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 INDUCED FROM AN INEQUALITY STATE 
            CONSTRAINT *

                       By 

              Hidefumi KAWASAKIt 

                      Abstract 

   In this paper, we deal with a max-type function S(x) := maxtET f (x(t), t), 
where x is a ndimensional vector-valued continuous functions. This 
max-type function is induced from an inequality state constraint f (x(t), t) < 
0, which appears in variational problems and optimal control problems. 
We give formulae for first and second-order directional derivatives of 
S(x). We show that the one-side state constraint x(t) > a(t) always 
forms an envelope except two trivial cases.

1. Introduction 

   In this paper, we deal with a max-type function: 

S(x) := ma
Tx f (x(t), t) x E X,(1.1)                                    tE 

where T is a compact metric space, X is a subspace of the set of all ndimensional 
vectorvalued continuous functions C(T)n equipped with the uniform norm, and f (x, t) 
is a continuous function defined on Rn x T . This max-type function is induced from an 
inequality state constraint: 

f (x(t), t) < 0 for all t E T,(1.2) 

which appears in variational problems and optimal control problems. For instance, a 
variational problem to find the shortest path in R2 joining two given points P and Q 
that does not transverse the unit ball is formulated as follows: 

                f1MinimizeV±i + 4dt 
                     subject to (x1(0),x2(0)) = P, (x1(1),x2(1)) = Q, 

                     1 — xi(t)2 — x2 (t)2 < 0 dt E [0,11.
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Fig. 1.1

There are two aims in this paper. First one is to give formulae for first and second-order 
directional derivatives of  S(x)• The other is to show that the one-sided state constraint 

                  x(t) > a(t) for every t,(1.3) 

where a(t) is a given continuous function, always forms an envelope except two trivial 
cases: 

              x(t)  a(t),(1.4) 

                  x(t) > a(t) for every t.(1.5) 

    By the way, there are many papers that dealt with another max-type function: 

So(x) := ma
Tx f (x, t), x E Rn(1.6)                                     tE 

or an optimal value function: 

Sl (x) := max f (x, t), x E Rn,(1.7) 
t ETx 

where Tx is a subset of T that depends on x, see Clarke (1975), Correa (1985), Danskin 
(1967), Dem'yanov (1974), Demyanov and Zabrodin (1986), Hettich and Jongen (1978), 
Ioffe (1989), Kawasaki (1988a) (1988b) (1991) (1992) (1995), Shiraishi (1995), Seeger 
(1988), and Wetterling (1970). The functions So(x) and Si(x) appear in Tchebycheff 
approximation and sensitivity analysis, respectively. If we take as X the set of all 
constant functions {x E C(T)n I x(t)  constant m-vector}, then S(x) reduces to So(x). 
So S(x) inherits some properties from So(x), which will be discussed in Sections 2 and 
3. By the way, the max-type function So(x) often forms an envelope, and so does S(x). 
Concerning the one-sided state constraint, we will prove, in Section 4, a stronger result, 
that is, it always forms an envelope except two trivial cases. 

2. Continuity and Differentiability 

   We begin this section with our notation. We denote by ff and ffx the gradient 

(row) vector and the Hesse matrix of f w.r.t. x, respectively. We denote by T(x) the 
set of all extreme points of f (x(t), t), that is, 

                T(x) := {t E T ; f (x(t), t) = S(x)}.
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    THEOREM 2.1. The max-type function S(x) is continuous on  X. 

   PROOF. Assume that xn converges to x. Then, since f (x(t), t) is continuous on 
the compact set T, there exists to E T such that 

S(xn) = f (x(tn), tn).(2.1) 

Now, let xni be a subsequence satisfying 

limsup S(xn) = lirn S(xn,).(2.2) 
n--~+oon'--.+oo 

By choosing a subsequence of xn, again, we may assume that t, ' converges to some 

t E T. Then it is easily seen that 

               n,limoof (xn' (tn' ), tni=f (x(),55(x). (2.3) 

Combining (2.1), (2.2), and (2.3), we have limsup S(xn) < S(x). On the other 
hand, since S(xn) > f (xn(t), t) for every t E T(x), we have 

1mi f S(xn) > liminf f (xn(t), t) = f (x(t), t) = S(x). 

Hence S(x) is continuous. 

   THEOREM 2.2. If fx(x, t) is continuous on Rn x T, then S(x) is directionally dif
ferentiable in any direction y E X, and its directional derivative is given by 

S'(x; y) = max{ fx(x(t), t)y(t); t E T(x)}.(2.4) 

   PROOF. For any t E T(x) and e > 0, it holds that 

S(x + Ey) — S(x)  f(x(t) + Ey (t), t) — f(x(t),t)  
   e _ 

= fx (x(t) + py(t), t)y(t) 

for some 0 < p < E. Tending e to +0, we have 

liminf S(x + Ey) — S(x) > fx (x(t), t)y(t).(2.5) 
e—++0 

On the other hand, there exists a sequence en —p +0 such that 

            limsupS(x + Ey) — S(x)= limS(x + eny)—'S(x).(2.6) 
      e—~ } 0n-'ooEn 

For each en, there exists to E T such that 

                 S(x + Eny) = f (x(tn) + eny(tn), tn).(2.7)
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By choosing a subsequence, we may assume that  to converges to some t E T. Tending 
n to +oo in (2.7), we get from the continuity of S(x) that 

S(x) = f (x(), D. 

Thus t E T(x). Furthermore, it holds for some 0 < pn < En that 

S(x + Eny) — S(x)< f (x(tn) + Eny(tn), tn) — f (x(t 71), tn)  
   EnEn 

                        = fx(x(tn) + pny(tn) , tn)y(tn)• (2.8) 

Since fx is continuous, the right hand-side of (2.8) converges to fx(x(t'), )y(t'). Hence 
we have 

              limsupS(x + Ey) — S(x)5 _ fx(x(t), )y( ). (2.9) 

Combining (2.5) and (2.9), we get the conclusion. 

    As a special case, let us consider the one-sided state constraint: 

                   x(t) > a(t) for every t E T(2.10) 

where a E C(T) is given. In order to apply Theorem 2.2, we take f (x, t) := a(t) — x. 
Then, since fx = —1, we readily get the following result: 

    COROLLARY 2.3. The directional derivative of S(x) induced from the one-sided 
state constraint (1.3) is expressed as: 

                 S'(x; y) = — min{y(t) ; t E T(x)} 

for any y E C(T). 

    Taking constant functions as x(t) and y(t) in Theorem 2.2, we get Danskin's formula 
(1967): 

    COROLLARY 2.4. If fx(x, t) is continuous on Rn x T, then S(x) is directionally 
differentiable in any direction y E Rn and its directional derivative is given by 

S'(x; y) = max{ fx(x, t)y; t E T(x)}.(2.11) 

3. Second-order directional derivative 

   In this section, we consider a second-order directional derivative of S(x). The upper 
second-order directional derivative of S(x) at x in the direction y is defined by 

             S"(x; y) = limsupS(x + Ey) — S(x) — ES'(x; y)(3.1) 
          F~+OE2
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   In order to describe the second-order directional derivative, we need the following 
sets  K(u,v), K(y), and a function E(t) that were introduced in Kawasaki (1988b). For 
any u, v E C(T), we define 

K(u,v) := {w E C(T) ; 3o(1) s.t. 02u+ 8v + w + o(1) E C+(T) d9 > 01, (3.2) 

where C(T) := {z E C(T) ; z(t) > 0 V t E T} and o(1) is an element of C(T) such that 
o(1) —* 0 as 0 ---> +oo. It is evident from the definition that w E K(u, v) if and only if 

              w(t) > 92u(t)  9v(t)  o(1) for all t E T.(3.3) 

   For any u E C(T) and v E C(T) that satisfies 

                 v(t) > 0 if u(t) = 0,(3.4) 

the set K(u, v) is characterized by an upper semicontinuous function E(t) that is defined 
by (3.5) below, see Kawasaki (1988b): 

              max {limsup-------; {tn} satisfies (3.6)} , if t E To, 
  E(t) := 0if t E TAM,  

                 v(t(3.5)       o0otherwise, where To :=ft e TI3to -a t s.t.2~(tn) > 0,u(tnn))—~ +oo(3.6) 
                                                      Tl := {t E T I zi(t) = v(t) = 01.(3.7) 

That is 
            w E K(u, v) if and only if w(t) > E(t) for every t. (3.8) 

    THEOREM 3.1. Let x(t) and y(t) be arbitrary functions in C(T)Th. Assume that fx 
and fxx are continuous on Rn x T. Then it holds that 

S(x; y) = max2y(t)T fxx(x(t), t)y(t) + E(t) ; t E T(x; y) , (3.9) 
where T(x; y) := {t E T ; S'(x; y) = fx(x(t), t)y(t)} and E(t) is defined via (3.5) by 
taking 

         u(t) = S(x) — f (x(t), t), v(t) = S'(x; y) — fx(x(t), t)y(t). (3.10) 

    PROOF. For each t and for any 6 > 0, there exists 0 < pt < 1 such that 

f (x(t) + Ey(t), t) 

                                          2 

       = f(x(t), t) + Efx(x(t), t)y(t) +y(t)Tfxx(x(t) + ptEy(t), t)y(t) 

       = f (x(t), t) + efx(x(t), t)y(t) +  y(t)T fxx(x(t), t)y(t) 

c.2 

          +y(t)T {fxx(x(t) + ptEy(t), t) — fxx(x(t), t)}y(t) 

2 

       = f (x(t), t) + Efx(x(t), t)y(t) + 2 y(t)T fxx(x(t), t)y(t) + 0(62). (3.11)
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Here we note that 0(E2) is uniform w.r.t. t. Thus we have 

 u(t) v(t) 
E2 

      = -
E2 {f (x(t), t) + Efx(x(t), t)y(t) — S(x) — ES'(x; y)} 

      = — 2 y(t)T fxx(x(t), t)y(t) + —2 {f (x(t) + ey(t), t) — S(x) — ES' (x; y)}, (3.12) 
where the last equality follows from (3.11). Now, put wr (t) := r — a y(t)T fxx (x(t), t)y(t) 
for any r > 0. Then, regarding E as 0 in (3.3), we see from (3.12) that wr belongs to 
K(u, v) if and only if 

       r>e2 { f (x(t) + Ey(t), t) — S(x) — eS'(x; y)} + o(1) for every t, (3.13) 
which is equivalent to 

             r>e2 {S(x + ey) — S(x) — ES'(x; y)} + o(1),(3.14) 
which is, furthermore, equivalent to 

                r > 3" (x;  y)•(3.15) 

On the other hand, we see from (3.8) that Wr belongs to K(u, v) if and only if 

r >2y(t)T fxx(x(t), t)y(t) + E(t) for every t E T.(3.16) 
Combining (3.15) and (3.16), we get the desired result. 

    Let us consider the one-sided state constraint (1.3) again. Then , since f (x, t) = 
a(t) — x, we have fxx = 0. Hence we readily get the following result: 

    COROLLARY 3.2. The upper second-order directional derivative of S(x) induced 
from the one-sided state constraint (1.3) is expressed as: 

S"(x; y) = max{E(t) ; t E T(x;y)},(3.17) 

where T(x; y) = {t E T ; S'(x; y) = —y(t)} and E(t) is defined via (3.5) by taking 

            u(t) = S(x) + x(t) — a(t), v(t) = S'(x; y) + y(t). (3.18) 

   Taking constant functions as x(t) and y(t) in Theorem 3.1, we get the following 
formula due to Kawasaki (1988b): 

   COROLLARY 3.3. Let x and y be arbitrary points in R". Then it holds that 

So(x; y) = max2yT fxx (x, t)y + E(t) ; t E T (x; y) , (3.19) 
where E(t) is defined via (3.5) by taking 

            u(t) = So(x) — fix , t), v(t) = So(x; y) — fx(x, t)y. (3.20)
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4. Envelope 

   In formula (3.19), the function E(t) fills the gap between the second derivatives 
of  f  (x,  t) and that of the envelope So(x). A typical example was given in (1988b), 
see Example 4.1 below. In this section, we consider an envelope formed by inequality 
constraints. 

EXAMPLE 4.1. Let us consider a family of straight lines f (x, t) = 2tx—t2, where t E [0, 1] 
and x E R. It is evident that it forms an envelope So(x) _ x2, (0 < x < 1), see Fig. 4.1. 
Hence S(;(0; y) = y2 for any y > 0 and fxx (0, t) E. 0. This fact indicates that there is a 
gap between the second-order directional derivatives of the max-type function So (x) and 
those of the constituent functions f (x, t). On the other hand, it is directly computed 
from the definition that E(0) = y2 for every y > 0, which fills the gap. 

         So(0; y)= max2yTfxx (0, t)y + E(t) ; t E T(0; y) 
                 = E(0) = y2

Fig. 4.1

As was noted in Section 1, the max-type function S(x) is an extension of So(x). Hence 
inequality state constraints sometimes form envelopes, also. Concerning the one-sided 
state constraint x(t) > a(t), we can prove a stronger result. That is, it forms an envelope 
not sometimes but always except two trivial cases (4.1) and (4.2) below. 

   THEOREM 4.2. Let T be a connected compact metric space. Assume that -(t) does 

not satisfy neither 

               x(t) E. a(t),(4.1) 

nor 

                  x(t) > a(t) for every t.(4.2) 

Then there exists a function y E C(T) such that the one-sided state constraint forms an 
envelope at  in the direction y.
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   PROOF. Let y(t)  :=  —2,/x(t) — a(t) and put for E R 

            s(e) S(t + ey) = max{a(t) — t(t) — ey(t)} 

               = max{a(t) — t(t) +2e/t(t) — a(t)} 

Then s(e) is a standard maxfunction: 

s(e) = maTx{20r—r2} 

Furthermore, by the assumption, the image of T by the continuous function \/x(t) — a(t) 
is a compact interval T' := [0, t1] with t1 > 0. Hence s(Z;) is same with the function in 
Example 4.1, so that an envelope is surely formed. 

   We close this paper with considering a special case where T is a finite set {1, ... , m}. 
In this case, C(T) = R"1t and the one-sided state constraint reduces to 

x(j)>a(j) for every j=1,...,m, 

which means m cuttings like Fig. 4.2 below (m = 3).

Fig. 4.2

Hence no envelope is formed by them. Similarly, when T is infinite set, for instance, 

T = [0,1], the one-sided state constraint can be regarded an infinite number of cuttings 
in C[0,1]. So the author thought that no envelope was formed by them, first. But that 
was not true. As we have proved in Theorem 4.1, they always form an envelope.
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