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Abstract

We consider a wide class of shortest path problems in acyclic di-
graphs. In the problems, the length of a path is defined by using an
associative binary operation. We derive recursive equations in dynamic
programming for the problems, which involve additive, multiplicative,
multiplicative-additive, minimum and fractional shortest path problems.
A necessary and sufficient condition and two sufficient conditions for the
recursive equation to have a solution are given because for all problems
the recurcive equation does not hold. In case the equation has a solution,
a sequence which converges to the solution is proposed.

Keywords and Phrases: acyclic digraphs; associative binary operation; directed network;
shortest path problems.

1. Introduction

In this paper, we are concerned with the problem of finding a path of minimum
or maximum length from a single origin node to a few destination nodes in a directed
network G(V, A), where V is a finite set of nodes and A is a finite set of directed
arcs. Let node 1 be the origin node and let S* be the set of the destination nodes:
St = {i* € V|D(:*) = 0}, where D(i) = {j € V|(3,5) € A}. With each arc (3,5) € A
and each destination node i* € S* we associate arc length (or cost)t;; € R and terminal
reward k(i*) € R, respectively. A path p from i to i* € S* is denoted by

p= (441,72, k=1, Jk, "),
where
601,02, Jk-1, 0k EV\SY, €S, (4,41), (1, 42), -+, (k-1,Jk), (Jk, 1) € A
A length of the path p is defined by
tij, 0tj,;,0- 01

"0 tj,iv 0 k(i*)’

Jk—1Jk
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68 Y. MARUYAMA

where o : R x R — R is an associative binary operation: (zoy)oz=zo(yo z).
The objective is to find a path of minimum or maximum length which starts at the node
1 and ends at some i* € S*: ‘

Opt [tljl 0tj,j2 0 - 0lj,_j, Oljin 0 k(i*)], (1)
P
where Opt denotes either Max or min, optimizer and p is a path from 1 to i* € S*:

p=(1,71,52,- -k, &)

Here we note that optimization in (1) is taken for all paths from 1 to some i* € St. We
call this problem associative shortest path problem and denote it by (ASP).
Throughout this paper, we suppose that network G(N, A) contains no cycles and
that every node i € V is connected to all destination nodes with a path.
If S* is a single node set: S* = {N}, then the terminal reward k(7*) is meaningless.
So, in this case, we consider the following problem:

Opt [t1j, 0 tjyj, © -~ 0 tj,_,jx O tjN],
)4

where
D= (17jlyj2; .e ij: N)
Let R(o) denote a real number satisfying that

toR(o)=t forallteT, 2

where T' = {t;j 0...0tni|(4,4,...,n,4*) : path, * € §*,i ¢ St}.
Then this problem are also obtained by putting k(i*) = R(o) in the problem (ASP).

In case the binary operation o in (1) is additive, the problem (ASP) reduces to
the well-known problem, which we call the additive (shortest path) problem. In many
monographs and papers, the additive problem has been effectively solved by dynamic
programming (see, for example Bellman, Esogubue and Nabeshima (1982), Dreyfus
(1969)).

On the other hand, in case the operation is multiplicative, Ivamoto (1987), Smith
(1991) and Sniedovich (1992) derived the recursive equation to solve the shortest path
problem. Moreover, Iwamoto (1987) and Sniedovich (1992) also studied the case o =
A, V, where for any real numbers a and b

a Ab=min(e,b), aVb= Max(a,b).

Recently, Maruyama (1996) solved a wide class of shortest path problems which contains
the additive and multiplicative problems, but does not contain the case o = A V.

The problem (ASP) in this paper involves not only the additive, multiplicative, min-
imum and maximum problems but also many other problems, for example, multiplicative-
additive and fractional ones. We will derive the recursive equations for the problem
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(ASP). It is noted that the recursive equation does not necessarily hold without condi-
tions.

So, in Section 2, we give a necessary and sufficient condition and two sufficient
conditions for the recurcive equation in (ASP) to have a solution. Furthermore, we
show the uniqueness of a solution of the equation if it exists. In Section 3, we give a
sequence which converges to the unique solution in case it exists.

2. Existence and Uniquness

To solve the problem (ASP), we imbed it into the following family of problems:

fi Opt[tij, 0 tj,j, © -+ 0 tju_,jy O tjiv 0 k(i*)] ¢ ¢ S,
)4

(3)
fie = k(%) €S

where optimization in (3) is taken for all path p from i to i* € S*;
pP= (i7j1)j2) e yjk—l)jk) Z*)

In case o = + and S* = {N}, it is well known that {f;|¢ € V} is a solution of the
recursive equation

gi= Opt [tij +g;] i#N, gv=0.
JjeD(i)

On the other hand, for all associative operation, {f;|z € V'} does not satisfy the following
recursive equation (see Example 2.8):

g; = Opt [tij Og]'} ) ¢ St, gis = k(z*) e st (4)
Jj€D(i)

THEOREM 2.1 (NECESSARY AND SUFFICIENT CONDITION). The set of the optimal
values {fi,i € V} defined by (3) is a solution of (4) if and only if the problem (ASP)
satisfies the following condition:

<
< Ry > Opt [tijo fj] — Opt{tijoala € A;} Vje D(i), Vig S
J€D(i) >
<
where — denotes < and > in case Opt = min and Opt = Max, respectively, A; =

>
{tiko...0tnis o k(#)|(4, k,...,n,*) : path, ©* € S} for j & S* and A;» = {k(i*)} for
i* e St

Proor. It suffices to show only the case Opt = min. Similarly, the case Opt = Max
is proved. We assume that the problem (ASP) satisfies the condition < R; >. Let i ¢ S*
be given but arbitrary. Let (3,4, k,---,n,i*) be any path from i to i* € S*. Then

tij o (tjk o -+ o tnie 0 k(1")) 2 min{t;; o ala € 4;}. (5)
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Further, from the condition < R; >, we have
in{t;; € A;} > min [t;; 0 fj], 6
min{ts; oala € 4;) > min [t £} (®
for all j € D(3). It follows from (5) and (6) that

£ min [t 0 £ ™

On the other hand, it is easily proved that
7 < min [t;; 0 fj
fi < jeD(i)[ j o fi

Hence from (7), we get

- in [t .
fi jg};?i)[ if °fJ]

Conversely, suppose that < R; > does not hold: there exist i’ ¢ S* and j' € D(¢')
such that

jEmDi(‘},)[ti'j o fj] > min{tyj o ala € A;/}.

From this and the inequality

min{t,-:j’ oala € AJ'I} > fi,

we get
in [ti; i i’
2o 1>
Consequently, fi» does not satisfy (4). n]

- COROLLARY 2.2 (SUFFICIENT CONDITION). Let the problem (ASP) satisfy the fol-
lowing condition:

<
<Ry> ij ; Opt{t,:j oala € Aj} Vje D(l), Vig St
Then {fi|t € V} is a solution of (4).
ProoF. The condition < Ry > implies < R; >. o

COROLLARY 2.3 (SUFFICIENT CONDITION). Suppose that the problem (ASP) sat-
1sfies the following condition:

<R3> b,CEAJ', bgc:.>t,-job§t,-joc V]ED(Z), VzQSt

Then {f;|i € V} is a solution of (4).
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PROOF. Let i € St, j € D(i) be given but arbitrary. Then it holds that

i

VIA

a forallac A;.
Hence it follows from the condition < Rz > that
tijo fj ; tijoa forall a€ A;.
From this, we get
tijo fj E Opt{tijoala € A;} forall j € D(3), i ¢S,

thus, < R3 > implies < Ry >. (]

REMARK. In case S = {N}, we imbed the problem (ASP) into the following family
of problems in place of (3):

fi = Og;)t[t,-jl 0tjjz 0oty g otiN]  i#N,
fn = R(o).
So, in this case we obtain the following recursive equation instead of (4):
fi= Opt [tijofi] i#N, fn=R(o). (8)
JED(3)

REMARK. If the associative operation o is monotone on R at eacha € R: b,c €
R, b < ¢ => aob < aoc, then the problem (ASP) satisfies the condition < Rz >.
Hence in this case, from Corollary 2.3, we see that {f;|i € V'} is a solution of (4).

For example, addition is monotone on R at each a € R. Therefore the recursive
equation (4) holds for the additive problem.

REMARK. The implication is
< R3>>=> < Ry >= < R; >.
It should be noted that a gap exists between these conditions.

EXAMPLE 2.4 (MINIMUM PROBLEM). We consider the case o = A. Since this op-
eration is monotone on R at each a € k, we have

fi= Opt [t” ANfj) igS', fe=k(i*)ER i*eSh. (9)
JED

Put

Then R(A) satisfies (2). Hence in case S* = {N}, from (8) we obtain

fi= Opt [tz] AL] i#N, fn :R(/\)' (10)
JED()
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On the other hand, replacing A by V yields Maximum problem. Similarly, the results
corresponding to (9) and (10) holds for this problem, where R(A) in (10) are replaced
with

R(V) = min{tijli,j eV, (i,j) e A}

EXAMPLE 2.5 (MULTIPLICATIVE-ADDITIVE PROBLEM). In this example, we con-
sider the following associative operation: a o b = ab+ a + b. We suppose that

ti; +1>0 Vijgst. (11)

Then the problem (ASP) satisfies the condition < R3 >. Hence from Corollary 2.3, we
have

fi= Opt [(t,'j + 1)(f] +1)—-1] it ¢ St, i+ =k(i*)ER i* e St (12)
JjED(3)

For 0(= R(o)), (2) holds. Hence in case S* = {N}, from (8), we obtain

fi= Opt [t + )(f;+1)—1), i#N, fn=0. (13)
J€D(3)

REMARK. Iwamoto (1996) has introduced the operation : aob = ab+a+b in asso-
ciative dynamic programs. Now let us propose the following one parameter associative
operation:

aob= f(s;a,b) =ab+s(a+b+s—1).

Then the operation : a o b = ab + a + b and the multiplication are unified into it. If we
suppose
tij+320 Vi,j¢St,

we obtain recursive equations with the parameter s which are similar to (12), (13).

EXAMPLE 2.6 (FRACTIONAL PROBLEM). Let us consider the following asssociative
operation: aob = (a+ b)/(1 + ab). We assume that

ki*) >0 fori* €S, k(") <0 fori*est,
tij Z 0 for i g St, J e D(i), or tl] S 0 for 7 ¢ St, J € D(l)i
1>t; >0 forjg st -1<t;; <0 forj ¢St

Then the problem (ASP) satisfies the condition < R3 >. Hence from Corollary 2.3, we
get
ti' + f - t % -k t
fi= Opt [——J—]} 1¢S5, fi-=k(*)ER e St (14
ienGy L1+t f; ( )
For 0(= R(o)), (2) holds. So, in case S* = {N}, from (8), we have

tij + fj

1+mﬁ] i#N, fy=0. (15)

fi= Opt [

JjED()
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REMARK. One parameter associative operation which contains the operation: a o
b= (a+b)/(1+ ab) is as follows:

a+b+(s—2)ab
14+ (s—1)ab

aob=g(s;a,b) =

Klir and Folger (1988) and Butnariu and Klement (1993) referred to this operation in
their monographs. Under some condition on ¢;; we have recursive equations with one
parameter s which are similar to (14), (15).

In all examples stated above, {f;|: € V} is a solution of the recursive equation
(4). In what follows, we illustrate some examples in which (ASP) does not satisfy the
condition < Ry >; hence it follows from Theorem 2.1 that {f;|¢ € V'} is not a solution
of (4).

EXAMPLE 2.7. In this example we show that the problem (ASP) with the same
network satisfies or does not satisfy the condition < R; >, depending on the choice of

optimizer. Let us consider the fractional shortest path problem (aob = (a+b)/(1 + ab),
Opt = min) on a network given in Fig.1.

We have
fo = (10%00)/\(10200)/\(10200):l,
-1
fa = (10200)/\(10200)/\(50300):1.
Hence we get
in{t oa|a€A}—(201)/\(201)/\(202)—E<1— min [t1; o f;]
s 3= 57719~ " jebny P

thus, this problem does not satisfy the condition < R; >.

On the other hand, if we consider the fractional longest path problem (aob =
(a 4+ 8)/(1 + ab), Opt = Max) on the network given in Fig.1, then the problem satisfies
the condition < R; > . In fact, we have

f=l1vivi=l, f3:1v1v§=§,

Hence we get
Max ;0 5] = 2o1] Vo gl = 1V g =1
Therefore,
jIé/IDa()i)[tlj o fj] =1 = Max{tiz 0 ala € A2} = Max{t130ala € A3}.
Similarly, we can show that
jl‘\gd%)[tij o f;] > Max{t;;, cala € A;,} for all j; € D(7), i # 1,

thus, this problem satisfies the condition < R; >.
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Figure 1: directed network

In view of Example 2.7, we introduce the following notation: A,(min) and A,(Max)
denote all problems satisfying the condition < R; > in case Opt = min and Opt = Max,
respectively.

If the problem (ASP) satisfies the condition < Rz >, then it belongs to both
As(min) and A;(Max) ((ASP) € A,(min) N A;(Max)). Therefore, all the problems
which we considered in Examples 2.4 ~ 2.6 belong to both. On the other hand, the
problem in Example 2.7 belongs to A,(Max) but does not belong to A,(min). Similarly,
we can take an example of the problem satisfying that (ASP) € A,(min) and (ASP)
¢ A;(Max). Further, in the following example, we illustrate a problem which belongs to
neither A,(min) nor A,(Max).

EXAMPLE 2.8. Let us replace only the arc length ¢54 with % in the network given in
Fig.1. Then we consider the fractional problem: aob = (a + b)/(1 + ab) on the changed
network.

If Opt = min, then we obtain

1 1 4 4
f2 = (505)/\(102)/\(102)__g/\l/\l—g,
fo = (102)/\(102)/\(%03):1/\1/\%:1.
Hence we have
min{¢ §a|a€A} (201)/\(207) 17<1 min [ty; o f;]
= - = - = e .
2 3 5 19 jeDl?l) 17705
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thus, this problem does not satisfy the condition < R; > in case Opt = min. Conse-
quently, it does not belong to A,(min).

Similarly we can show that this problem does not satisfy the condition < R; > in
case Opt = Max, thus, it does not belong to A,(Max).

From now on, we consider only the problem which belongs to A,(Max) or A,(min);
hence we do not touch on such a problem as stated in Example 2.8. With this in mind,
we will next discuss the existence and uniqueness of the solution of (4).

LEMMA 2.9. Let {a;}jes, {bj}jes, {cj}jes C R and put d = Opt;c [a; o b;],
e = Optje_,[aj o ¢j], where o is an associative operator and J 1s a finite indering set.
Then there exists an index j € J such that

ld—e| < laj 0 bj — aj o ¢;]. (16)
Moreover, if b; # c;, then there exists a positive number o; satisfying that
ld—e| < ajlby — ¢l (17)
ProoF. Take k and ! satisfying
d=ayob, e=a;ocq. (18)

Then we have < <
d — ajob, e — agocg. (19)
> >

From (18) and (19), we obtain
akobk—akockjd—eialobl—a,oc;.
> >

This leads us to
|d—e] <laiobi—arocl|V |ag o by — ax o cil. (20)
Take j satisfying that

laj o by — ajo | V |ag o by — ax o cx| = |aj o bj — a;j o ¢;].

Then (16) follows. ’
Furthermore if b; # c;, then |b; — ¢j| > 0. Hence there exists a sufficiently large,
positive number a; satisfying that
laj o bj — aj o cj| < aj[bj — ¢4].
Combining this with (16), we obtain the inequality (17). ]
THEOREM 2.10 (EXISTENCE AND UNIQUNESS). Let the problem (ASP) belong to

As(min) or A;(Max). Then there ezists a unique solution of (4), where optimizer in (4)
is min and Max in case (ASP) € A,(min) and (ASP) € A,(Maxz), respectively.
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PROOF. First, from the assumption and Theorem 2.1, it follows that {f;|s € V}
defined by (3) is one solution of (4), where all optimizers are min and Max if (ASP)
€ A,(min) and A,(Max), respectively.

Second let us show that there can not be two different solutions of (4). We suppose
that {f;|i € V} and {g;|¢ € V} are two solutions of (4). Let i ¢ S* be an arbitrary but
fixed node and put

J=D(i), d= fi, e=g;, aj = &, bj = fi, ¢j = g;.
Then it follows from Lemma 2.14 that there exists j € D(i) such that (,5) € A and
|fi = gl < ltij o fj —tij o gj]. (21)
Suppose that f; # g;. Then j ¢ S*. From this and (16) in Lemma 2.14, we obtain
1fi — 9il < Itjk o fu —tjx o gxl, k € D(j).

If fv = gx, then from thisvinequality, it follows that f; = g;, which contradicts the
assumption. Hence f; # gi. So it follows from (17) that there exists a; > 0 such that

Ifi — 95 < ol fi — gil-

By continuing in the same manner, we obtain

Ifi—9il < araulfi— gl
< akal"'anlfn _gnl; (22)
where (j,k,1,...,n)isapath, fi#g, ..., fo # gn,and oy, ..., > 0. Since G(V,A)

contains no cycles, n € S* for a finite number of repetitions. Hence f, = gn = k(n), -
which contradicts (22). Therefore we conclude that f; = g;. From this and (21), it
follows that f; = g;. Since ¢ is arbitrary node of V, the two solutions are in fact
identical, which completes the proof. ]

Through the recursive equation (4), we can define the minimum (maximum) deci-
sion function 7 as follows:

7(i) = the node j € V which attains the minimum(maximum) of r.h.s. of (4).

Hence, optimal decision function 7 (-) generate a shortest(longest) path (i, 7, k,..., m,n);n €
S as follows:

j = =(3), i::w‘(j), ..., i=m(m).
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3. Successive approximation method

In this section we generate a sequence which converges to the solution of the recur-
sive equation (4); the solution found by using the sequence gives us the desired minimal
or maximal path lengths for the reason that the optimal path lengths comprise a solution
of (4) and the solution of it is unique.

The sequence {fi(k)(-)}, k=0,1,2,..., which converges to the solution of (4) can
be described as follows:

k=0:f0 =k ites, fPeRr igs (23)

k>1: /0 =k() s, V= optlyofFY igs. (24)
Jj€D(i)

where D(i) = {j € V|(i,j) € A}.

THEOREM 3.1 (SUCCESSIVE APPROXIMATION). Suppose that the problem (ASP)
belongs to As(min) or A,(Maz). Let {f(k)} k=0,1,2,..., be the sequence generated by
(23), (24). Then the sequence converges to the unique solution of (4), where optimizer
in (4) and (24) is min and Max in case (ASP) € A,(min) and (ASP) € A;(Maz),

respectively.

PROOF. Let i & S* be given but arbitrary. Let k; denote maximum of the number
of arcs used when we move along paths from ¢ to the destination nodes and k be fixed
but arbitrary number such that k; < k.

Then in the same way as in the proof of Theorem 2.15, we can show that for each
i ¢ S* there exists a path

p=(47(1),i(2),...,5(1)
such that

k_Z)l

y o1 k-1
1FE) — 1) iy © £557 = s © S

IN

IA

k-1 k-1-1
aj(z)aj(s)“'aw)lff(z) )- ,((z) ) (25)

where a;(y > 0.
If j(I) € S*, then from (25), we obtain

FE) = plk=1) (26)
In case j(I) ¢ S*, take | = k; — 1. Then since D(j(I)) C S*, we have

(k-1 k—1-1 .
f,(z) ) = f]((z) )= egg‘él))[tij o k(5)] = tije o kgjey.-

Hence, from (25) we see that (26) holds even if j(I) ¢ S*. Consequently, for each i ¢ S*

FE = gDk ki 1, (27)
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Hence, for each i ¢ S* the sequence {f,(k)} converges to the real number ﬁ(k*—l). Put
Maz;gsik; = k. Then from (27) we obtain

f,'(E) — Opt [tij of:j(f:—l)] — Opt [tij OfJ(E)] 7 g St’
JED() JED()

B = ki res
Therefore, {f*)|i € V'} is the solution of (4). O

REMARK. Let k be the same number as in the proof in Theorem 3.1 and N be
potency of the set V. Then since k < N — 1, the sequence generated by (23), (24)
converges in at most N — 1 steps.

COROLLARY 3.2. Let the problem (ASP) satisfy the assumption of Theorem 3.1.
Let {fi(k)} be the sequence generated by (24) and the following:

k=0:f0 =kG") ites, fO=optt; igs". (28)
JED(3)

Then the sequence converges to the unique solution of (4), where optimizer in (4), (24)
and (28) is min and Max in case (ASP) € A,(min) and (ASP) € A,(Maz), respectively.

PROOF. Since for i ¢ S¢, fa-(o) = Optjcpgiyti; € R, it follows from Theorem 3.1
that the sequence generated by (24) and (28) converges to the solution of (4). a

COROLLARY 3.3. Let the problem (ASP) satisfy the following condition:
(a) k(:*) = R(o) i* € S,

(b) each ti; and R(o) belong to a set A’ such that (A’,0) is a semigroup(, that is,
o: A" x A — A, associative operation),

c) the associative operation is monotone on A’ C R at each t;;, i, & S*:
3

a,bEA', aSb:}t,-joagt,-job.

Then the meaning of fi(") generated by (28) and (24) is as follows:

f,-(") = the length of the shortest(longest) path from node i to reachable node
or to i* € S* when n+ 1 or fewer arcs are used, respectively, (29)

where the length of a path (3,31, j2,...,jk,J) from i to j & S* is defined by t;;, o t;,j, ©
0ty

Proor. We will show only the case Opt = min. In the same manner, the case
Opt = Max is proved. From (28) and (a), (29) holds for n = 0. Assume (29) is true for
n. =k — 1. Then We will show the same for n = k.
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Suppose that there exists a path (7, j1,72,..., i, Ji+1), { < k such that
FE >t 0ti5, 0 0t (30)
where in case | < k, then ji;1 € S*. It follows from (24) that
t, o fF7V > £, (31)

Hence from (30), we have

(k—1)

tij, © J1 > tij, otjj, 0 0t

Therefore it follows from (b), (c) and the inductive assumption that
k-1
f;;(l ) > 151550 O tj500s

where in case [ < k, then j;;1 € S*. This contradicts the assumption of f]glk—l). Conse-
quently, we get

k .
fz( ) < pInIl<k [ti.il otjij, 0 - Otj'j"H] ’ (32)

where = (i;jlyjﬁa ... vjlxj1+1)‘
On the other hand, the reverse inequality to (32) follows from the definition of fi(k)
and the inductive assumption. Consequently, (29) also holds for n = k, which completes

the proof. a
Let
#®)(i) = the node j € V which attains the minimum(maximum) of r.h.s.
of the second equation in (24). (33)

Then in the same way as in Section 2, optimal decision function 7(*¥)(-) generates the
shortest(longest) path from node 7 to reachable node or to destination node when k + 1
or fewer arcs are used, respectively.

EXAMPLE 3.4 (a0 b= (a+b)/(1+ ab), Opt = min). We consider an example of a
network given in Fig.2. The sequence {f,-(k)},k = 0,1,2,..., can be computed suc-
cessively as shown in Table 1. Since fi(z) = fi(k), k>3, i=1~ 8, we obtain
fi = fi(Q),i = 1 ~ 8. We remark that since this problem satisfies the assumptions
of Corollary 3.3, each fi(k) has such meaning as in (29). For each i the node 7(¥)(3) is
presented in Table 2. Using the optimal decision function 7(¥)(.), we can determine the
shortest path (1,2,5,7).
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Table 1:

Node | £ | £V | 7 = i | £
e b S LR SR

3 i3 13 13
9 1| s 5 5

3 7 7 7
3 1| o2 2 2

1 3 3 3
4 2 2 2 2
5 1 3 | 3 2 3
6 3 3 3 3
7 0 0 0 0
8 0 0 0 0

Table 2:

Node | #((3) | 72 (3)

1 2 2

2 5 5

3 5 5

4 7 7

5 7 7

6 8 8

Figure 2: directed network
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