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RE-EXAMINATION OF MARKOV POLICIES FOR 
      ADDITIVE DECISION PROCESS

                      By 

                Toshiharu FUJITA* 

Abst ract 

   The purpose of this paper is to ensure that Markov policy is enough 
for the additive decision process. We show that there exists an optimal 

policy which is Markov for both stochastic additive decision process and 
deterministic one. We also verify through a multi-stage stochastic de
cision tree method that, among the class of general policies, there exist 
an optimal Markov policy. This fact is of course obtained by solving the 
regular recursive equation.

1. Introduction 

   In this paper we consider a class of sequential optimization problems whose objec

tive function is additive. We focus our attention on the tacitly known but never clearly 

proved fact that Markov policy is enough in the so-called Markov decision processes 

(Bellman and Zadeh(1970, p. 152, ii. 19-22), Bertsekas and Shreve(1978, p.6, ii. 20-23), 
Howard(1960), Stokey and Lucas Jr.(1989), Puterman(1994), Iwamoto, Tsurusaki and 
Fujita, and others). It has long been thought that there is no room for argument on this 

point. However, we must accept a recent result that an optimal policy is not Markov 
for a certain problem especially for minimum objective function problem (Iwamoto and 
Fujita(1995), Iwamoto, Tsurusaki and Fujita). These two apparently inconsistent facts 
enable us to reconsider whether Markov policy is enough or not. 

    In section 2 we discuss the stochastic maximization of additive function. We derive 
a recursive equation both for the class of general policies and for the class of Markov 

policies. Verifying that the optimal value functions in both classes are identical, we show 
that Markov policy is enough. In section 3 we give rigorous proofs of theorems in section 
2. In section 4 we show the corresponding results for the deterministic optimization, 
which is a degenerate case of the stochastic one. In section 5, illustrating multi-stage 

stochastic decision trees, we give a two-stage stochastic decision process, a pair of optimal 
value functions, and an optimal Markov policy. The pair is also obtained by solving the 
corresponding recursive equation. 
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    Throughout the paper the following definition and notation are used  : 

    N  > 2 is an integer ; the total number of stages 

     X = {sl, s2, ... , s} is a finite state space 

     U = {al, a2, ... , ak } is a finite action space 

rn : X x U R1 is an n-th reward function (1 < n < N) 

     rG : X ---> R1 is a terminal reward function 

f: X x U —> X is a deterministic transition law 

f(x, u) represents the successor state of x for action u 

    p is a Markov transition law 
: p(ylx,u)>0 VI(x,u,y)EX xUxX, I p(ylx,u)=1 V(x,u)EX xU 

                                              yEX 

      y ti p(-1x, u) denotes that next state y conditioned on state x and action u 
     appears with probability p(yl x, u). 

2. Stochastic Maximization 

    We consider the stochastic maximization problem with additive function as follows : 

          Maximize E[ rl (xi, ul) + r2 (x2, u2) + • • + rN(xN,uN)+rc(xN -1-1)] 
       subject to (1) xn+1 ̂ ' p(• l xn, un)(1) 

(ii) un E Un = 1, 2, ... , N 

where the sequence of states {x2, x3, ... , XN+1 } together with a sequence of intermedi
ate actions {u1, u2, ..., uN} is stochastically generated through an initial state x1, the 
Markov transition law xn+l P( • lxn, un) and a (general or Markov) policy. 

2.1. General Policies 

    First we consider the problem (1) with the set of all general policies. In general, a 
policy a = {a1, 02, ... , UN} is a sequence of decision functions 

Ql:X —4U, a2:X xX —*U, ... , o'N •X x...xX-->U.(2) 
                                                                 N times 

In what follows, in order to distinguish the policy, we call this policy general policy. 
Note that the size in our data specified in (2) yields kr" n-th decision functions an (n = 
1, 2, ... , N) and ke+p2+"'+pN general policies a. 

   An application of general policy a at an initial state x1 generates stochastically the 
alternate sequence of states and actions {u1, x2, u2, x3, ... , UN, XN+1} as follows : 

Ql(x1) ='alp(• lxl, ul) ^' X2—> 
            a2(x1, x2) = U2—* p(. 1x2, U2) ̂ ' x3 

                                                                 •                                                                  

•                                                                                                                                                                               • 

QN(x1,X2, . • •,XN) = UNp(' IXN,'N) ^' XN+1.
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    We call this problem general problem. With any general policy  o• = {o-, , ... 
over the (N — n + 1)-stage process starting on n-th stage and terminating at the last 
stage, we associate the expected value : 

In(xn; a) = E ...E{[rn(xn, un) + ... + rN(xN, uN) + rG(XN+1)] 
(xn+i,...,XN )EX X ••• X X 

xp(xn+1Ixn, un) ...P(XN+1IXN, UN)} (3) 

where {un, xn+1, un+1, Xn+2, • . • , uN, XN+1} is stochastically generated through the gen
eral policy a and the starting state xn as follows : 

a(x) = 26n---> P(• I xn ) un) ^' X n+ 1 --> 
o n+1(Xn, Xn+1) _ un+1—* P(. IXn+1, un+1) '" Xn+2

(4) 

CrN(Xn7 Xn+1) ... , XN) = UN —> . I XN,UN) ̂ ' XN+1. 

We define the family of the corresponding general subproblems as follows : 

V N+1(XN+1) = rG(xN+1)XN+1 E X 

Vn"(xn) = Max P(xn; u)xn E X, 1 < n < N.(5) 

Note that the general problem (1) is identical to (5) with n = 0. Furthermore we should 
remark that the maximization for the subproblems stated above is taken for all general 
policies, namely, in problem (5) 

an: X-3U, an+1:XXX--*U, ... , cN•Xx•.•xX—+U. 
N—n+1 times 

Then we have the recursive formula for the general subproblems : 

    THEOREM 2.1. 

V N = rG (x)x E X 

V n(x) = MaUx[rn(x, u) +E n+1(y)P(yI x, n)] X E X, 1 < n < N. (6)                  uE 
yEX 

2.2. Markov Policies 

   In this subsection we restrict the problem (1) to the set of all Markov policies. We 
call this problem Markov problem. Here a policy 

                                  7r = {?rl , 7r2i • • • , 7rN 

is called Markov if 

7r1 : X U, 7r2 : X —> U, ... , 7rN:X —.U. (7)
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Thus, any Markov policy 7r with an initial state x1 yields the Markov chain on X and 
the sequence of the resulting actions as follows : 

7r1 (x1) = u1 --a p(• Ixi, ui) ^' x2-* 
r2(x2) = u2 --4 p(. I x2, u2) -• x3-> 

irN (xN) = uN --^ P(. I xN, uN) ^' xN+1 

We remark that the size in (7) yields kp n-th decision functions 7rn (n = 1, 2, ... , N) and 
kNP Markov policies 7r. 

    Note that any Markov policy 7r = {7rn, ... , 7rN } over the (N -n+ 1)-stage process is 
associated with its expected value In (2n; 7r) defined by (3), where the alternate sequence 

fun, xn+1, un+1, xn+2, • • • ,'UN, XN+1} is similarly generated as in (4). Here we remark 
that 

un = in(xn), un+1 = irn+1(xn+1), • • • , UN = lN(XN)• 

We define the corresponding Markov subproblems as follows : 

              vN+1(xN+1) = rG(xN+1)xN+1 E X 

vn (xn) = Max In (xn; 7r) xn E X, 1 < n < N. (8) 

Then (8) with n = 1 reduces to the Markov problem (1). We have the recursive formula 
for the Markov subproblems : 

    THEOREM 2.2. 

vN+1(x) = rG(x)2; E X 

vn(x) = MaUx[rn(x, u)+E vn+1(y)p(ylx, u)] x E X, 1 < n < N. (9)                   nE 
                             yEX 

   THEOREM 2.3. (i) A Markov policy yields the optimal value function V1(-) for 
the general problem. That is, there exists an optimal Markov policy 7r* for the general 
problem (1) : 

Il (xi; 7r*) = Vi (xi) for all x1 E X. 

In fact, letting 7rn* (x) be a maximizer of (9) (or (6)) for each x E X , 1 < n < N, we 
have the optimal Markov policy 7r* = {7ri , ... , 7rN }. 
(ii) The optimal value functions for the Markov subproblems (8) are equal to the optimal 
value functions for the general subproblems (5) : 

vn(x) =Vn(x) xEX, 1 <n <N+1.

3. Proof of Theorems 

    In this subsection we prove Theorems 2.1  2.3. We remark that Theorem 2.3 (i) 
implies Theorem 2.3 (ii) and that a combination of Theorem 2.1 and Theorem 2.3 (ii)
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yields Theorem 2.2. Thus it suffices to prove Theorem 2.1 and Theorem 2.3 (i). Since 
there is no essential difficulty in extending the proof to the general N-stage process, we 

prove both theorems for the two-stage process, namely, for the case N = 2. 
   We note that 

      V3(x3) =  rG(x3) 

      V2(x2) = Max E[T2(x2,u2)+ rG(x3))119(xIx2,u2)(10) 
a2 
                            x3EX 

V1(xi) = Max> E {[rl(xl,ul)+r2(x2,u2)+rG(x3)](11) 
,c r? 

xX 

xp(x2Ix1 , u1)p(x3I22 ) u2) } 

where u2 = o2(x2) in (10) and ul = o1(x1), u2 = 02(x1,x2) in (11), respectively. 
   Thus the equality 

       V2(x2) = Max[r2(x2, u2) + E V3(x3)p(x3Ix2, u2)] x2 E X 
u2EU 
                                            x3EX 

is trivial. We prove 

V1(xi) = Max[rl(xl,ul) + E V2(x2)p(x2Ix1,ui)] x1 E X.(12) 
ulEU

x2EX 

Let us choose an optimal (necessarily Markov) policy Q2 for the one-stage process : 

V2(x2) = I2(x2i 0.2) Vx2 E X.(13) 

From the definition (5), we can for each x1 E X choose an optimal (not necessarily 
Markov) policy 5 =15-1,5-2}  for the two-stage process : 

V1 (xi )  = /1(x1 i Fr) x1 E X. 

                                                                                                                                                                                                                                                    • Thus we see that 

V1(xi ) 

       = I1(xl; Fr1, 52) 

E{[rl (xi, u1) + r2(x2, u2) + rG(x3)]p(x2Ix1, ul)p(x3Ix2, u2)} (14) 
(x2,x3)EX xX 

where 
ul = 51(x1), u2 = &2(x1,x2)• 

Since 

EE {[rl(x1'u1) +r2(x2,u2) +rG(x3)]P(x21x1,u1)p(X3IX2iu2)} 
(x2ix3)EX xX 

      = E {rl (x1, ul) + E [r2 (x2, u2) + rG (x3)]p(x3 Ix2, u2) }p(x2 I x1 , u1) 
x2EXx3EX
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and 

 E [7.2(x2, u2) + rG(x3)]P(x3l x2, u2) < I2(x2; Cr;) = V2(x2) Vx2 E X, 
x3EX 

we have from (14) 

V1(xi)<[Tl(xl ui) +V2(x2)}P(x2Ixl,u1) 
                                  x2EX 

                    = Ti(xi,ui) + E V2(x2)P(x2lxi,ui). 
x2EX 

Thus taking maximum over u E U, we get 

V1(xi) < Max[ri(xi,ui) + E V2(x2)P(x21x1,u1)]Vxi E X.(15) 
ui EU 

x2EX 

    On the other hand, let for any x1 E X, u* = u* (xi) E U be a maximizer of the 
right hand side of (15). This defines a Markov decision function 

                   ?rl :X—>U  it (x1) = u* (x1). 

Then we have 

Max[ri(xi,ui) + > V2(x2)P(x2lxi,ul)] 
u1EU 
                                        x2EX 

            = rl(xl,ul) + E V2(x2)P(x2Jxi,ui) (u1 = ii(xi) )•(16) 
x2EX 

From (13), we get 

        V2(x2) = E[r2(x2, u2) + rG(x3)JP(x31x2, u2) (u2 = 0-;(x2))(17) 
x3EX 

Thus we have from (17) 

ri (xi ,u1)+ E V2(x2)P(x2Ixi,ILO(u1 = (xi )) 
                          x2EX 

     = Tl (xi, ul) + E [ E [T2(x2, u2) + rG(x3)}P(x31 x2, u2)]P(x2l x1, ul ) 
x2EX x3EX 

     = E E {[ri (xi, ul) + r2 (x2, u2) + rG(x3)]P(x2l xl, ul)P(x3I x2i u2)}.(18) 
(x2,x3)EX xX 

Combining (16) and (18), we obtain 

Max[ri(xi,ui) + E V2(x2)P(x2lxi,ui)] 
                               x2EX 

     = E E {[ri (xi, ui) + r2 (x2, u2) + rr(x3)}P(x2l xi, ul)P(x31 x2i u2)} 
(x2,x3)EX xX
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 ( U1 — ~1 (x1) , 'U2 = Q2 (x2)  ) 

     < Max E {[rl(X1,U1) +r2(x2,u2) +rG(x3)] 
al '0'2 

(x2,x3)EX X X 

xp(x2ixl, u1)p(x3lx2, U2)} 

 = V1(xl).(19) 

Both equations (15) and (19) imply the desired equality (12). This completes the proof 
of Theorem 2.1. 

   Furthermore, the equalities in (19) imply that the optimal value function V1(•) is 
yielded by the Markov policy ir = {7r1, c2 } : 

V1(x1) = I1(x1i7r) x1 E X. 

This completes the proof of Theorem 2.3 (i). 

4. Deterministic Maximization 

   In this section we consider the deterministic maximization problem with additive 
function as follows : 

           Maximize rl (xi , u1) + r2(x2, u2) + ... + rN(xN, UN) + rG(xN+1) 

       subject to (i) f (xn, nn) = xn+l(20) 

                     (ii) un E U n = 1,2,...,N. 

Note that this problem is the special case of the stochastic maximization problem (1). 
Through this section the problem (20) with the set of all general (resp. Markov) policies 

Cr = {Ql, Q2, ... , oN}(resp. 7r = {7rl, 72, ... , 7rN} ) 

is called the general (resp. Markov) problem. 
    First we consider the general problem. We associate any policy o = tun, ... , QN } 

for the (N—n+ 1)-stage process starting on n-th stage and terminating at the last stage 
with its value : 

In(xni (7) = rn(xn, Un) + ... + rN(xN, UN) + rG(xN+1)(21) 

where {u1Z7 xn+1, un+1, xn+2, ... , UN, xN+1 } is uniquely determined through a and xn 
as follows : 

Qn(xn) _ Un---1 f (xn, Un) = xn+1 
Qn+1(xn, xn+1) _ Un+1--> f (xn+1, Un+1) = xn+2 

                                            (22) 

cTN(x1, x1, • . • , xN) = UN —4 f (xN, UN) = xN+1. 

We consider the following family of subproblems : 

              V N+1(xN+l) = rG (xN-1-1)xN+1 E X 

             Vn(xn) = Maxn(x,ni o) xn E X, 1<n< N. (23)                     
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Note that the general problem is identical to (23) with n = 0. Then we have the backward 
recursive  formula  : 

    THEOREM 4.1. 

VN+1(x) rG (x) x E X 

Vn(x) = Ma
Ux[rn(x, u) + Vn+1( f(x, u))] x E X, 1 < n < N. (24)                       uE 

    Next we restrict the problem (20) to the set of all Markov policies. Note that any 
Markov policy 7r = {irn, ... , 7rN} over the (N—n+1)-stage process is associated with its 
value In(xn; 7r) defined by (21), where the alternate sequence fun, xn+1, un+l , Xn+2, • • • 
uN, xN+1 } is similarly determined through the Markov policy it and the starting state 

xn as in (22). 
    We define the corresponding Markov subproblems as follows : 

               vN +1 = rG (xN+1)xN+1 E X 

vn(2n) = Maxln(xn; 7r)xn E X, 1<n<  N. (25) 

Then (25) with n = 1 reduces to the Markov problem. We have the recursive formula 
for the Markov subproblems : 

    THEOREM 4.2. 

vN+1(x) = rG (x) x E X 

vn(x) = MaUx[rn(x, u) + vn+1( f(x, u))] x E X, 1 < n < N. (26) 

    THEOREM 4.3. (i) A Markov policy yields the optimal value function 171(•)  for 
the general problem. That is, there exists an optimal Markov policy f for the general 
problem (20) : 

.11(x1; 7r*) = V1 (x1) for all x1 E X. 

In fact, letting 7rn(x) be a maximizer of (26) (or (24)) for each x E X, 1 < n < N, we 
have the optimal Markov policy f = {711, ... , 7rN}. 
(ii) The optimal value functions for the Markov subproblems (25) are equal to the optimal 
value functions for the general subproblems (23) : 

vn(x)=Vn(x) xEX, 1 <n<N--1. 

    Since Theorems 4.1  4.3 are special cases of Theorems 2.1  2.3 respectively, each 
theorem in this section is clear. 

5. Example 

   We illustrate the following twostage, three-state and twoaction stochastic decision 
process : 

                Maximize E[ri(ui) + r2 (u2) + rG (x3) ] 

                 subject to (i) xn+1 ̂ ' P(• 'X717141)  n = 1, 2 (27) 
                        (ii) u1 E U, u2 E U
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where the data is 

 rG(s1) = 0.3 rG(s2) = 1.0 rG(s3) = 0.8(28) 

                    r2(ai) = 1.0 r2(a2) = 0.6 

ri(ai) = 0.7 r1(a2) = 1.0

    In order to solve the problem, we directly generate one and two stage stochastic 
decision trees and enumerate all the possible histories together with the related expected 
values. We call this brute force enumeration method a multi-stage stochastic decision 
tree method. For any given policy, this tree method traces all the resulting histories. 
Then it yields the value of the policy. Further, from among all general policies, it selects 
an optimal policy together with the sequence of optimal value functions. The multi
stage stochastic decision tree method is also applies to nonadditive problems (Iwamoto 

and Fujita(1995), Iwamoto, Tsurusaki and Fujita).                                   01(Si)) 
   We remark that the size yields 23 = 8 first decision functions al =0-1(s2) 

al (s3) 
and 23'3 = 512 second decision functions 

                        0-2(si,si)0-2(s2,si)0-2(s3,s1) 
a2 =a2(Si,s2) 02(32,82) a2(s3,s2) • 

a2(si,s3) a2(s2,s3) a2(33,s3) 

As a total, there are 8 x 512 = 4096 general policies a = {al, a2} for the problem (27). 
   First, we have from definition (28) 

               V3(si) = 0.3, V3(s2) = 1.0,V3(s3) = 0.8. (29) 

Second, the decision tree in Figure 1 shows 

V2(s1) = 1.53, V2(32) = 1.82, V2(s3) = 1.42. (30) 

Third, the enumeration in Figures 2, 3 and 4 calculates the maximum expected values : 

V1(si) = 2.791, V1(s2) = 2.548, V1(s3) = 2.431. (31) 

The calculation yields, at the same time, the optimal policy a* = {al (xi), a; (xi, x2)} : 

al(si) = a2, 01(s2) = a2, ai(s3) = a2
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o (si, si) = a2, o (s2, si) = a2,o2 (s3, si) = a2 
0.;(311 82) = a1, o (s2,s2) = al or a2i 0.2(S3,s2) = a1 
o (si,s3) = al or a2, 0"2(s2,s3) = al,o-2(S3,s3) = al. 

Thus the general policy Q* reduces a Markov policy 7r* = {711(x1), 7r(x2)} : 

it (sl) = a2, iri (s2) = a2, iri (s3) = a2 

i2(si) = a2, 7r2(82) = al, i2(s3) = al. 

Thus, the Markov policy f is optimal. Finally we remark that the pair of optimal value 
functions (29),(30),(31) and the optimal Markov policy 7r* is also obtained by solving 
either the corresponding recursive equation (6) or (9). Solving the latter is the so-called 
dynamic programming method. 

Figure 1 : all one-stage behaviors from sl, s2 and s3, and selection of maximum branch 

V2(x2) = Max E [r2(u2) + TG(x3) ]p(x31x2, u2) x2 = S1, S2, 53 
x3EX

In Figure 1 we use the following list of simplified notations :
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history = x2 r2(u2)  /  u2 p(x3 I x2, u2) x3 
ter. = terminal value = rG (x3 ) 
path = path probability = p(x3 I x2, u2) 
sum = sum of the two = r2(u2) + rG (X3) 
mult. = path x sum 
exp. = expected value.

Further, the italic face means probability, and the bold face denotes a selection of maxi

mum of up expected value or down.
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 Figure  2  : all two-stage behaviors from sl and selection of maximum branch 

(V'(si) = Max E {[rl (ul) + r2(u2) + rG(x3) ]p(x2Isl, ul)p(x3Ix2, u2)} ui,u2 

(x2,x3)EX xX
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Figure  3  : all two-stage behaviors from s2 and selection of maximum branch 

V1 (s2) = Max E {En (ui) + r2(u2) + rG(x3) ]p(x2Is2, u1)p(x3Ix2, u2)} 
ui,u2 

(x2,x3)EXxX
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Figure 4 : all two-stage behaviors from  s3 and selection of maximum branch 

V1(s3)  = Max{[ rl \u1) + r2(u2) + rQ(x3) ]p(x2153, u1)P(x31x2, u2)} 
ui,u2 

(x2,x3)EX xX
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In Figures  2,3 and 4 we use the following notations: 

 history = x1 ri(ui) / u1 p(x2 I x1, U1) x2 r2(u2) / u2 p(x3 I x2, u2) x3 

 ter. = terminal value = TG(X3) 

 path = path probability = p(x2 I x1, nl )p(x3 I x2, u2) 
sum = sum of the three = r1(u1) + r2(u2) + rc(x3) 

 mult. = path x sum 

 sub. = subtotal expected value 

 total = total expected value.
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