      4(s) = E $k [r(sk, fk(sk))] = E, E skr(sk, fk(sk)) s0 = s 
k=0k=0 

and, further, the total expected discounted loss for As is written by 

II(s) = 01'4" [r(sk, fk(sk))] = E~E kr(sk, fk(sk)) so = s . 
k=0k=0
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   THEOREM 3.1. Suppose that  vo = 0. Then for any Markov policy 
7r _ (f0, f1, ...), 

                   4(s) = TfoTfl ...Tftvo(s),(3.3) 

and 

I,R(s) = t1TfoTfi...Thvo(s)•(3.4) 

    THEOREM 3.2. Suppose that vo  0. Then, we have the following : 

(i) inf,rEn 4(s) = Tt+ivo(s) for all t > 0 

 (ii) I(s) = TI(s) (dynamic programming equation ) 

where I(s) is the optimal value for an initial state s E S and II is the set of all Markov 
policies. 

   The proofs of these theorems are shown in Bertsekas and Shreve (1978), and Dynkin 
and Yushkevich (1979) in detail.

4. Dual form of the dynamic model and its properties 

   In addition to the results in Section 3, we want to find an optimal policy for the 
dynamic model. In order to give an approach for the dynamic model, we introduce a 
dual form and show that the optimal value of the dual form is equal to I in Theorem 3.2. 
Further, we shall show that there exists an optimal policy in the dual form and discuss 
the relations between the original model and the dual one. 

   Now, we use the notation for the domain of E. [vl s] for each s E S and v E B(S), 

Bs(v) = {b E A(s)IEb[vis] < +oo} C A(s). 

   ASSUMPTION 4.1. There exists an f E M such that, for all s E S and v E B(S), 

f(s) E Bs(v). 

   Under this assumption, there exists an f E M such that Tf : B(S) —> B(S). Thus, 
we have Tv(s) < +oo. 

   To formulate a dual dynamic model, we give the preliminaries. Let A* be the dual 
space of A. The norm of the dual space is given in the usual way, that is, 

IIa*II* = sup {(a, a*)  Ilall < 1, a E Al , a* E A*, 
where (a , a*) denotes the duality pairing of a and a*. Thus, from the property of the 
dual space, it follows that A* is Banach space. See Chapter 5 in Luenberger (1969) for 
details. 
    For each s E S, the function r*(s,.) from A* to II8 defined by 

r*(s, a*) = sup {(a, a*) — r(s, a)} 
                                aEA(s)
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is called the (Fenchel) conjugate function of  r(s,  •), where I18 = JR U {+oo}. Similarly, for 
each s E S and v E B(S), the function E. [vis] from A* to JR defined by 

                E6.Ms] = sup {(a, b*) —Ea[vIs]}(4.1) 
aEB9(v) 

is the conjugate function of E. Ms]. 
   Consequently, from (4.1), we obtain 

(/3E.[v1s])* = sup {(a, a*) —,QEa[vis]} 
aEB9(v) 

               = 13 sup {(a,)_Ea[vIs]} 
                                            QaEB9(v) 

                     = 13E [vIs]. 

   Let B(S) be the set of all realvalued measurable functions and let M* be the set 
of all measurable mappings f* from S to A*, that is, f*(s)  _E A* for every s E S. For 
each s E S and f* E M*, wedefine a dual operator Tf,onB(S) by 

Tf.v(s) = —r*(s, —f*(s)) — $Ef* [vIs],(4.2) 

3 and, further, define a dual operator T* on B(S) by 

T*v(s) = sup Tf,v(s).(4.3) 
f*EM* 

   Roughly, for each s E S, we shall show the relation between the Banach space A 
and the dual space A*, and the relation between the mapping f and the mapping f* by 
the following diagram :

Here, we give the dual form of the dynamic model (2.1) as follows 

(S, A*, q, —r*, 0).(4.4)
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 (i) S is the same as the original model (2.1), namely, the state space of the dual model. 

 (ii) A* is the dual space of the action space A, namely, the action space of the dual 
     model. 

(iii) q is the transition probability measure given in (2.1), that is, the law of motion of 
    the dual model is given by q. 

(iv)  r* is the conjugate function of the loss function r in (2.1) and, for each s E S, 
—r*(s, •) : A* —+ R is called the one-stage dual reward function, where IR = JR U 
{—oo}. 

 (v) /3 is the same discount factor as the original model (2.1). 

   A policy f, which we call a dual policy, for the dual model (4.4) is defined by 
infinite sequence f = (fo , fl , . • • , f~, • •), each component f'Z of which belongs to M*. 
We denote that II* is the set of all dual policies. Then, under the discount factor /3 and 
the zero function vo  0, if a dual policy 7r* = (AT, fi , ... , fk , • • •) is used at an initial 
state s, then, using (4.1) and (4.2), we get the discounted reward.up to the 2-stage as 

I~~~1(s) = T foT flvo(s) 
= —r*(s, —fo (s)) — /3E * [Tfl voIs]. 

By the successive method, the discounted .reward up to the t-stage is written by 

                   I.,gt)(s) = TfaTfl ...Tft vo(s), 

and, further the total discounted reward is given by 

I** (s) = lim .4*(t)(s). 

Thus, a dual optimization problem for (MP) is given by 

    (DMP) maximize IS(s) subject to 7r* E H*, 

For this problem at an initial state s E S, we define an optimal dual value I* (s) as 

I* (s) = sup I7* (s) 
ir*EII* 

and, if I*(s) = I(s), the dual policy W E II* is said to be optimal for an initial state 
s. Then, we can get the optimal value for the dual model (4.4) as 

I*(s) = tlim(T*)tvo(s). 

   From now, we shall study the relations between the original model (2.1) and the 
dual model (4.4). 

   LEMMA 4.2. For each s E S and v E B(S), Tv(s) > T*v(s).
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Proof. By virtue of Fenchel's inequality, for each f  E M and  f* E M*, we have 

T fv(s) — T f, v(s) = r(s, f (s)) + /3E f [vls] + r*(s, — f * (s)) + 03E4 [vl s] 
                 = r(s, f (s)) + r*(s , _f*()) + I3E f [vl s] + 0.E [ids] 

                      (by Fenchel's inequality) 

(f (s) , —1(8)) (s)) + a (f(s), f ks)  
_ — (f (s) , f* (s)) + (f (s) , f* (s)) 

                    = 0. 

This implies that 
                   inf T fv(s) — sup T f. v(s) > 0. 

               fEmf* Ems 

Thus, we get Tv(s) > T*v(s) for all s E S. This lemma is proved.^ 

    For each s E S and v E B(S), we introduce the following notations for the domains 
of r*(s,.) and E:10[vis] : 

As = {a* E A*  r*(s, a*) < +oo} C A*, 
Bs (v) = {b* E A* 1ET:*Hs] < +oo}C A. 

    ASSUMPTION 4.3. There exists an f* E M* such that, for all s E S and v E B(S), 

f*(s)  E int (Bs (v) fl As*), 

where int (Bs (v) fl A;) is the set of all interior points of BS (v) fl A. 

    Under this assumption, there exists an f* E M* such that T;* : B(S) --* B(S). 
Thus, we have T*v(s) > —oo. For each s E S and v E B(S), we introduce a mapping 

 s : A; x Bs (v) --> DNA* defined by 

s(a*, b*) = (—r*(s, a*) —,QE[[vis] , a* + b*) 
                                               r~ 

together with the set Fs (v)  0s (As* x Bs (v)) — [0, oo) x WI constructed by difference of 
vectors, where 9* is the zero vector in A*. 

    LEMMA 4.4. Under assumption 4.1, suppose in addition that, for each s E S and 
v E B(S), the zero vector 0 in the action space A belongs to intBs(v). Then Fs(v) is 
the convex and w* closed set in IR x A*, where ll8 x A* is a dual space of 11 x A. 

Proof. Since r*(s, •) and E;Q[vls] are convex functions, As and Bs (v) are convex sets. 
Therefore, by the convexity of these conjugate functions, it is easily shown that FS (v) is 
the convex set_
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    In order to show that  Fs(v) is w*closed, we consider a sequence of elements (v, rs) 
in Fs (v) converging (w*topology) to (vs*, rs) in R x A*. Thus, from the definition of 
Fs (v), there exist es E As and qs E Bs (v) such that, for some c E [0, oo), 

vn = —r*(s,ps) -`,QEga [vls] — c, rs = ps +qs .(4.5) 

From (4.5), we have 

vs < —r* (s, ps) — /3E* [vi s], rs = ps + q. (4.6) 

Since 0 E int BS(v), there exists a ball Be = {q3 E B i llgs 11 < 6} such that Be C Bs (v) C 
A(s). Thus, for all z E A, there exist two vectors a, b E Bs(v) such that (e/llzll)z = a—b. 
Therefore, using Fenchel's inequality, we obtain 

llzll (z, qn) = (a — b, qs ) 
= (a,qs)—(b,qs) 

                (by es' = ps + qs in (4.6)) 
_ (a,rs—ps)—(b,qs) 

= (a,rs)—(a,ps)—(b,qs) 

                 (by Fenchel's inequality) 

? (a, rs) — {r(s, a) + r* (s, ps) } — ,Q Ep [vl s] + E9n [vls] 

                (by the definition of vs) 
> (a , rs) + vs — r(s, a) — ,l3ER [vl s]. 

Since the sequences {v} and { (a , rs) } converge to vs and (a , r;), respectively, we 
arrive at infn>i (z, qs) > —oo for all z E A. According to uniform boundedness theorem, 
we get that {qs}n>1 is bounded. Thus, from Alaoglu's theorem, it is w*compact. See 
Chapter 5 in Luenberger (1969) for details. Hence, there exists a subsequence {qs (i)}j>1 
of {qn}n>i which converges to qs E A* in w*topology, and consequently, a subsequence 

ps=rs(~)— qs converges to p*s = rs — qs in w*topology. 
    From the construction of conjugate functions, —r*(s, •) and —E,*io[vIs] are w*-upper 

semicontinuous. Therefore, we get 

—r* (s, ps) — [vI s] > lim sup {_r*(s,p(3))}  + lim sup —,QE*n(,) [vl s] 
00-12— 

> Ern sup —r* (s, ps (-1)) — E*n(;) [vls] > lim vs= vs. 
            —400v,—n-^oo                                                          R 

Thus, we obtain —r* (s, ps) — ,QEq* /Q [v l s] > vs and rs = ps + q. It implies that (vs*, rs ) 
belongs to Fs (v), which shows that FS (v) is w*closed.^
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    In order to prove the main theorems, we introduce a setvalued function  G8(v) : 
S A* defined by 

G,(v) = {a* E A*I&s(—a*,a*) E Fs(v)}, for each v E B(S). 

From Lemma 4.4, Gs (v) is the w*closed setvalued function. 

    ASSUMPTION 4.5. For each v E B(S), the setvalued function G8(v) : S ^-^ A* is 
lower measurable, that is, for each open set 0 in A*, the set Is E SIGs(v) fl 0 0 0} 
belongs to B(S), where B(S) is the Borel field of S. 

    The following useful characterization of lower measurable w*closed setvalued func
tions is given in Castaing and Valadier (1977), and Himmelberg (1975). 

    LEMMA 4.6. For each v E B(S), the w* -closed setvalued function GS(v) : 5 '-'a 
A* is lower measurable if and only if, for each s E S, there exists a countable set 

        C M* such that G8(v) is equal to the closure of {fn(s)} for every s E S. 

    THEOREM 4.7. Under the assumptions 4.1, 4.3, and 4.5, suppose that, for each 
s E S and v E B(S), 0EintBs(v) and 

(Tv(s), 9*) E F3(v).(4.7) 

Then, it holds that : 

 (i) Tv(s) = T*v(s) ; 

 (ii) there exists an f* E M* such that 

—r*(s, — f *(s)) — /3E* [vls] = T*v(s) 

for each s E S and VEB(S). 

Proof. Since we assume that, for each s E S and v E B(S), (Tv(s), 9*) E F3(v) under 
the assumptions 4.1 and 4.3, it follows that there exists a qs E A* such that from (4.7) 

                 Tv(s) < —r* (s, —qs) — /3E9 [vls] 

a 

                          (by the definition of T*) 
                       < T*v(s) 

                          (by Lemma 4.2) 
                      < Tv(s), 

for each s E S and v E B(S). Consequently, from Lemma 4.6, there exists an f* E M* 
satisfying that Tv(s) = T*v(s) = —r*(s, —f *) — /3Ef,~a[vis], which completes the proof 
of the theorem.^
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   REMARK. If we have the following assumption, we can show that (4.7) in Theorem 
4.7 holds. 

    ASSUMPTION 4.8. For each s E S and v E B(S)  : 

 (i)  r(s,.) is convex and lower semicontinuous on A(s) ; 

 (ii) E.[vls] is convex and lower semicontinuous on BS(v) C A(s). 

We will sketch an outline of its proof as follows. Now we suppose (Tv(s),9*) ¢ Fs(v). 
Since, from Lemma 4.4, Fs(v) is convex and w*closed, and R x A* is the dual space of 
RxA, (Tv(s), 9*) may be strictly separated from Fs(v) (see Chapter 5 in Luenberger 

(1969)) Thus, there exists (a, ps) E RxA and E > 0 such that 

  aTv(s) > sup [(a,ps), (—r*(s,P.) — $E: [vis] — c,P*s + q1s) + E 
        (P; , q;) E A; x B9-r 

c ER+ 

             sup [a{_r*(s,p;) — /3E,* [vls]} + (pa, ps + qs) 
          (P; , q;) E A; x B;G 

    — inf ac + e.(4.8) 
cER+ 

Since — infCER+ ac is bounded from above in (4.8), it follows that infcER+ ac = 0 and 
that a is positive or 0. Furthermore, it cannot be zero, because, if a is zero, we have 

                       sup (Ps, p*s +qs) +e < 0. 
(p;,q;)EA; xB; 

Since there exist ps E Bs (v) and qs E Bs (v) satisfying ps + qs = 0*, we arrive at 0 > e, 
which is impossible. Thus, a is positive. On the other hand, since r(s,.) and E. [vl s] are 
convex and lower semicontinuous, we obtain r**(s, •) = r(s,.) and E: *[vls] = E.[vls] for 
all s E S and v E B(S), where r**(s, •) and E: * [vl s] are the biconjugates of r(s,-) and 
E. [vl s], respectively. Dividing both sides of (4.8) by a > 0 and putting ij = 6/a, we 
have 

   Tv(s) > sup —r*(s,P*s) + (Ps , ps) — $E:;[vIs] + (Ps , qs)+ 
       (p;,q;)EA;xB;Q 

         = sup [(Ps,ps)—r* (s,p*s )] + sup [(PS,qs)—OE:[vIs]+71            p; E A;q; EB;p* 
sup [(Ps, ps) — r*(s,ps)] + a sup [(Ps , — E99 [vls] + 

p; EA*--&q; EA* 

         = r**(s,ps)+/3E; [vls]+71 
     = r(s,ps)+/3Ep s[vIs]+(4.9) 

Thus, there exists an f E M such that (4.9) is written as 

Tv(s) > Tfv(s) +7).(4.10) 

Since Tv(s) < T fv(s) for all f E M, thus (4.10) is impossible. Therefore, it follows that 
(4.7) in Theorem 4.7 holds.
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    THEOREM 4.9. Suppose that the same assumptions as in Theorem 4.7 hold. For 
I(s) of the original model and the optimal dual value  I*(s) of the dual one, we have for 
each s 

                        I(s) = I*(s) 

and, moreover, there exists an optimal dual policy Tr* E II*, that is, 

I.(s) = I*(s).(4.11) 

Proof. From Theorem 4.7, it follows that, for each s E S and v E B(S), there exists 
an f* E M* such that T*v(s) = T f,v(s) = Tv(s). Consequently, we get that for each t 
there exists a finite sequence { fk }k_o,...,t C M* such that 

(T*)t+lvo(s)                             =fo...Tft vo(s) 
                     = (T)t+ivo(s).(4.12) 

Thus, from (4.12), there exists a Tr* _ (fo  fi ,   -) such that 

I*(s) = thin (T*)tvo(s) = I' *vo(s) = tli ~(T)tvo(s) = I(s). 

This dual policy W* is optimal for (DMP) and, at the same time, the dual optimal value 
I. (s) is equal to I(s) for (MP).^ 

    COROLLARY 4.10. In addition to the condition in Theorem 4.9, suppose that the 
assumption 4.8 holds, and that for each s E S and v E B(S), 8 E intBs(v). Then, there 
exist 7r E H and Tr* E H* such that for all s E S, it follows that 

                  I*(s) = 4.(s) = Ms) = I(s).(4.13) 

Proof. Under assumption 4.8, we have that for each s E S and v E B(S), 

r** (s, a) = r(s, a), and E; * [vIs] = E. [vls]. 

By a similar argument as in Theorem 4.9, it follows that there exist W E II and W* E H* 
such that for all s E S, satisfy (4.13).^
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