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ON ASSOCIATIVE SHORTEST PATH 

         PROBLEMS

                      By 

             Yukihiro MARUYAMA * 

                     Abstract 

   We consider a wide class of shortest path problems in acyclic di

graphs. In the problems, the length of a path is defined by using an 
associative binary operation. We derive recursive equations in dynamic 

programming for the problems, which involve additive, multiplicative, 
multiplicative-additive, minimum and fractional shortest path problems. 
A necessary and sufficient condition and two sufficient conditions for the 
recursive equation to have a solution are given because for all problems 
the recursive equation does not hold. In case the equation has a solution, 
a sequence which converges to the solution is proposed.

Keywords and Phrases: acyclic digraphs; associative binary operation; directed network; 
shortest path problems. 

1. Introduction 

    In this paper, we are concerned with the problem of finding a path of minimum 
or maximum length from a single origin node to a few destination nodes in a directed 
network G(V, A), where V is a finite set of nodes and A is a finite set of directed 
arcs. Let node 1 be the origin node and let St be the set of the destination nodes: 
St = {i* E V I D(i*) = O}, where D(i) = { j E V I (i, j) E A}. With each arc (i, j) E A 
and each destination node i* E St we associate arc length (or cost) tij E R and terminal 
reward k(i*) E R, respectively. A path p from i to i* E 5t is denoted by 

P = (Z,j1,j2, ... ,?k1,,7k, i 

* where 

                                                                                                        * 

  i,i1,j2,..•, .3k-1,jk E V \5t, i*E St, (2,,~1),(i1,i2),...,(jk—l,ik),(jk,i) E A. 

A length of the path p is defined by 

tiji o tiiJ2 0 • • • o tjk-1Jk. o tiki• o k(i*),
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where o : R x R --> R is an associative binary operation: (x o y) o z = x o (y o z) . 
The objective is to find a path of minimum orr maximum length which starts at the node 
1 and ends at some i* E St : 

                     Opt [tiil O tj1j2 O • • • O tik-1jk 0 t'ki. O k(i*A7(1) 

p where Opt denotes either Max or min, optimizer and p is a path from 1 to i* E St: 

p = (l,il,j2,.•.jk,i *)• 

Here we note that optimization in (1) is taken for all paths from 1 to some i* E St . We 
call this problem associative shortest path problem and denote it by (ASP). 

    Throughout this paper, we suppose that network G(N, A) contains no cycles and 
that every node i E V is connected to all destination nodes with a path. 

    If St is a single node set: St = {N}, then the terminal reward k(i*) is meaningless. 
So, in this case, we consider the following problem: 

                          Opt Ltlil O thi2 O ....o t2k-1fk O tikNi, 

p where 

Let R(o) denote a real number satisfying that 

t0R(o)=t for all IET,(2) 

where T = {t o ... o tni. 1(i, j, ... , n, i*) : path , i* E St, i St}. 
Then this problem are also obtained by putting k(i*) = R(o) in the problem (ASP). 

    In case the binary operation o in (1) is additive, the problem (ASP) reduces to 
the well-known problem, which we call the additive (shortest path) problem. In many 
monographs and papers, the additive problem has been effectively solved by dynamic 
programming (see, for example Bellman, Esogubue and Nabeshima (1982), Dreyfus 
(1969)). 
    On the other hand, in case the operation is multiplicative, Iwamoto (1987), Smith 
(1991) and Sniedovich (1992) derived the recursive equation to solve the shortest path 
problem. Moreover, Iwamoto (1987) and Sniedovich (1992) also studied the case o = 
A, V, where for any real numbers a and b 

aAb=min(a,b), aVb=Max(a,b). 

Recently, Maruyama (1996) solved a wide class of shortest path problems which contains 
the additive and multiplicative problems, but does not contain the case o = A, V. 

   The problem (ASP) in this paper involves not only the additive, multiplicative, min
imum and maximum problems but also many other problems, for example, multiplicative
additive and fractional ones. We will derive the recursive equations for the problem
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(ASP). It is noted that the recursive equation does not necessarily hold without condi
tions. 

    So, in Section 2, we give a necessary and sufficient condition and two sufficient 
conditions for the recurcive equation in (ASP) to have a solution. Furthermore, we 
show the uniqueness of a solution of the equation if it exists. In Section 3, we give a 
sequence which converges to the unique solution in case it exists. 

2. Existence and Uniquness 

   To solve the problem (ASP), we imbed it into the following family of problems: 

 fi = OPt[tijl O tjlj2 0 ... O t~k-l~k O tjki• O k(i*)]i St, 

P 

                                         (3) 

f . = kW) i* E St, 

where optimization in (3) is taken for all path p from i to i* E St; 

                            P = i,.11, :12, .. • , jk-1, jk, 2 

                                                                           * In case o = + and St = {N}, it is well known that {ft: E V} is a solution of the 
recursive equation 

gi = Opt [tij + gj.] i� N,grr = 0. 
                     jED(i) 

On the other hand, for all associative operation, E V} does not satisfy the following 
recursive equation (see Example 2.8): 

gi = Opt [tii o gj ] i St, gi. = k(i*) i* E St . (4) 
                jED(i) 

    THEOREM 2.1 (NECESSARY AND SUFFICIENT CONDITION). The set of the optimal 
values {f, i E V} defined by (3) is a solution of (4) if and only if the problem (ASP) 
satisfies the following condition: 

< R1> Opt [tij o fj] Opt{tij o ala E Ail Vj E D(i), Vi V St. 
              jED(i) 

where — denotes < and > in case Opt = min and Opt = Max, respectively, Ai = 

{tjk 0 ... 0 tni. O k(2*)I(~, k, ... , n, 2*) : path, i* E St} for j St and Ai. = {k(i*)} for 
i* E St. 

    PROOF. It suffices to show only the case Opt = min. Similarly, the case Opt = Max 
is proved. We assume that the problem (ASP)•satisfies the condition < R1 >. Let i St 
be given but arbitrary. Let (i, j, k, • • n, i*) be any path from i to i* E St. Then 

tij o (tjk 0 • • • 0 tni• 0 k(i*)) > min{tij o ala E Ai}. (5)
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Further, from the condition  <  R1 >, we have 

min{tij o ala E Aj } > min [tij o fj],(6) 
j ED(i) 

for all j E D(i). It follows from (5) and (6) that 

fi > jmin [tij fi].(7) 

On the other hand, it is easily proved that 

fi < min [tij o fj ] jED(i) 

Hence from (7), we get 

fi = min [tij o fj]. j ED(i) 

   Conversely, suppose that < R1 > does not hold: there exist i' St and j' E D(i') 
such that 

                jE)[ti'j o fj] >min{ti,j, o ala E 40.Dii 
From this and the inequality 

min{ti~j~ o al a E Aj'} > f #, 

we get 

min [ti,j o fj] > fip. 
j ED(i') 

Consequently, f does not satisfy (4).^ 

   COROLLARY 2.2 (SUFFICIENT CONDITION). Let the problem (ASP) satisfy the fol
lowing condition: 

< R2 > tij o fjOpt{tij o al a E Ai} `dj E D(i), V i St. 

Then { fi li E V} is a solution of (4). 

  PROOF. The condition < R2 > implies < R1 >•^ 

   COROLLARY 2.3 (SUFFICIENT CONDITION). Suppose that the problem (ASP) sat
isfies the following condition: 

<R3> b,cEAj, b < c tij ob< tij oc Vi ED(i), V iSt. 

Then { fi l i E V} is a solution of (4).
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   PROOF. Let i  St, j E D(i) be given but arbitrary. Then it holds that 

fj ‹ a for all aEAj. 

Hence it follows from the condition < R3 > that 

tij o fj tijoa for all a E A,. 

From this, we get 

tij o fj Opt{tij o ala E Ai) for all j E D(i), i St, 

thus, < R3 > implies < R2 >.0 

   REMARK. In case Si = {N}, we imbed the problem (ASP) into the following family 
of problems in place of (3): 

ft = Opt[tiii O ti1i2 o ... o tik-1ik O tjkN] i  N, 

P fN = R(o). 

So, in this case we obtain the following recursive equation instead of (4): 

               fi = Opt [tij o .fj] i ~ N, fN = R(o)• (8) 
jED(i) 

    REMARK. If the associative operation o is monotone on R at each a E R : b, c E 
R, b < c = a o b < a o c, then the problem (ASP) satisfies the condition < R3 >. 
Hence in this case, from Corollary 2.3, we see that { fi E V} is a solution of (4). 

    For example, addition is monotone on R at each a E R. Therefore the recursive 
equation (4) holds for the additive problem. 

    REMARK. The implication is 

<R3>=<R2>=<Rl>. 

It should be noted that a gap exists between these conditions. 

    EXAMPLE 2.4 (MINIMUM PROBLEM). We consider the case o = A. Since this op
eration is monotone on R at each a E K, we have 

         fi = Opt [tij A fj] i St fi• = k(i*) E R i* E Si. (9) 
jED(i) 

Put 
                 R(A) = Max{tij ~i, j E V, (i, j) E A}. 

Then R(A) satisfies (2). Hence in case St = {N}, from (8) we obtain 

.fi = Opt [tij A i N, fN = R(A).(10) 
                    jED(i)
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On the other hand, replacing A by V yields Maximum problem. Similarly, the results 
corresponding to (9) and (10) holds for this problem, where R(A) in (10) are replaced 
with 

                 R(V) =  min{tii  li,  j E V, (i, j) E A}. 

    EXAMPLE 2.5 (MULTIPLICATIVEADDITIVE PROBLEM). In this example, we con
sider the following associative operation: a o b = ab + a + b. We suppose that 

tij + l > 0 di, j V St.(11) 

Then the problem (ASP) satisfies the condition < R3 >. Hence from Corollary 2.3, we 
have 

fi = Opt [(tij + l)(fj + 1) — 1] i V St, fi. = k(i*) E R i* E St. (12) 
       jED(i) 

For 0(= R(o)), (2) holds. Hence in case St = {N}, from (8) , we obtain 

fi = Opt [(tij + 1)(fj + 1) — 1], i � N, IN = 0.(13) 
jED(i) 

REMARK. Iwamoto (1996) has introduced the operation : aob = ab + a+ b in asso
ciative dynamic programs. Now let us propose the following one parameter associative 
operation: 

aob= f(s;a,b)=ab+s(a+b+s-1). 

Then the operation : aob = ab + a + b and the multiplication are unified into it . If we 
suppose 

tij+s>0 Vi, jCISt, 

we obtain recursive equations with the parameter s which are similar to (12), (13). 

    EXAMPLE 2.6 (FRACTIONAL PROBLEM). Let us consider the following asssociative 
operation: a o b = (a + b)/(1 + ab). We assume that 

   k(i*) > 0 for i* E St, k(i*) < 0 for i* E St , 
tij > 0 for i V St, j E D(i), or tij < 0 for i V St, j E D(i), 

1> ti j > 0 for j V St , —1 < ti j < 0 for j CI St . 

Then the problem (ASP) satisfies the condition < R3 > . Hence from Corollary 2.3, we 
get 

            [iii +  fi = Opt1 + t
ia V St, fi. = kW) E R i* E St. (14) jED(i)jfj 

For 0(= R(o)), (2) holds. So, in case St = {N}, from (8), we have 

                   [tii+fi]f= Opti�N, fN=O..(15)                    jED(i) 1+ iii fj
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    REMARK. One parameter associative operation which contains the operation: a o 
b = (a +  b)/(1 + ab) is as follows: 

a+b+(s-2)ab 
a o b = g(s; a , b) = 1 

+ (s — 1)ab • 

Klir and Folger (1988) and Butnariu and Klement (1993) referred to this operation in 
their monographs. Under some condition on ti j we have recursive equations with one 

parameter s which are similar to (14), (15). 

   In all examples stated above, {fi li E V} is a solution of the recursive equation 

(4). In what follows, we illustrate some examples in which (ASP) does not satisfy the 
condition < R1 >; hence it follows from Theorem 2.1 that {Lk E V} is not a solution 
of (4). 

    EXAMPLE 2.7. In this example we show that the problem (ASP) with the same 
network satisfies or does not satisfy the condition < R1 >, depending on the choice of 
optimizer. Let us consider the fractional shortest path problem (a o b = (a + b)/(1 + ab), 
Opt = min) on a network given in Fig.1. 

    We have 

            f2 = (102 00)A(1o200)A(102o0) = 1, 
13 = (1o2o0)A(1o2o0)A(2o3o0)= 1. 

Hence we get 

min{t13o ala EA3}=(2o1)A(2o1)A(2o-7)= 17 <1= min [tiio fib 5 19jED(1) 

thus, this problem does not satisfy the condition < R1 >. 
    On the other hand, if we consider the fractional longest path problem (a o b = 

(a + b)/(1 + ab), Opt = Max) on the network given in Fig.1, then the problem satisfies 
the condition < Rl > . In fact, we have 

f2=1V1V1=1, f3=1V1V5 5. 

Hence we get 

Max [tljo fj]=[2o•1]V[20-5]=1V17=1. 
jED(1)19 

Therefore, 

        Max [Ili 0 fj] = 1 = Max{t12 o ala E A2} = Max{t13 0 ala E A3). 
jED(1) 

Similarly, we can show that 

         Max [tij o fj] > Max{tij, o ala E Aj1 } for all j1 E D(i), i 1, 
jED(i) 

thus, this problem satisfies the condition < R1 > .
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Figure 1: directed network

   In view of Example 2.7, we introduce the following notation:  As (min) and As (Max) 
denote all problems satisfying the condition < R1 > in case Opt = min and Opt = Max, 
respectively. 

   If the problem (ASP) satisfies the condition < R3 >, then it belongs to both 
As(min) and As(Max) ((ASP) E As(min) fl As(Max)). Therefore, all the problems 
which we considered in Examples 2.4 ti 2.6 belong to both. On the other hand, the 
problem in Example 2.7 belongs to As (Max) but does not belong to As(min). Similarly, 
we can take an example of the problem satisfying that (ASP) E As (min) and (ASP) 
f/ A, (Max). Further, in the following example, we illustrate a problem which belongs to 
neither As (min) nor As (Max). 

    EXAMPLE 2.8. Let us replace only the arc length t24 with 2 in the network given in 
Fig.l. Then we consider the fractional problem: a o b = (a + b)/(1 + ab) on the changed 
network. 

   If Opt = min, then we obtain 

12 = (-10-1)A(1o2)A(102)=5A1A1=5, 
f3 = (1o2)A(1o2)A(203)= 1A1A5= 1. 

Hence we have 

      min{t13oalaEA3}=(201)A(207)= 17 < 1= min [tii fj], 
5 19 jED(1)
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thus, this problem does not satisfy the condition <  R1 > in case Opt = min. Conse
quently, it does not belong to A,(min). 

   Similarly we can show that this problem does not satisfy the condition < Rl > in 
case Opt = Max, thus, it does not belong to As (Max). 

   From now on, we consider only the problem which belongs to A, (Max) or As (min); 
hence we do not touch on such a problem as stated in Example 2.8. With this in mind, 
we will next discuss the existence and uniqueness of the solution of (4). 

LEMMA 2.9. Let {aj}JEJ, {b~},EJ, {cj}jEJ C R and put d = OptjEJ[aj obj], 
e = Opt jE J [aj o cj], where o is an associative operator and J is a finite indexing set. 
Then there exists an index j E J such that 

Id—el < laj obj —aj ocjl.(16) 

Moreover, if bj cj, then there exists a positive number aj satisfying that 

Id — el<ajlbj —cjl.(17) 

    PROOF. Take k and 1 satisfying 

d=akobk, e=aloCI.(18) 

Then we have 
                 d < al o bi, e < ak o ck.(19) 

>> 

From (18) and (19), we obtain 

<  akobk—akoCk—d-e — alobl—aloC1. 
           > > 

This leads us to 
Id—el < Ialob1—alocil V lakobk — akockl.(20) 

Take j satisfying that 

!al obi—ai0 ell V lakobk — ak°ckl = laj o —aj ociI. 

Then (16) follows. 
    Furthermore if bi cj, then I bj — cj I > 0. Hence there exists a sufficiently large, 

positive number aj satisfying that 

Iaj obj —aj ocjI <ajIbj —cjl. 

Combining this with (16), we obtain the inequality (17).0 

    THEOREM 2.10 (EXISTENCE AND UNIQUNESS). Let the problem (ASP) belong to 
As(min) or A,(Max). Then there exists a unique solution of (4), where optimizer in (4) 
is min and Max in case (ASP) E As(min) and (ASP) E A,(Max), respectively.
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    PROOF. First, from the assumption and Theorem 2.1, it follows that  {  fi  I  i E V} 
defined by (3) is one solution of (4), where all optimizers are min and Max if (ASP) 
E As (min) and A, (Max), respectively. 

    Second let us show that there can not be two different solutions of (4). We suppose 
that { fi I i E V} and {gi Ii E V} are two solutions of (4). Let i St be an arbitrary but 
fixed node and put 

J=D(i), d=fi, a=9i, ai =ti ,j, bj =,fj, c3 =gj. 

Then it follows from Lemma 2.14 that there exists j E D(i) such that (i , j) E A and 

Ifi—giI<lti,ofj—tijogjl. (21) 

Suppose that f j gi. Then j St. From this and (16) in Lemma 2.14, we obtain 

If,-9jI ~Itjkofk—tjk09kl, k ED(?)• 

If fk = gk, then from this inequality, it follows that fj = gj, which contradicts the 
assumption. Hence fk # gk . So it follows from (17) that there exists ak > 0 such that 

Ifj —9jI aklfk —9kl. 

By continuing in the same manner, we obtain 

Ifj —9jI < akatlft —9tl 

                      < aka/ • an l fn — gn I ,(22) 

where (j, k,1, ... , n) is a path, ft • • • , in 0 gn, and at , ... , an > 0. Since G(V, A) 
contains no cycles, n E St for a finite number of repetitions. Hence fn = gn = k(n), 
which contradicts (22). Therefore we conclude that fj = gi . From this and (21), it 
follows that fi = gi . Since i is arbitrary node of V, the two solutions are in fact 
identical, which completes the proof.^ 

   Through the recursive equation (4), we can define the minimum (maximum) deci
sion function 7r as follows: 

r(i) = the node j E V which attains the minimum(maximum) of r .h.s. of (4). 

Hence, optimal decision function 7r(•) generate a shortest(longest) path (i , j, k,... , rn, h); n E 
St as follows: 

3 = ir(2), k = 70), ... , h = ?r(m).
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3. Successive  approximation method 

    In this section we generate a sequence which converges to the solution of the recur
sive equation (4); the solution found by using the sequence gives us the desired minimal 
or maximal path lengths for the reason that the optimal path lengths comprise a solution 
of (4) and the solution of it is unique. 

   The sequence 14°01,  k = 0, 1, 2, ... , which converges to the solution of (4) can 
be described as follows: 

k = 0 : LT) = k(i*) i* E St, f R i St . (23) 

      k > 1 : f(k) = k(i*) i* E St, AY') = Opt [tii o f ck-1)] St • (24) 
jED(i) 

where D(i) = {j EVI(i,j)EA}. 

    THEOREM 3.1 (SUCCESSIVE APPROXIMATION). Suppose that the problem (ASP) 
belongs to As(min) or As (Max). Let { f(k)}, k = 0, 1, 2, ... , be the sequence generated by 
(23), (24). Then the sequence converges to the unique solution of (4), where optimizer 
in (4) and (24) is min and Max in case (ASP) E A3(min) and (ASP) E As(Max), 
respectively. 

    PROOF. Let i St be given but arbitrary. Let ki denote maximum of the number 
of arcs used when we move along paths from i to the destination nodes and k be fixed 
but arbitrary number such that ki < k. 

    Then in the same way as in the proof of Theorem 2.15, we can show that for each 
i St there exists a path 

p = (i,j(1),j(2), ... ,j(1)) 

such that 

If(k) — f(k-1)1 < (tij(1) O f(k 1) two f((1)2)1 
                                    lk71                       <(2(3) (3)...aj(I)Ifl(kI)—f?(i)—(,(25) 

where aj(.) > 0. 
If j(1) E St, then from (25), we obtain 

                fE(k)=f(k-1E). (26) 

In case j(1) V St, take 1= ki — 1. Then since D(j(1)) C St, we have 

f(ti—) 1) = f(ti—) I-1) = Opt [tij o k(j)] = tij. o k0.). 
jED(j(I)) 

Hence, from (25) we see that (26) holds even if j(1) V St. Consequently, for each i St 

f(k) = k = ki ki + 1, .... (27)
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Hence, for each i St the sequence  {  f  (k)} converges to the real number 1k1-1). Put 
Maxivst ki = k. Then from (27) we obtain 

f(k) = Opt [tij o f (k-1)] = Opt {tij o fj(k)]i CI St, 
             jED(i)jED(i) 

f(k) = k(e)i* E St. 

Therefore, { f (k) (i E V} is the solution of (4).^ 

REMARK. Let k be the same number as in the proof in Theorem 3.1 and N be 
potency of the set V. Then since k < N — 1, the sequence generated by (23), (24) 
converges in at most N — 1 steps. 

    COROLLARY 3.2. Let the problem (ASP) satisfy the assumption of Theorem 3.1. 
Let {4°1  be the sequence generated by (24) and the following: 

k = 0 : fg) = k(i*) i* E St, f (0) = Opt tij i St. (28) 
                                        jED(i) 

Then the sequence converges to the unique solution of (4), where optimizer in (4), (24) 
and (28) is min and Max in case (ASP) E A3(min) and (ASP) E AS(Max), respectively. 

    PROOF. Since for i St, f(°) = OptjED(i)tij E R, it follows from Theorem 3.1 
that the sequence generated by (24) and (28) converges to the solution of (4). ^ 

    COROLLARY 3.3. Let the problem (ASP) satisfy the following condition: 

 (a) k(i*) = R(o) i* E St 

 (b) each tij and R(o) belong to a set A' such that (A', o) is a semigroup(, that is, 
    o : A' x A' —* A' , associative operation), 

 (c) the associative operation is monotone on A' C R at each tij, i, j St: 

a,bEA', a<b ----> tij oa< tij ob. 

Then the meaning of f(") generated by (28) and (24) is as follows: 

   fa('°) = the length of the shortest(longest) path from node i to reachable node 
           or to i* E St when n 1 or fewer arcs are used, respectively,(29) 

where the length of a path (i, j1, j2,... , jk, j) from i to j St is defined by tijl o tjlj2 o 
...otj ki 

    PROOF. We will show only the case Opt = min. In the same manner, the case 
Opt = Max is proved. From (28) and (a), (29) holds for n = 0. Assume (29) is true for 
n = k — 1. Then We will show the same for n = k.
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   Suppose that there exists a path  (i,  j1,  j2,  ,  jl,  jr+1), 1 < k such that 

                       1(k)> tii, o ti,j2 0 ... o tiiii+, .(30) 

where in case 1 < k, then ji+i E St. It follows from (24) that 

tiji of') > f(k)(31) 

Hence from (30), we have 

                            (k-1)                          ta71o jl > tz7i ot7192 0 ... o ti,ji+, . 

Therefore it follows from (b), (c) and the inductive assumption that 

                        fj(k-1)                                    l> tj~j2 0 ... o 

where in case 1 < k, then ji+1 E St. This contradicts the assumption of e-1). Conse
quently, we get 

             f< k < Pmn[tiji o tjlj2 0...o tjiji+~~, (32) 
where P = (i,j1,i2, ...,j1,jt+1). 

   On the other hand, the reverse inequality to (32) follows from the definition of f (k) 
and the inductive assumption. Consequently, (29). also holds for n = k, which completes 
the proof.^ 

   Let 

7(k)(i) = the node j E V which attains the minimum(maximum) of r.h.s. 

          of the second equation in (24).(33) 

Then in the same way as in Section 2, optimal decision function ir(k)(•) generates the 
shortest(longest) path from node i to reachable node or to destination node when k + 1 
or fewer arcs are used, respectively. 

   EXAMPLE 3.4 (a o b = (a + b)/(1 + ab), Opt = min). We consider an example of a 
network given in Fig.2. The sequence {f}, k = 0,1,2,..., can be computed suc
cessively as shown in Table 1. Since 42) = f (k), k > 3, i = 1 8, we obtain 
fi = f(2), i = 1 8. We remark that since this problem satisfies the assumptions 
of Corollary 3.3, each 1.2k)  has such meaning as in (29). For each i the node ir(k)(i) is 
presented in Table 2. Using the optimal decision function r(k)(•), we can determine the 
shortest path (1, 2, 5, 7).
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Table  1:

Table 2:

Figure 2: directed network
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