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Abstract 

   This paper is concerned with the averagevariance of Markov decision 

processes with countable states and finite actions. Sufficient conditions 
will be given to assure that there is a stationary deterministic policy 
which minimizes the averagevariance in a class of the meanoptimal 

policies. The class of the policies is detetermined by the quantity of 
the actions which do not satisfy the meanoptimal equation. 
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1. Introduction. 

    As well as mean (viz. expected average) rewards, variances and their related criteria 

of Markov decision processes (MDP's) have been studied by many authors. Many of their 
works are overviewed by White(1988) and seen also in Filar, Kallenberg and Lee(1989). 

   But to our knowledge, there are a few papers which are concerned with the min
imization of the averagevariance in the class of meanoptimal policies. The average

variance is the applied form to MDP's of the variance given by Kemeny and Snell(1976). 
In finite state MDP's, Mandl(1971) investigates the asymptotic behavior of the average
variance in details. He contributes to construct MDP's whose mean rewards are the 
variances for the given MDP's. Kurano(1987) shows in general state MDP's that there 
is a stationary deterministic policy which minimizes the averagevariance in the restricted 
class of policies whose actions satisfy the meanoptimal equation. 

    In this paper, the MDP's have countable states and finite actions. We show the 
existence of a stationary deterministic policy which minimizes the averagevariance in 
the larger class of meanoptimal policies: The class is determined in relation to the 
meanoptimal equation. As a corollary, if the state space is finite, the class is given by 
the set of all meanoptimal policies. 

    In section 2, the necessary notations and the problem to be examined is stated. 

Also, under an ergodic condition, the properties of meanoptimal policies are reviewed. 
In section 3, applying the equality given by Kurano(1987), we obtain a lemma which 
describes Mandl(1971)'s idea more generally. Owing to the lemma, the main theorem is 

proved. 
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2. Definitions and notation. 

    Our MDP's are specified by (S, A, p, r), where S = {0,1, 2, • -} is the set of states, 
the subset A(i) of A is the set of actions available at each state i E 5 , p = (p(a)ii) is 
the matrix of transition probabilities satisfying that >j ES p(a)ij = 1 for any i E S and 
a E A(i), and r(i, a) is an immediate reward function defined on {(i, a); i E S, a E A(i)}. 
We assume that S is countable, each A(i) is finite and that r is uniformly bounded, i.e., 
Ir(i,a)I < M for any i E S and a E A(i). 

    The sample space is the product space Sl = (S x A)°° such that the projection (Xn, 
An) to the n-th factor S x A describes the state and the action at time it of the process 
respectively for n = 0,1, 2, • • -. 

    A policy it = (iro, 7r1, •) is a sequence of conditional probability irn such that 
7rn(A(in)I io, ao, i1, • • • , in) = 1 for any history (io, ao, •   in) E (S x A)'L x S. A policy 7r 
is called Markov if irn(aJ io, ao, • • • , in) = ?rn(aI in) for any a E A(i), n and (io, ao, • • • in). 
A Markov policy it is called deterministic if there is a function fn on S with fn(i) E A(i) 
for any n such that irn({ fn(i)}I in = i) = 1 for any i E S. A deterministic policy is called 
stationary if fn = f for all n = 0,1, • • •. The stationary policy is denoted by 7r = f . Let 
H and Hs be the sets of all policies and stationary deterministic policies, respectively. 

    Let Hn = (Xo, Ao, • • • , An-1, Xn) for n = 0,1, 2, • • •. We assume for any 7r E II 
with n = 0, 1, • • •, i, j E S and a E A(i), 

              P( n+1 =~I         PXHn-1 , An-1) Xn = i, On = a) = P(a)ii. 

An initial state i E S and a policy 7r = (7ro, ?rl, • •) determine the probability measure 

P" on Sl by the usual way. The expectation of a random variable Y with respect to Pr 
is denoted by EN Y). 

    For a policy 7r, the long-run mean (or expected average) reward per unit time 
starting from i E S is defined by 

(1)x(i, 7r) = lim inf 1EZ[> r(Xk, AO] 
                                   n—^oo n + 1 

k=o 

The averagevariance for the policy is defined, following to Kurano(1987) , by 

                 1 n. 1'(i, 7r) = lim sup------V,7r [E T (Xk, AO], 
                                                                    n-too n+1 k

=0 

where Vi'" [Y] = Ei {Y — EN Y)}2 }2 for a random variable Y. The averagevariance is the 
application to MDP's of the variance given in Kemeney and Snell(1976). 

   Let x*(i) = sup{ x(i, r); it E II}. If a policy ir* satisfies x(i, 7r*) = x*(i) for any 
i E 5, we say 7r* is meanoptimal. We denote by II(M) the set of meanoptimal policies. 

   For any f E Hs, let 

                                   00 

m(f )ij = nP'( Xk j for 1 < k < n, Xn = j), 
n=1
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which is called the mean recurrence time to go from i  E S to j  E S. We shall set up a 
condition. 

CONDITION I. There are a state 0 E S and a constant b > 0 such that m(f )io < b 
for all iESand f EIIs. 

   REMARK 1. According to Ross(1970), if S is finite and each stationary Markov 
chain {p(f)ii; i, j E S} is irreducible, Condition I holds. Federgruen, Hordijk and Ti
jms(1978) shows that Condition I holds if limn„,p(f)Z exists independently of i E S 
and the limit is approached with exponential speed. Dekker and Hordijk(1992) and 
Mann(1985) generalize Condition I to the multi-chain case. 

   Ross(1970) shows under Condition I that (i) x(i, f) is independent of i E S, (ii) 
there exists a bounded vector v = (v(i)) satisfying 

(2)x* + v(i) = max {r(i, a) + > p(a)ijv(j)} for any i E S, aEA(a) j
ES 

where x* = sup{x(i, 1); f E Its}, and (iii) If f E lIs maximizes the term in the brackets 
of (2) for any i E S, then f E fI(M). Letting 

                                    co  

 v(i, f) =lim On{lEir(`~n,An) — x(i, f)} for f ells) 
                       0/1n =0 

Mann(1985) shows that there is f* E IIs which satisfies the above (iii) with v(i, f*) = 
v(i) for i E S. 

    For the analysis of the meanoptimality, let 

(3)v(i, a) = r(i, a) + > p(a)ijv(j) — x* — v(i) and 
jES 

(4)K(i) = {a E A(i); cp(i, a) = 0} for any i E S. 
    Let K = xiESK(i). Let denote by II(K) the set of policies it = (7ro, 7rl, • •) such 

that irn(K(in)I io, ao, il, . , in) = 1 for any history (io, ao, • • in). 
   Let define a function r(i, a) by 

r(i, a) = > p(a)ij{v(j) — E p(a)ihv(h)}2 for any i E S and a E A(i). 
      jEShEs 

    Notice that T is uniformly bounded. Using r instead of r, ~(i, 7r) is defined by limsup 
similarly as (1). For MDP's specified by (S, K, p, fl, -,, is defined by inf similarly as 

x*. The bounded vector v = (v(i)) exists: Corresponding to (3), let 

    Cp(i, a) = r(i, a) + > p(a)ijv(j) — — v(i) for any i E S and a E A(i). 
jES 

Then, cp(i, a) > 0 for any i E S and a E K(i). Corresponding to (4), let K(i) = {a E 
K(i); (p(i, a) = 0}. Then, K(i) # 0 for all i E S. Let a policy f E II(K)s be f (i) E K(i) 
for any i E S. _ 

   Kurano(1987) and Mand1(1971) show thatf E II(K) has the minimum average
variance within the class of policies satisfying >J PZ (Ak K(Xk)) < oo.
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3. Class of policies to the minimum averagevariance. 

    This section gives  sufficient conditions to determine the class of policies where 

f E II(K)s in the previous section has the minimum averagevariance. To the end, two 
lemmas are prepared. 

    Next Lemma 3.1 estimates the quantity of the actions which do not satisfy (2) for 
the meanoptimal policies. 

    LEMMA 3.1. Suppose that Condition I holds. If it E II(M), it follows that 

n (5) lim    '57P"(Xk = j, Ak KW) = 0 for any i, j E S 
             n—"oon+1 

k-0 

   PROOF. We have from (3) that 

nn 

(6) E Ei v(Xk, Ok) = E EE r(Xk, — (n + 1)x* — v(i) + Ei v(Xn+1). 
k=0 k=0 

Since cp(i, a) < 0 for any i E S and a E A(i), a policy 7r is meanoptimal if and only if 

n (7) lim 1E(cp(Xk, Ak)) = 0 for i E S. 
                n—>oon-}1a 

k=0 

Let Ej = max{cp(j, a); a K(j)}. Then, Ej < 0 for any j E S since A(j) is finite. Take 
the terms cp(j, a) = 0 away from (7), we get 

                                n (8)l imn + 1P7(Xk = j, Ak K(j))E3 = 0. 
k=OjES 

(8) implies (5) immediately, completing the proof.^ 

   For the sake of brevity, we shall omit the notation Ak freely in all the proofs of the 
subsequent propositions if no confusion occurs. In paticular, the conditional expectation 
Ez (v(Xk+l)I Xk, AO will be denoted by E, (v(Xk+1)I Xk) 

   In the proof of Lemma 3.2, we shall use the followig equality which is given by 
Lemma 3.2 in Kurano(1987). 

n-1 

(9)EZn(v(Xk)—E:(v(Xk)IXk-1))2 ~.. 
k=1k=0 

   LEMMA 3.2. Suppose Condition I holds. Then, it holds for any policy 7r E II and 
n=0,1,2, • that 

{vr(r(xk,k)) — Vi (E c9(Xk, Ak)) — > EZ r(Xk, '64)1 
                     (10)k=0k=0 k=0 

      ((n-11
?11I~ < 2L{E Ez r(Xk, Ak)}+MlJ{Vi7 (uc) cp(Xk, Ok)) } 2 + 0( n), 

k=0k=0 

where M1 is a constant and o(n) is a number such that limn_, o(n)/n = 0.
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   PROOF. Let  7r E II. For a random variable Y and a constant µ, it follows that 

E(Y — E(Y))2 = E(Y — 1.)2 — (E(Y) — µ)2. Substitute Y = >k=0 r(Xk) and µ = 
Ek-0 (x* + EZ (o(Xk )) to the equality. Using (6), we have 

Vi"{Er(Xk)} =Ei{E(r(Xk) —x* —E"(o(Xk))J12 
(11)k=0k=o 

                         — {v(i) — E"v(Xn+1)}2 

On the other-hand, we have from the definition of r and (9) that 

(12)E"rE"{~vE"vX+1))•                                }2 l)~Xi(~(k)) —X((k) —Xi((k+1)IXk)) — (v(Xo) 0) —                                                                  v/Xn 

 k=0k=0 

Expand (12) with the form a2 — 2ab + b2. Substitute (3) to a2. Rearrange the terms in 
2ab following: 

(13) 

Ez {v(Xn+1) 1(v(Xk) — E"(v(Xk)IXk-1)) + v(Xn+1)(v(Xo) — Eti (v(Xn+1)IXn)) }• 
                k=1 

After sharing ET , apply the Schwarz inequality to (13) and use (9). Since v is bounded, 

(13) is represented by o(n). Then, (12) turns out to be 
  nn 

(14)> g r(Xk) = 1E (r(Xk) — x* — (P(Xk)) }2 + o(n). 
k=o k=0 

Comparing (14) with (11), we have 
 nnn 

E ET r(Xk) =V: (E r(Xk)) + Via (~ cP(Xk)) 
(15)k=0k=0k=o na —2EZ {E (r(Xk) — x* — EZ (P(Xk)) E(cP(X€) — EZ co(Xt)) } + o(n). 

k=02=0 

Substitute (3) to r(Xk) — x* in (15). In the same way as (13), apply the Schwarz 
inequalities to both terms and use (9). The constant M1 should be 'taken to satisfy 

M1 > {E"(v(Xo) — Ei (v(Xn+1)IXn))2} 2 for all n. 

Since v is bounded, such M1 exists. This completes the proof.^ 

    THEOREM 3.3. Suppose Condition I holds. Let 7r E II satisfy 

1 
           (16)lim                        (cp(= 0 and                     V"(~Xk,Ok)) 

                  n—~oon+la k
=o 
                                   n 

1  (17)lim sup E" (Co(Xk, L k)) > 0 for any i E S. n oo n + 1 k-0 

Then, it holds that 

(18) = 2(i, f) < ~(i, 7r) = 7/3(i, 7r) for any i E S.
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   PROOF. Dividing (10) by n + 1, let n tend to  infinity. We have from (16) that 
7r) .71)(i, 7r) for any i E S. In particular, i* = ~(i, f) ='(i, -f),  since Cp(j, f(A) 

0 for any j E S. 
   The relation between Ek=o Eir(Xk) and Ek=o EN(Xk) is given similarly as (6). 

Then (17) implies 

1  n 
1(i, 7r) = + lim supE" (Cro(Xk)) > x*. 

n-•oo n + 1 k_0 

Thus (18) is obtained, completing the proof.El 

   COROLLARY 3.4. Suppose Condition I holds. If a policy 7T E II satisfies 

(19) lim 1 Y.P" (Ak K(Xk)) = 0, for any i E S, 
                  n--^oo n + 1 

k=0 

then it E II(M) and satisfies (16) and (17). 

   PROOF. The equality (19) is written by 

n (20)lim n + 1 E E E PZ (Xk = j, Ak = a) = 0. 
k=0 jES a4K(j) 

Notice that Cp(j, a) = 0 for a E K(j). By the bounded convergence theorem, (20) implies 

(7), so that it E II(M). Since Cp(j, a) > 0 for a E K(j), (20) implies (17) similarly. 
   Let ICp(i,a)I < M for some M > 0 and for any i E S and a E A(i). Notice that 

   nnn k-1 

Ez (E (p(Xk))2 = > Ei (40(X k)2)+ 2 EE El yo(Xt)Cp(Xk)I and 
k=0 k=0k=1£=0 

E co(Xt)p(Xk)I <_ M2P"(At K(Xt) and Ak K(Xk)) 

for 0 < f < k and k = 0, 1, 2 • •. Then, (19) implies limn, EZ (>k-0 (p(Xk))2/(n+1) 
0, so that (16) holds. The proof is complete.^ 

   COROLLARY 3.5. Suppose Condition I holds. If S is finite, (18) holds for any 
~r E 11(M). 

   PROOF. By summing (5) in j E S, we see that it E 11(M) satisfies (19). Then, 
Corollary 3.4 and Theorem 3.3 implies (18) . The proof is complete. ^
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