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SURVIVAL TIME REGRESSION INVOLVING 

  COVARIATE MEASUREMENT ERROR

       By 

Young K. TRUONG*t

Abstract 

   A class of deconvoluted kernel estimators is proposed to estimate the 
conditional survival, conditional cumulative hazard and the regression 
functions when the covariate is subject to measurement error. Under 
appropriate conditions, it is shown that the proposed estimators are con
sistent, and that they converge weakly to Gaussian processes. 

Key words: Conditional hazard function; Survival Function; Nonpara
metric regression; Covariate measurement errors; Deconvoluted kernel.

1. Introduction 

   Prentice (1982) considered an important problem in survival analysis which deals 
with the estimation of the failure time regression model based on censored survival data 
when the covariate is subject to measurement error. The following study was described to 
support the approach. To relate thyroid cancer incidence to gamma radiation exposure 
level, survivors of the atomic bombs in Hiroshima and Nagasaki were assigned radiation 
dose level based on the location and the individual shielding characteristics. It was 
reported that individual radiation dose estimates may differ from actual exposure levels 
by as much as 30% in an appreciable fraction of study subjects. 

   The current paper is motivated by the study described above. Specifically, let 
F(t1u) denote the conditional distribution function of a nonnegative random variable T 
given U = u. Let C be a random variable, set Y = TAG and 6 = 1(T < C). In survival 
analysis, T is usually the survival time (or failure time) or time to an event, and U is 
the covariate; C is the censoring time or withdrawal time and Y is the observable time 
which may be the time to an event or time to withdraw. Also, the indicator variable 6 
equals 1 if the event occurs on or before the censoring time (if T < C) and it equals 0 
otherwise. 
    Suppose the covariate U is subject to measurement error and is not directly avail
able; that is, it is only possible to observe U through X = U + Z, where Z is a random
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error. Given a random sample from the distribution of (X, Y, 6), it is of interest to ex
amine the covariate effect on the survival time by estimating the conditional cumulative 
hazard, the conditional survival function  S(tlu) = 1 — F(t1u) which is the probability 
that the survival time T exceeds t given U = u, the regression function E(TIU = u), 
the conditional mean of survival time T given U = u. 

   In this paper, our primary interest is on nonparametric estimation of S(t1u) in 
the sense that there will be no parametric functional form imposed on the effect of 
U on T. Moreover, the proposed procedure will be flexible enough to account for the 
censoring in the survival time and the measurement error in the covariate. To make the 
nonparametric problem identifiable, it is assumed (as in Fan and Truong (1993)) that 
the error Z has a known distribution, and it is independent of U, T and C. Also, T and 
C are conditionally independent given U. 

    In the absence of measurement errors, many approaches have been proposed for 
regression analyses with censored survival data. Parametric models are described in 
ElandtJohnson and Johnson (1980), partly nonparametric (semiparametric) methods 
are considered by Cox (1972), Miller (1976) and Buckley and James (1979). For fur
ther extensions and generalizations, see Kalbfleisch and Prentice (1980), Fleming and 
Harrington (1991), and Anderson et al. (1992). To explore structural relationships be
tween the survival time and its covariates, especially for large data sets, Beran (1981) 
proposed a nonparametric approach for estimating the survival function. See also Dok
sum and Yandell (1982), Dabrowska (1987) and the references given therein for other 
nonparametric methods. 

    For uncensored observations, regression analysis involving measurement errors has 
been an important research topic. See Fuller (1987) for a survey on linear models; Car
roll, et al. (1984), Stefanski and Carroll (1985) and Prentice (1986) for binary regression 
analyses; Armstrong (1985) for generalized linear models. To develop flexible proce
dures for exploratory data analyses, Fan and Truong (1993) proposed a nonparametric 
approach using the deconvoluted kernel method. A brief history of this development is 
given in Fan, Truong and Wang (1990, 1991). 

    For censored survival data in the presence of covariate measurement errors, Prentice 

(1982) proposed a method based on Cox's regression model. See also Pepe, Self and 
Prentice (1989). In view of the potential that bias may be introduced due to model 
misspecification in parametric or partly nonparametric estimation of the conditional 
survival function, the current approach generalizes Beran's nonparametric method by 
using the deconvoluted kernel estimator of Fan and Truong (1993) to account for the 
covariate measurement errors. 

   The rest of the paper is organized as follows. Section 2 describes the nonpara
metric methods of Beran (1981) and Fan and Truong (1993). Specifically, Section 2.1 
describes the building block of nonparametric regression for measurement errors, namely 
the method of deconvoluted density estimation. Section 2.2 discusses the deconvoluted 
kernel regression estimation and gives a summary of theoretical properties of the proce
dure. Section 2.3 summarizes Beran's nonparametric method and his asymptotic results 
along with Dabrowska's contribution in this area. Our proposed procedure is given in
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Section 2.4. Section 2.5 considers estimation of the regression function. Asymptotic 

properties of the proposed estimators are described in Section 3. Concluding remarks 
and open problems are given in Section 4. Proofs are presented in Section 5.

2. Methods 

2.1. Deconvoluted kernel density estimators 

   Given a random sample from the distribution of X = U + Z, one of the problems 
in errorsinvariables is to estimate the density function of U. To make this problem 
identifiable, it is assumed that the distribution of Z is known and that Z and U are 
independent. Also, Z has a nonvanishing characteristic function  chz(t). 

    Let Xi = U3 + Zj, j = 1, ... , n denote a random sample from the distribution of 
X =U + Z. Here Z1,... , Zn and U1,... , Un are independent and both Uj and Zj are 

not observable. Denote the characteristic functions of X and U by Ox(-) and Ou (•), 
respectively. By Fourier inversion, the density function of U is given by 

°°1O x (t)fu(u) =127rf exp(—itu)qu(t) dt =27rf exp(—itu)~ztdt. 
Thus the problem of estimating the density function of U can be reduced to the estima

tion of the function 

f00Ox(t) = exp(itx)fx (x) dx, 
which, in turn is a density estimation problem based on X. Let K(•) denote a kernel 
function; that is, K(•) satisfies conditions of a density function. Then the kernel estimate 

of the density function fx(•) of X is given by 

fx(x) = 7tbn EK{bnx-Xi)} =Kb,. *Fn, 
7=1 

where ̀ *' is the convolution of distribution functions, Kbn (x) = bV K(bn 1 x), Fn is the 
empirical distribution function of Xl, ... , Xn and the bandwidth bn is a sequence of 

positive numbers that tend to zero as n --> oo. See Silverman (1984) and Devroye and 
Gyorfi (1985) . 

   Denote the Fourier transforms of Fn(•) and K(•) respectively by 

 foocn(t) =>exp(itX) and~K(t)=exp(itv)K(v) dv. 
7=1 

Then Ox(.) is estimated by 
                   00 

           ~x(t) =fexp(itx)fx(x) dx =~n(t)0K(tbn). 
Thus a natural estimator of the density function of U is 

fn(u) =211'0°exp(—itu) t~x (t)dt                00Oz(t)
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                       f00nt)=27r exp(—itu)¢K(tbn)tdt, 

Z 

                           () 

which can be rewritten in the kernel form: 

n fn(u) = nbnKn{bn1(u — X2)},(2.1) 3=1 

where 
                f~(PK\t)  Kn(x)fexp(—itx)tb-1dt(2.2)                    00qz(n) 

is called the deconvoluted kernel. We give two examples of (2.2). 

    EXAMPLE 2.1. Normal measurement errors 

   Suppose Z has a normal distribution with OZ(t) = exp(-10-P2). If the kernel K(.) 
is the inverse triangular density such that its Fourier transform is given by OK(t) = 
(1 — t2)+. Then (2.2) yields, 

                1r1(crp2 
Kn(x) =cos(tx)(1 — t2)3expb2dt. (2.3) 

  o 

   The optimal bandwidth is given by bn = coo(log n)-1/2 with c > 1. Graphs of (2.3) 
for different values of the constant factor c are given in Fan, Truong and Wang (1991). 

    EXAMPLE 2.2. Double exponential measurement errors 

   Suppose Z has a double exponential or Laplace distribution with OZ(t) = (1 + 
o t2/4)-1. If K(•) is the Gaussian kernel K(x) exp(—x2/2), then by (2.2), 

                      —Kn(x) -----2r14b2(x2 — 1)exp—2x2.(2.4) 
                                            n The optimal bandwidth is given by bn cn-1'9 with c > 0. Graphs of (2.4) for different 

values of the constant factor c are given in Fan, Truong and Wang (1991). 
   Note that the deconvoluted kernel (2.2) depends on n and cz(•) which is different 

from the usual kernel function. The deconvoluted kernel density estimator (2.1) was 
studied by Carroll and Hall (1988), Stefanski and Carroll (1990), and Zhang (1990) and 
Fan (1991a,b). Optimal properties will be summarized in the next section.

2.2. Deconvoluted kernel regression function estimators 

    We start with nonparametric regression for complete data. Suppose (U1, T1), ... 
(Un, TO is a random sample from the distribution of (U, T), then the kernel estimator 
of the regression function m(u) = E(TIU = u) is given by 

               mn(u) —F~1TiK{bn1(u — U~)}(2.5)                      Ei
1K{bnl(u—U3)}
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where  K(•) is the kernel function and bn is the bandwidth. See Nadaraya (1964), Watson 
(1964) and Hardie (1990). 

    Next we consider nonparametric regression involving measurement errors. Suppose 
X = U + Z and consider the problem of estimating the regression function m(u) _ 
E(T I U = u) from the random sample (Xl, T, ), ... , (Xn, Tn). Here X3 = U3 + Z2) 
j = 1, ... , n; Z1, . , Zn and U1, ... , Un are independent. Since the deconvoluted kernel 
(2.2) has the effect of accounting for the measurement errors in U3, a natural estimator 
of m(u) is 

                        EniTjKn{bn1(u— X3)}        m(u)=n,(2.6)                       >i.
3-1 Kn{bn1(n — X3)} 

where Kn(•) is given by (2.2). 
   Estimator (2.6) was introduced by Fan and Truong (1993). Under appropriate 

conditions, estimators (2.1) and (2.6) can be shown to possess optimal of rate of con
vergence. These results, depending upon the smoothness of the error distribution, are 
summarized as follows. 

   The distribution of Z is said to be super smooth of order /3: if the function q5z(•) 
satisfies 

do tlli° eXP(—Itr/7) < I4z(t)I < d1ItI~ exP(103/'y) as t -* oo, (2.7) 

where do, d,, Q, -y are positive constants and 00„01 are constants. 
   On the other hand, Z is said to be ordinary smooth of order ,Q if there are positive 

constants do, di, 0 such that Oz(-) satisfies 

doI tI —a < I0z(t)I < d, ItI-13 as t  (2.8) 

   For example, normal N(0,1) with 0 = 2 and Cauchy 1/{7r(1 + z2)} with ,Q = 1 
are super smooth distributions. While ordinary smooth distributions include Laplace or 
double exponential 2-1 exp(—IzI) with /3 = 2 and Gamma arzP-1 exp(—az)/F(p) with 

=p. 

    The rates of convergence for deconvoluted kernel estimators (2.1) and (2.6) depend 
on [3 — the order of smoothness of the error distribution. They also depend on the 
smoothness of the regression function and the marginal density function. For regression 

and density functions with bounded k-th derivatives, the optimal rates of convergence 
are given in the following table.

Super smooth Rates of convergence Ordinary smooth Rates of convergence 
distributiondistribution  

N(0,1) (log n)—k/2Gamma (a, p) n—k/(2k+2p+1) 
Cauchy (0,1) (logn)—kLaplace n—k/(2k+5)

A similar table for deconvoluted density estimation is given in Fan (1991a).
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    The optimal bandwidth  bopt depends on the error distribution. For the super 
smooth error distribution of order j3, bopt = c(logn)-1/13 for some constant c depending 
only on the error distribution and the kernel function. In the ordinary case, bopt = 

cn1/(2k+2(3+1) for some constant c. Asymptotic normality of deconvoluted estimators 

(2.1) and (2.6) and confidence intervals are discussed in Fan (1991b) and Fan, Truong 
and Wang (1990). Based on simulation results reported in Fan and Truong (1993), it is 
important to know that the deconvoluted estimator (2.6) is robust to the misspecification 
of error distribution, and is significantly better than the ordinary (or naive) kernel 
method.

2.3. Kernel survival function estimators 

    In this section, we describe Beran's procedure for estimating the survival function 
S(t1u) = P(T > = u) = 1 — F(t1u), the probability that an individual's survival 
time before t, given that U = u. According to Tsiatis (1978), the observable random 
vector (U, Y, S) does not identify S(tiu) uniquely, unless the random variables T and C 
are conditionally independent given U. In our discussion, as well as in most survival 
analyses, the identifiability issue is resolved by imposing such conditional independence 
assumption. 
   Let G(t1u) denote the conditional distribution function of the censoring time C 

given U = u. Set Hi(tiu) = P(Y > t,(5 = 1IU = u),H2(t1u)= P(Y >tiU= u). By the 
conditional independence assumption, 

H1(tru) = J{1 — G(slu)} dF(slu), H2(011) = {1 — G(tiu)}S(tiu). 
                    >t 

Suppose f (t1u) is the conditional density function of T given U = u. That is, Mkt) = 
F'(t1u). Define the hazard and the cumulative hazard functions respectively by 

                 .f (tiu)ft               A(tIn) =S(tu)' A(t1u) =J(slit) ds. 
                                               o Then, 

A(t1u) =tS(sl---------u)ds = — log S(t1u), (2.9) 
and, under the conditional independence assumption, 

A(tlu) =t f (siu)ds =—tHl(dslu).(2.10)                   foS suJ0H2su 
The above relationships suggest that the problem of estimating S(t1u) and A(t1u) is now 
simplified to the estimation of two functions Hi(t1u) and H2(t1u). 

    Let (U3,17.3, 63), j = 1, ... , n, denote a random sample Lfrom the distribution of 
(U, Y,(5). Here Yi = min(T3, C3); T3 and C3 are independent given U.3, and (T3, Ci ), 
j = 1, ... , n is a random sample from the distribution of (T, C) which may or may not
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be observable. Set  Ii3 = 1-13(t) = 1(Y3 > t, 63 = 1) and 123 = 123 (t) = 1(Y3 > t). zFrom 
(2.5), kernel estimators of Hv (tin), v = 1, 2 are given respectively by 

               EnK{b                            Iv i-1(u Ili)}                                     Hvn(tIu) =3-7-t-1'v = 1,2. (2.11)                       E
3=1K{bn(u—U7)} 

Set OHin(sfu) = Hln(sIu)Hin(s-Iu). By (2.9) and (2.10), the conditional cumulative 
hazard and the conditional survival functions are estimated respectively by 

An(tI u)_ fot dHin(sJu)=                               _vOHin(YI u)(2 .12) 
           HsuHY                        2n(I)y i<t2n(aIu) 

and 
Sn(tIu) = exp ( An(tIu)).(2.13) 

Observe that (2.13) can be written as 

Sn(tIu) = exp _ OH1n(YiIu)  
Y<t H2n(Yilu) 

         _ 11 exp — OHIn(YIu) n 1OHin(YiI u) , 
Yi<tH2n(YjIu) Yi<t H2n(YIu) 

which is the product estimator proposed by Beran (1981). Under reasonable assump
tions, Beran established the uniform consistency of (2.11), (2.12) and (2.13). Dabrowska 

(1987) proved that these estimators converge weakly to Gaussian processes, and that 
these results also hold for nearest neighbour estimates. Note that (2.10) can be gener
alized to include discontinuous or jumps in H1, see Beran (1981) and Dabrowska (1987) 

for the exposition.

2.4. Deconvoluted kernel estimator of the survival function 

    Suppose the process of obtaining the values of U3 is subject to measurement errors 
and that it is only possible to observe X3 = U3 + Z3, j = 1, ... ,n with Z~ being 
independent random errors. According to (2.6), the deconvoluted kernel estimators of 
Hv(tiu), v = 1, 2, based on the random sample (X3, Y3, 6.3), j = 1, ... ,n, are given 
respectively by 

                    En_I„K{bi(u-X)} Hvn(tI u) =~jn,7nv = 1, 2.(2.14)                       E
3-1 Kn{bn1(u  Xj)} 

Here Kn(.) is the deconvoluted kernel function (2.2). Consequently, the conditional 
cumulative hazard and the conditional survival functions are estimated respectively by 

            An"tIu)  t dHin(sI u)_E OHin(YiI u) (2.15)             JH
2nH2Yu'                     0(sIu)Y i<tn(I)
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and 

 Sn(tlu) = exp ( — An(tlu)).(2.16) 

   Fan and Truong (1993) showed that estimators (2.14) possess optimal rates of 
convergence, and that they have asymptotic normal distributions (Fan, Truong and 
Wang, 1990). In the presence of censoring, it is however necessary to strengthen the 
above results to weak convergence to Gaussian processes. This will be discussed in 
Section 3.

2.5. Regression function estimation 

    The estimation of the conditional mean or regression functions is very important 
in practice. See Fan and Gijbels (1994). The regression function m(u) = E(TJ U = u) is 
given by 

                         f00m(u) =S(tlu) dt. 
                                 To make m(•) identifiable, we truncate the upper bound of the integral , i.e., 

I. 

m(u; Tu) = J S(tl u) dt,(2.17) 

                                       0 where r, < sup{t : H2(tlu) > 0}. See also Dabrowska (1987). 
    A natural estimate of the regression function is given by 

                                                          00 mn(u) = fSn(tlu) dt. 
                                       0 If the largest observation is censored, then the integral is infinite . In this case, we 

consider the estimate of the truncated mean regression function 

                                                              u mn(u) = fT                   S(tx) dt.(2.18) 

                                 In the absence of covariate measurement error, Dabrowska (1987) proved that , 
under appropriate conditions, (2.18) is consistent, and that it converges weakly to a 
Gaussian process. In this paper, we will show that the same results hold in the context 
of measurement error.

3. Asymptotic properties 

   In this section, we describe conditions under which the proposed estimators (2.14), 
(2.15), (2.16) and (2.18) will be shown to be consistent, and that they converge weakly 
to Gaussian processes. 

   The following condition is required for solving the identifiability problem mentioned 
earlier. 

Condition 1 The random variables T and C are conditionally independent given U .
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    The next condition is standard in nonparametric regression. 

Condition 2 (a) Let a < b. The marginal density  fu  (•) of the unobserved U is bounded 
    away from zero on the interval [a, b], and has a bounded second derivative. 

(b) For t > 0, the functions Hl (t( u) and H2 (tIu) have continuous second derivatives (as 
    functions of u) on [a, b]. 

   Recall that Tu < sup{t : H2 (tl u) > 0}. Hence Hi (Tu I u) and H2 (Tu I u) are bounded 
away from zero. 

    Our asymptotic results depend on the smoothness condition of the error distribu
tion, which will be described in the next two subsections. 

3.1. Ordinary smooth error 

   This subsection considers the asymptotic properties of (2.14) — (2.16) and (2.18) 
involving ordinary smooth measurement errors. 

   The first part of the following condition ensures that the estimators (2.14) are well 
defined. The remaining deals with tail behaviors of the error distribution, which is 
satisfied by most ordinary smooth distributions such as double exponential and gamma 
distributions. 

Condition 3 The characteristic function of the error distribution Oz(-) does not vanish. 
Moreover, there are constants 0 > 0, c � 0 such that 

(1)z(s)S'3 —4 c, C6z(s)sa+1 — _/3c as s --> 00. 

   In order for the bias term to achieve the desirable rate of convergence, the kernel 
function K(•) satisfies 

Condition 4 The function (1>K(•) is symmetric with f I44)I < a, 0K(0) = 1 and 
(K(v) = 1 + O(Ivl2) as v —* 0. Moreover, 

f:IKvI + IO'K(v)I}1vf13+1 dv < oo, JI0K(v)121v12,3+2 dv < oo. oo 

   The above condition implies that the kernel function 

                K(x) = (27)-1 fexP(ivx)K(v)dv 
                                               is a second order kernel; that is, 

      f~r~f~K(x) dx = 1,J xK(x) dx = 0, Jx2 K(x) dx < co.                                     00 

Moreover, there is a positive constant D such that 

1K(x)1 < D(1 + IxI4)-1 

   We start with the key result of the paper, which considers the weak convergence of 
the estimators (2.14).
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    THEOREM 3.1. Suppose Conditions  1-4 hold  and that bn -* 0 such that nbn0+1 -* 
0o and nb22+5 -+ 0 as n --> 00. Then the process -Vnbr+1(Hln(tl u) -Hi (tI u), H2n(tI u) 
H2(tIu)) converges weakly in D[0,Tu] xD[0,Tn] to a twodimensional mean zero Gaussian 
process (Wi(sju),W2(tlu)) with covariance function given by 

cov{Wi(sJu), W3 (tin)} 
1-------------f dv Ivj213I0K(v)I2dFz(z) fu(u  z)         27rIcl2fu(u)f 

x {Hmin{io} (tI u  z)  Hi (sI u  z)Hi (tin  z) (3.1) 
+ (Hi(sIu  z)  Hi(sJu))(Hi(tJu  z)  Hj(tlu))}, i, j = 1, 2. 

    Observe that when there is no measurement error; that is, Z = 0 with probability 
1, the above formula of the covariance is simplified to 

cov{WW(siu),Wj(tlu)} = fu(uf K2(v)dv{Hmin{i,j}(tiu)Hi(sju)Hj(tiu)},i,j = 1,2, 
which is identical to the one given in Dabrowska (1987). 

    It follows from the Skorokhod's construction that \/nb22+1(Hin(sJu)  Hi(siu), 
H2n(tiu)  H2(tiu)) converges almostly surely to (Wi(sju), W2(tju)) in the supremum 
metric on [0,7-n] x [0, Tu]. Hence, we conclude that 

    COROLLARY 3.1. Suppose Conditions 1-4 hold and that bn -* 0 such that nbr+1 --p 
0o and nbn13+5 — 0 as n -* co. Then 

     sup I H„n(si u)  H1(si u)I = Op {(nb1)_h/2}, a < u<b, v = 1,2. 
S<T 

    Consequently, we obtain the consistency of An, Sn and mn as defined by (2.15), 
(2.16) and (2.18), respectively. 

    COROLLARY 3.2. Suppose Conditions 1-$ hold and that bn -* 0 such that nbn0+1 -> 
oo and nbna+5--,0 asn -->oo. Then, for a<u<b , 

             sup IAn(slu)  A(sju)I = Op {(nb1)_h/2}, 
S<T 

             sup ISn(slu) — S(slu)I = Op {(nbi3+1)_h/2}S <Tu 
and 

I mn(u; r)  m(u; r)( = Op {(nb,1)_h/2}. 
    In the absence of measurement errors, under fairly general conditions, Beran (1981) 

showed that sups<Tu I Hvn(sIu) H„(sIu)I = o(1) almost surely. In proving this result, it 
is crucial that the kernel function K(•) is nonnegative so that Glivenko-Cantelli theorem 
can be applied to yield the uniformity and the almost sure convergence. The situation 
becomes more complicated when there is measurement error, since the deconvoluted 
kernel weight may be negative. Nevertheless, these results are valid for convergence in 
probability by virtue of the Skorokhod construction. 

   The next result deals with the weak convergence of An and Sn.
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    THEOREM 3.2. Suppose Conditions 1-4 hold and that  bn --> 0 such that nb2n0+1 -4 

co and nb2nQ+5 -4 0 as n - oo. Then the processes v"nb243+1(An(tl u)  A(tl u)) and 
Vnb2n13+1(Sn(t1u)  S(t1u)) converge weakly in D[0, 1-u] to mean zero Gaussian processes 
with covariance structures given by I'1(s, tin) and S(siu)S(tiu)Fi (s, tiu), respectively. 

   In the absence of measurement errors, it follows from integration by parts (see Bres
low and Crowley (1974)) that the asymptotic covariance function of /nb2n13+1(An(tiu)
A(tiu)) is given by 

ri (s, tin) =f K2 (v) dvsntA(dziu) fu(u)Jo H2zu 
See Dabrowska (1987). The formula is quite complicated in the presence of measurement 
errors. 

   According to (2.17) and (2.18), the next result follows easily from the weak con
vergence of -Vnb2nQ+1(Sn(tiu)  S(tlu)) 

    COROLLARY 3.3. Suppose Conditions 1-4 hold and that bn -> 0 such that nb2n0+1 -4 
oo and nbna+5 -> 0 as n - oo. Then Vnb2n'3+1(mn(u)  m(u)) converges weakly to a 
mean zero Gaussian distribution with variance given by 

               fTurTuJS(siu)S(tiu)Fi (s, tin) ds dt. 
                       3.2. Normal error 

   This subsection considers the asymptotic properties of (2.14)  (2.16) and (2.18) 
when the covariate is subject to normal measurement error. 

Condition 5 Z  N(0, o) and the deconvoluted kernel is given by (2.3). 

   Set 
an = crn(u) = bn1VE (Kn{bn1(IL  Xi)})• 

   THEOREM 3.3. Suppose bn = a0{13(log log n)(logn)1}(logn)-1/2 and that Con
ditions 1, 2 and 5 hold. Then the process (Oi/Un)(Hin(tiu)  Hi (tiu), H2n(tiu) — 
H2(t1u)) converges weakly in D[O, Tu] x D[0, Tu] to a twodimensional mean zero Gaussian 
process. 

    In the case of ordinary smooth errors, the covariance function of the limiting Gaus
sian process is given by (3.1). There is no simple formula for the limiting covariance 
function of the above Gaussian process when the covariate measurement error is normal. 
This is due to the fact that, for normal errors, the variance of the deconvoluted kernel 

estimator converges to zero much slower than the bias term; see Fan and Truong (1993). 
It also explains why a different normalization is used in establishing the asymptotic 
distribution of (2.14). 

    The next result follows from the Skorokhod's construction.
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   COROLLARY 3.4. Suppose  bn = o0{1 — 3(log log n)(log n)-1 }(log n)-1/2 and that 
Conditions 1, 2 and 5 hold. Then 

Sup I Hvn(sI u) — HL(sl u)I = O (on//), a < u < b, v = 1, 2. 
S<Tu 

Moreover, 

Sup IAn(slu) — A(slu)I = Cr(cfn/,F), sup ISn(slu) — S(slu)I = op(Qnl \ 1t) 
S <TuS <Tu 

and 

lmn(u;Tu)—m(u;ru)I =0p(onI\ )• 

   According to (4.11) of Fan, Truong and Wang (1990), 

I Kn(-)I = 0 (b7n.4 exp{o /(2bn)}) 

It follows from bn = o0{1 — 3(log logn)(log n)-1}(logn)-1/2 that cn// —* 0. Hence, 
the above results generalize the consistency results of Beran (1981) to the situation when 
the covariate is subject to normal error. 

    The next result considers the weak convergence of An and Sn for normal covariate 
measurement errors. 

   THEOREM 3.4. Suppose bn = cr0{1 — 3(log log n)(log n)-1 }(log n)-1/2 and that 
Conditions 1, 2 and 5 hold. Then the processes (J/Qn) (An(tl u) — A(tl u)) and (fi/Un) 
(Sn(tl u) — S(tl u)) converge weakly in D[0, Tu] to mean zero Gaussian processes. 

    Consequently, Corollary 3.3 is also valid for normal errors as given in the next 
result. 

COROLLARY 3.5. Suppose bn = (roll  — 3(log log n) (log n)-1 } (log n)-1/2 and that 
Conditions 1, 2 and 5 hold. Then (J/O'n)(mn(u) — m(u)) converges weakly to a mean 
zero Gaussian distribution. 

   Suppose the limiting covariance function of (Vii/O'n)(An(tlu) — A(tlu)) is denoted 
by r2(s,tlu). Then the limiting covariance function of (//Un)(Sn(tlu) — S(tlu)) is 
given by 

S(slu)S(tlu)r2(s, tlu), 

and the limiting covariance function of (//Qn)(mn(u) — m(u)) is 

               Tu jrfS(sIu)S(tlu)r2(s,tlu)dsdt. 
                        Proofs of these results are given in Section 5.
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4. Concluding remarks 

   Based on Beran (1981) and Fan and Truong (1993), the paper considers a new de
convoluted kernel method to estimate regression models involving censored survival data 
when the covariate is subject to measurement error. The approach is nonparametric, 
making no assumption about the functional form of the covariate effect, except for the 
smoothness conditions. Under appropriate conditions on the the marginal density and 
the conditional distribution functions, it is shown that the proposed estimators (2.14), 

(2.15), (2.16) and (2.18) are consistent, and they converge weakly to Gaussian processes. 
These results generalize the corresponding results of Beran (1981) and Dabrowska (1987) 
to covariates with measurement errors. 

   There are still many important issues to be addressed, a few of them is listed below. 
    1. Variance estimates and confidence intervals. To construct confidence intervals, 

it will be useful to have covariance function (3.1) estimated. One possible approach is to 

modify the method suggested by Fan, Truong and Wang (1990). Moreover, in the normal 
measurement error case, it will be important to compute and estimate the covariance 
function of the limiting Gaussian process. One can also consider using bootstrap to 
construct confidence intervals. 

    2. Local linear estimators. To prove Theorem 3.1, we impose a smoothness condi
tion on the marginal density function as described in Condition 2 (a). This is unavoid
able when using kernel estimator, see also Dabrowska (1987). However, in the absence 
of measurement errors, O'Grady (1994) considered a more flexible approach by using 
local linear method to estimate  Hi(tlu) and 112 (tin), and weak convergence results were 
also established. Local linear estimators have the advantage of being spatially adaptive; 
that is, their asymptotic properties depend only on the continuity of the marginal den
sity, instead of the derivative as required by the usual kernel method. Methodologically, 
the extension to the case involving measurement error based on local linear methods is 
straightforward, see Fan, Truong and Wang (1991). However, it will be important to 
show that the local linear estimators of (Hi(tlu), H2 (till)) also converge weakly to a two 

dimensional Gaussian process. . 
   3. Bandwidth selection. The use of estimators (2.14), (2.15) and (2.16) depends on 

the choice of bandwidth bn. Large value of bandwidth yields high bias in the estimate, 
while small value will inflate the variance term. It was discussed in Sections 2.1 and 2.2 
that the optimal bandwidth depends on the error distribution and the smoothness of 
the underlying function. Hence, it is important to determine whether crossvalidation 
or plug-in method still yields consistent estimates of the above functions. 

    4. Quantile regression. In the absence of measurement errors, Beran (1981), 
Dabrowska (1987) and Doksum and Yandell (1982) examined the problem of conditional 

quantile estimation. The latter paper also discussed simultaneous confidence bands for 
the mean and median regression, and demonstrated the usefulness of the nonparametric 

approach over the estimates derived from Cox's model and Buckley-James method on 
Stanford Heart transplant data. It will be of interest to extend our methodology to the 
estimation of quantile regression. 

    5. Multivariate extensions. For complete data, the area of nonparametric estima
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tion of the mean and median regression functions has been very active. However, it is 
known that kernel estimates are not efficient for handling covariates in high dimensional 
space, due to the curse of dimensionality; see Huber (1985) and Stone (1986). The  pro

cedures proposed in this paper have the same drawback. Recently, Kooperberg, Stone 
and Truong (1994a,b) considered the estimation of hazard regression using splines and 
their tensor products. It is of interest to extend this methodology to handle covariates 
involving measurement errors.

5. Proofs 

   The following notations will be used throughout this section. Set 

Kn3(x) = 1)77,1Kn{b77,1(u  X3)}, f(u) = E{Kn1(u)}, 

H1(t,u) = E{Kn1(u)I11(t)}, 1-12(t,u) = E{Kn1(u)I21(t)}, 

where, we recall that /11 (t) = 1(Y1 > t,61 = 1) and I21(t) = 1(Y1 > t).

5.1. Proof of Theorem 3.1 

   The argument is a refinement of Dabrowska (1987) and Fan, Truong and Wang 

(1990). Let fx and fz denote the density functions of X and Z, respectively. Note that 

f(u) = bn1 f Kn{bn1(u — x)}fx(x) dx 
    = bn' f Kn{bn1(u-x)} f fu(xz)dFZ(z)dx 

1 

bn~Z(tb 
expitux)1---------t)dtfu(x  z) dFZ(z) dx    27fbnfff                                    n1) 

= 2b~Z(dt  OK(t)tb1fdFZ(z) exp(iLt.z)fdv exp-itCI------bnv)}fu(v)      nn)n 

27rbn f dvfu(v) f dtcK(t) exp it (u_v) 
b77,1 f dvfu(v)K{bn1(u  v)} = fu(u) + O(bn).(5.1) 

The last equality follows from the property of the kernel function K(•) and Taylor 
expansion. Set Hv (t, u) = Hv (tl u) f u (u), v = 1, 2. Then a similar argument yields 

Hv(t, u) = Hv(t, u) + O(bn), v = 1, 2. (5.2) 

Write 

                     rL-1 E37=1 Kn,3(u)(f(u)Ivj(t) — Hv(t,u))  Hvn(tI u) — I (t1 u) _                          I (u) n-1 E3 1 Kni(u)
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                              +Hv(t'  u)  Hv(tlu) , v = 1, 2. (5.3)                           f(
u) 

In view of Lemma 2 of Fan and Truong (1993), (5.1), (5.2) and ^ubnQ+5 -* 0, it is 
sufficient to consider the asymptotic distribution of 

                                          n Wvn (t) = Wvn (t, u) = Vnb ,3+1 u-1 E Knj (u) {.f (u)Ivj (t) — Hv (t, u) } ' v = 1, 2. 
j-1 

Observe that E > Knj (u){ f (u)Ivj (t) — H„(t, u)} = 0, so Win(t) and W2n(t) are stan
dardized sums of mean-zero random variables. 

    Let t1 < • • • < tr and let cv,r, r = 1, ... , p, v = 1, 2, denote constants such that 
Er Ev c2 i 0. Then 

           E Kn1(u) E E Cv,r{f (u)Ivi (tr) — Hv(tr' U)} = 0. 
r v 

2 Set &2(x) = E (Er Ev Cv,r{.f (u)Ivi(tr) — Hv(tr, u)}) IX1 = . Then 

      var Knl (u) E E Cv,r{.f (u)Ivi (tr) — Hv(tr, u)} 
r v 

2        = E (K n2 E E E (Cvr{!(U)Ivi(tr) — Hv(tr' u)} Ix1 } ) 
                rr v         = bn2Jf Kn (u_x)bn 52(x)fx(x) dx. 

By Lemma 2.1 of Fan (1991b) and Parseval's identity, 

                                                                   2a-1 var(Kni(U)Cr{!(U)Ivi(tr) — Hv(tr' u)} = 0 27C2f 
r v 

                                                    (5.4) 
Similarly, (see the argument in the proof of Theorem 3 of Fan and Truong (1993)) 

                                            2+6 

  E Kni (u) E E Cv,r{.f (u)Ivi (tr)  II                           v (tr, u)} = 0 (b2+6 1+L)+1) . (5.5) 
r v 

It follows from (5.4) and (5.5) and Lyapounov's theorem that Er Ev cv,rWvn(tr) has 
an asymptotical normal distribution. Hence the finite dimensional distributions of 
(W1n(t), W2n(t)) are asymptotically normal. 

   Proof of tightness: For t1 < t < t2, we need to establish 

E{W1n(t1)Win(t)}2{Win(t)Wln(t2)}2 < c1{'1(t1)4,1(t)}{'1(t)—T1(t2)}, (5.6)
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where c1 is a constant and  x111 is a nondecreasing function. Write 

                                         b20+1 1/2 n W
1n(t1) — Win(t) = n  

                                        n j=1Aj, 

                                         b20+1 1/2 n              W
in(t)—Win(t2) =nnBj, 

j=1 

where 

        A3 = Kn3(u){f(u)(I1(ti — I1(t)) — (111(t1 U) — fl 1(t u))}~ 

Bj = Kn3(u){f(u)(I1(t) — I1(t2)) — (H1(t,u) — 1-11(t2,u))}. 

By simple algebra and note that A3 and B3 have mean zero, 

E{Wln(t1) — Win(t)}2{Win(t) — W1n(t2)}2 
          22         b"+1) 2 nn         nnE~Aj(B)j 

j=1 j=1 

               b4Q+2           =n {EAiBi+ 2(n — 1)E ATE Bi + 2(n — 1)(EA1B1)2} . (5.7) 

n Let fy,x and fy,u denote joint density functions of (Y, X) and (Y, U), respectively. To 
establish an upper bound for (5.7), we start with 

E(Ai) 
  = EKr2i.1(u){f(u)(Il (ti)— h(t)) — (H1 (ti ,u) — (t, u))}2 

< ff Kn n-----bnx{f(u)}21{tl <y<t,S=1}fy,x(y,x)dydx 
      ffK = b2n u------ {f(u)}21{t1 <y<t,S=1} f fy,u(y,x—z)dFZ(z)dydx 

 = b77,2 J dFz(z) f dxKn (u_x){f(u)}2fu(x—z){Hi(tiIx — z) —Hi(tlx — z)}. 
                                  n It follows from Lemma 2.1 of Fan (1991b) and Parseval's identity that 

E(A1) < bn2a-1 g(u) J dFz(z) fu(u — z){Hi(tiIu — z) — H1(tin — z)} 

1  X 
27r1121v121310x(v)12 dv (1 + o(1)). (5.8) 

Similarly, 

E(Bl) < b7T,2Q-1 fu(u) J dFz(z) fu(u  z){Hi(tlu — z) — H1(t2Iu — z)} 

                 1  

                27r112Iv12010K(v)12 dv (1 + o(1)). (5.9)
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The above argument also shows 

 E(A1B1) bn2Q12u(C)iv12Q10K(v)I2 dvdFZ(z) fu(u — z)(5.10) 
x{H1(tilu — z) — H1(tin — z)}{H1(tiu — z) — H1(t2lu — z)} (1 + o(1)), 

EATBi = 0(bn2Q-1).(5.11) 

It follows from (5.7)(5.11) that (5.6) is valid. Similarly, there is a nondecreasing function 
412 and a constant c2 such that 

E{W2n(t1) — W2n(t)}2{W2n(t) — W2n(t2)}2 < c2{'I'2(t1) — W2(t)}{412(t) — W2(t2)}

According to (15.39) of Billingsley (1968), (W1n(•), W2n(•)) is tight. Hence, we conclude 
that the bivariate process \nb2nQ+1(Hin(tiu) — Hl (tiu), H2n(tiu) — H2(t1u)) converges 
weakly in D[0, Tu] x D[0, Yu] to a two dimensional Gaussian process (Wi (t1u), W2 (t1u)) 
with covariance function given by (3.1), which can be easily verified by invoking Lemma 
2.1 of Fan (1991b) and the Parseval's identity. This completes the proof of Theorem 3.1.

5.2. Proof of Corollary 3.1 

   This follows easily from the Skorokhod's construction.

5.3. Proof of Corollary 3.2 

   Simple algebra and Corollary 3.1 yield 

iAn(tlu) — A(t1u)1 = 0 (sup IH2n(siu)— H2(slu)i 
                                          s<t 

+ O (sup IHin(sIu) — Hi(slu)I 
                                                  s<t 

The first result follows from Corollary 3.1. 
   The second result follows the first, (2.9) and (2.16). The third result is an easy 

consequence of the second result.

5.4. Proof of Theorem 3.2 

   Set Wvn(tI u) = \nb2,13+1(Hln(tju) — Hi (tiu), H2n(tiu) — H2(t1u)),v= 1, 2. By the 
approach analogous to Breslow and Crowsley (1974) and Gill (1983), we have 

         2(j+1
of W2n(slu) A(dslu)  Wln(dsiu)L(tiu) _/nb{An(tiu) —A(t1u)} =J+ ftH2su+ o(1).                        o(~) 

                                                   (5.12) 
According to Theorem 3.1 and the Skorokhod's construction, we may assume that the 
random vector VnbnQ+1(Hln(tIu)—H1(tin),H2n(t1u)—H2(tlu)) converges almost surely
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to  (Wi(tiu),  W2(tiu)) in the sup norm on [0, ru] x [0,'ru]. That is, 

         sup IW„n(siu)  W„(sIu)1 -> 0 with probability 1, v = 1, 2. 
SGT,, 

Then (5.12) converges almostly surely in the sup norm on [0,77u] to 

             fotW2(siu) A(dslu) t Wi(dsiu)       L(t~u)= 
su+0<t<                    H2(             (H2su 

which is a mean-zero Gaussian process with covariance function given by 

F1(s, tin) = cov{L(siu), L(tiu)}. 

This completes the first half of Theorem 3.2. 
    By Taylor expansion, 

exp(-An) = exp(-A)  exp(-A)(An  A) +2 exp(An)(An  A)2, 
where An is a random function having value between A(tiu) and An(tiu). Then 

Vnb2n13+1{Sn(tiu)  S(tiu)} = S(tiu)Ln(tiu) + Rn(t, u), 
where 

Rn(t, u) = (nb2n13+1)-1/2 exp(An)Ln(tiu)• 

By the weak convergence of Ln(tiu) and the consistency of An, Rn(t, u) --> 0 in prob
ability. Hence, /nb2nQ+1--------{Sn(tiu)  S(tiu)} converges weakly to a mean-zero Gaussian 
process S(tiu)L(tiu) with covariance function given by 

S(siu)S(tiu)cov{L(siu), L(tiu)} = S(siu)S(tiu)I'1(s, tin). 

This completes the proof of Theorem 3.2.

5.5. Proof of Corollary 3.3 

   This follows from the weak convergence of v nbn3+1 {Sn(tiu)  S(tin)}.

5.6. Proofs of Theorems 3.3 and 3.4 

   According to (2.3) and (6.11) of Fan, Truong and Wang (1990), there is a positive 
constant c3 such that 

Qn > c3bn exp {o-o/(2b2n)} .(5.13) 

Note that (5.1) and (5.2) are still valid for Z ti N(0, o) and the deconvoluted kernel 
(2.3). It follows from (5.13), (5.1), (5.2) and bn = (roll 3(log log n)(logn)1}(logn)-1/2 
that 

  t2             Hv(,u)  Hv(tl u) 0 (b7n------------------exp{2b2 o(1). n f(u)0/(n)}
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Hence, in view of (5.3) and Lemma 4 of Fan and Truong (1993), the asymptotic nor
mality of  (//an) (Hin(tl u) – H1(tl u), H2n(tl u) – H2(t1u)) follows from the asymptotic 
normality of 

n Vvn(t, u) _ n-1 E K(u) {f(u)I(t)  H„ (t, u) } , v = 1, 2. (5.14) 
an j

=1 

Observe that V„n(t, u) is the standardized sum of mean-zero independent random vari
able It follows from the argument given in the proof of Theorem 3.1 that the finite 
dimensional distributions of (Vin(t, u), V2n(t, u)) are asymptotically normal. 

   The tightness of (5.14) can be established analogously as in the proof of Theorem 
3.1. Thus (Vin(t, u), V2n(t, u)) converges weakly to a mean-zero Gaussian process with 
covariance function determined by 

lim cov {Vin(t, u), V2n(t, u) } 
                                              n--~oo 

This completes the proof of Theorem 3.3. 

   The proof of Theorem 3.4 follows from the argument given in the proof of Theorem 

3.2 and the weak convergence of (J/an) (Hin(t1u) – Hi(tIu),H2n(t1u) – H2(tlu)).
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