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ONE-SIDED TEST OF THE MINIMUM 

        PARAMETER

     By 

Manabu IWASA*

                     Abstract 

   When independent random variables Xt (i = 1, 2, • • • , k) have proba
bility density fe, with monotone likelihood ratio respectively, we consider 
testing Ho : min(01 i 02, • • • , Ok) = B* vs. H1 : min(61, 02 i • • • , Ok) > 0* 
for a constant 0*. We give a class of similar tests and find an unbiased 
test in this class. We apply and extend the arrangement ordering argu
ments. It is also proved that this unbiased test has a monotone power 
function. A modification to testing HI : min(81, 02, •,• • , Ok) < 0* vs. H1 
is also considered.

1. Introduction 

   Let X1, X2, • • • , Xk (k > 2) be independent random variables and each Xi have 
probability density fe; (x) with respect to Lebesgue measure. We assume that f8 (x) has 
monotone likelihood ratio, i.e. f8,(x)fe(x') < f9(x)f9i(x') for all x < x' and 0 < 0'. 
Then we consider testing 

H0 : min(0i, 02, • • • , 0k) = 0* and each 0i E e 

vs. 

Hi : min(0i, 02, • • • , 0k) > 0* and each 0i E O 

where O (C It) is an open set and 0* is a constant in O. For these hypotheses, the 
likelihood ratio test rejects H0 if min(Xi, X2, • • • , Xk) > c for a certain constant c. 

   In this paper, we shall call a test whose critical region is given by {min(Xi, X2, • • • , 
Xk) > c} as a min-test. Min-tests are natural and possess good properties. It was 
shown under some conditions that min-tests are admissible and uniformly most powerful 
monotone tests (cf. Lehmann [10], Cohen, Gatsonis and Marden [3], Nomakuchi and 
Sakata [13], Gutmann [6]). However min-tests are not unbiased. In particular, if 

                sup Pre{Xi > c} = 1,(1.1) 
9>6*,6E0 

and Pro {Xi > c} is continuous in 0, then we have supHo Pr{min(Xi, • • • , Xk) > c} = 
Pre* {Xi > c} and 

inf Pr{min(Xi, • • • , Xk) > c} = [sup Pr{min(X1i • • • , Xk) > c}]k. (1.2) 
H1H0
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The relation (1.2) implies that the power of a min-test is little, especially in the neigh
borhood of (9*, • • • ,0*), where the infimum of (1.2) is attained. The similar phenomenon 
occurs also in testing Ho : min(91i 92, • • • ,9k) < 9* and each 9i E O vs. H1. 

   This shortcoming of min-tests was studied by Nomakuchi and Sakata [13], Gutmann 

[6], Berger [1], Zelterman [16], Shirley [15] and Li [11]. They gave some tests which are 
uniformly more powerful than min-tests in some situations satisfying (1.1). The critical 
regions of these tests are constructed by adding suitable regions to that of mintests. 
It is important that these extensions of the critical region never change the size and 
such extensions of the critical region might be continued until we obtain an unbiased 
test. In this sense, our consideration on unbiasedness may be natural and significant. In 
such contexts, Lehmann [10], Nomakuchi and Sakata [13] and Zelterman [16] discussed 
unbiasedness. 
    Lehmann [10] gave an important result concerning the unbiasedness for Ho vs. H1. 
His result implies that there exist no unbiased test functions for Ho vs. H1 except the 
constant test functions when {h} is an exponential family. On the other hand, when 
k = 2, Nomakuchi and Sakata [13] showed that there exist nontrivial unbiased tests 
for Ho vs. H1 under the normal distribution N(9,1). They gave a sufficient condition 
for a test to be unbiased for Ho vs. H1 and showed that a similar test proposed by 
Lehmann[10] satisfies the condition. When the level a = 1/n, their test rejects Ho if 

(x1, x2) E U {(xi, x2);c(Zn1) < xi — 9* < c(n ), j = 1,2} 
i=1 

where c(i/n) is the lower i/n point of the standard normal distribution. The critical 
region of this test is shaped by adding (n — 1) square regions diagonally to the critical 
region of the min-test. Zelterman [16] also discussed the unbiasedness. He considered 
testing a hypothesis H2 : min(91 i 02, • • • ,9k) > 0 or max(91, 92, • • • , Ok) < 0 vs. not H2. 
The likelihood ratio test for these hypotheses, which is derived by Gail and Simon [5], 
also has low power near the origin. When k = 2, their hypotheses are closely related 
to our hypotheses Ho vs. H1 and the argument of Nomakuchi and Sakata [13] can be 
applied to their hypotheses. Zelterman [16] discussed locally most powerful unbiased 
tests, and gave a numerical example. 

   Gutmann [6], Berger [1], Shirley [15] and Li [11] discussed the improvements of 
min-tests for Ha vs. H1. 

   Berger [1] and Li [11] proposed tests whose critical regions are shaped by adding 
some cubic regions diagonally to that of the min-test. Berger [1] discussed the case in 
which X1, X2, • • • , Xk are dependent. He considered testing a null hypothesis Ho* : b%9 < 
O for some i=1,•••,pvs. HI' :b;9>O for all i=1,•••,p under x sN((01i•••,9k)', 
E), where E and kdimensional vectors b1, • • • , by are known. He showed that if for each 
i = 1, • • • ,p, there exists an m E {1, • • • ,p} such that baEbm < 0, a test whose critical 
region is given by 

i°b' x 

           U.R , where ./ti = {x; ci < -----------1<c;_l,j=1,', p}, 
     i=1(bjEbi)'



One-sided test of the minimum parameter111

 co, • • • , cio are certain standard normal quantiles and R1 is the critical region of the likeli

hood ratio test, has the same size as the likelihood ratio test. Li [11] generalized Berger's 
idea to the case of an exponential family by assuming the independence of X1, • • • , Xk 
Although they gave the tests for arbitrary k, their idea is short of considerations on 
dimensionality. 
   Gutmann [6] considered testing Ho vs. H1 under a general location model. The 
critical region of his test is constructed by adding one cubic region to that of the min
test. Shirley [15] discussed the maximum size of the cube added in Gutmann's method. 
Moreover, Shirley [15] considered an alternative method to extend the critical region 
and proposed a test whose critical region is given by 

   {min(Xi, • • • , Xk) > ci} U {c2 < any two Xi < c1, other Xi > c2, i = 1, • • • , k}, 

where c1 > c2 are suitable constants. It is noteworthy that the dimensionality is taken 

into consideration in this idea. But this test is not very powerful near (9*, • • • , 9*) as far 
as we refer to examples given by Shirley [15] . 

   Our original purpose is to extend the result of Nomakuchi and Sakata [13] with 
respect to the hypotheses Ho vs. H1 to the case of arbitrary k. Although we do not 

give unbiased tests for k > 4, our idea can be applied to that case. 
    In the next section, we give a simple class of similar tests. When k = 2, this class 

contains the unbiased test given by Nomakuchi and Sakata [13]. This class is identified 
respectively with the set of permutations when k = 2 and with the set of Latin squares 
when k = 3. Our investigation is done within this class. In Section 3, we discuss the 
case of k = 2. We show that the unbiased test given by Nomakuchi and Sakata [13] 
is uniformly most powerful in this class by using arrangement ordering arguments on 
the set of permutations. In Section 4, we discuss the case of k = 3. We consider an 
extension of the arrangement ordering to an ordering on the set of Latin squares. This 
partial ordering is a useful criterion to compare power functions in the class. We give 
some basic properties of this partial order, and specify an unbiased test for Ho vs. H1. 
In Section 5, we modify our arguments to testing Ho vs. H1.

2. A class of similar test functions 

   Throughout this paper, we consider only level-1/n tests (n = 2, 3, • • •). 
   To begin with, we construct a class of similar test functions investigated in this 

work. FB denotes the cumulative distribution function corresponding to fe. To begin 
with, we divide the sample space Rk into nk regions 

A(ii, ... ,ik) = {(xl, ... , xk) E Rk; z(2~1) < < z( ), j = 1, ... , k} 

where ij = 1, • • • , n and z(c) is the lower c point of 119*. 
   We denote by Gk 'n the set of all functions g from {1, 2, • • • , n}k to {0,1} such that 

Eg(i1i • • • , ik) = 1 for all j = 1, • • • , k. (2.1) 
ii=1
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   It is easily verified that g E G2'12 is identified with a permutation matrix. Moreover, 
when k = 3 and > 4, g E Gk'n is regarded as a Latin square and a (k — 1)dimensional 
permutation cube respectively (cf. Denes and Keedwell [4]). Here a Latin square of 
order n is defined as an n x n matrix where all rows and columns contain each number 
of {1, 2, • • • , n} only once. For g E G3'n, let /ii be the number a satisfying g(i, j, a) = 1. 
Since ~  g(i, j, a) = 1 for fixed j and a, li1 j li2j for all it # i2. Similarly lij1 lij2 
for all ill # j2. Hence L = (lij) is a Latin square. Conversely, if we define a function g 
as g(i, j, a) = 1 if a = la j and = 0 otherwise for a Latin square L = (li j ), then g E G3'n . 
Thus G3'n is identified with the set of Latin squares. 

    For g E Gk'n, let Spg be a test function such that 

n (pg(xi, . . . xk) = E XA(il ..•,ik)(X1, ... xk)g(ii, . . . , ik) 

where XA(x) = 1 if x E A and = 0 otherwise. The critical region of CO is given by 

Ug(il,... ik)=1 A(ii i ... , ik). 
    Let (Dk'n = {cp0; g E Gk'n}. 

   We define 

          ai(0)=F8(z(Z
n))—F8(z(—n1))for i = 1, 2, • • • , n. 

Obviously, 

                 a2(9*) = 1 for all i = 1, 2, • • • , n. (2.2) 

    THEOREM 2.1. cog E 4:ok'n is a similar test of size 1/n for any k > 2. 

    PROOF. Without loss of generality , we assume that 01 = 0*. From (2.1) and (2.2), 
we have 

SpgdFe1 ... dFek = E ail (01) ... aik (ek)g(Z1, • • • ,ik) 
ii ...,ik=1 

    nn 

                     = E ai2 (02) ... aik (0k) E aii (0*)g(ii, . . . ,ik) 
                                                               i1=1 

1 a (02) • •= — E . aik(0k) 
i2,... ik=1 

ftai(9j) n•n——n. 

   ^ 

                                  9 =2 i}=1 

    REMARK 2.1. If supe>o.,BEO an (0) = 1, A(n, • • • , n) is the critical region of the 
size- min-test. Then, any cog satisfying g(n, • • • , n) = 1 is uniformly more powerful 
than the min-test.
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    Let  Dn = {(xi,••.,xn) E Rn : 0 < x1 < ••• < xn}. For x = (xi,•••,xn),y = 

(yi, • • • , yn) E Dn, x is said to be majorized by y, denoted by x <M y, if >2. xi < 
E yi for all j = 2, • • • , n and L. i xi = a 1 yi . Note that the above definition is 
given for x, y E Dn . 

   LEMMA 2.1. For all 9 > 9*, a(9) = (a1(9), • • • , an(9)) E D. Furthermore, if 
9* < 9 < 9', then a(9) <M a(9'). 

    PROOF. We have 

                                    1 z(Z1) < x < z(n) 
ai(9) — ai_i(9) = f gi(x)fe(x)dx, where g1(x) = —1z() < x < z(Z 1) 

                                             0otherwise. 

Since ai (9*) — ai _ 1(9*) = 0 and fe (x) has monotone likelihood ratio, we obtain ai (9) — 
ai _ 1(9) > 0 for 9 > 9* by variationdiminishing arguments (cf. Karlin [9] and Brown, 
Johnstone and MacGibbon [2])., Thus a(9) E Dn for 9 > 9*. Moreover, since 

E ai(9) =Jg2(x)fe(x)dx,where g2(x) =1x > z()       0 otherwise, i
=i 

it is also shown by variationdiminishing arguments that E , ai (9) is a nondecreasing 
function of 9 for any j. It is obvious that Ea1 ai (0) = E7_1 ai (0') = 1. Therefore 
a(9) <M a(9') for 9* < 9 < 9'.^ 

3. The uniformly most powerful test in 4.2,n 

    In this section, we show that the unbiased test given by Nomakuchi and Sakata 
[13] is uniformly most powerful in (102,n and has a monotone power function. 

Sn denotes the set of all permutations of {1, 2, • • • , n}. When a permutation ir as
signs 'xi for i, we use a representation as ir = (71, • • • , 7rn). We consider the arrangement 
ordering discussed in Hollander, Proschan and Sethuraman [7] and Pecaric, Proschan 
and Tong [14] . 

    For in = (71) • • • , in), Q = (o1, • • • , o'n) E Sn, we define a <a 7r if for some i < j 
satisfying 'xi < 7rj , it holds that 

cri = 7ri , cri _ in and crh = 7rh for all h 0 i, j. 

Moreover, a <A 7r if there exist some elements 7r1, • • • , ir" of S, satisfying 

Q=71 <a...<a7rr=7r. 

We assume that in <A 7r for all in E Sn . Sn is partially ordered by the binary relation 
<A, and 71-* = (1, 2, • • • , n) is the maximum element in Sn with respect to this partial 
order, that is, 7r <A 7r* for all 7r E Sn . 

    We define a function 12 of x, y E Rn and 7r E S, as 

n f2(x, y,'n) = E xiyirt. 
i-1



114M.  IwASA

   LEMMA 3.1. (i) If a <A 7r, then f2(x, y, cr) < f2(x, y, 7r) for x, y E Dn. 
(ii) If x, x', y, y' E Dn satisfy x <M x', y <M y', then f2(x, y, it*) < f2(x', y', 

   PROOF. (i) It is sufficient to prove for a <a ir. By the definition of <a, there 
exist i and j satisfying i < j, of = irz < 0-i = 1rj and o-h = irh for all h # i, j. Then 
f2(x, y, 7r)  f2(x, y, a) = (xj  xi)(yirj  y7r;) > 0 for x, y E Dn. 
(ii) Since dx,f (x, y, 7r*) = yi, we have dxl f (x, y, i*) < • • • < dxnf (x, y,it*) for y E Dn. 
From Theorem A.3 of Marshall and Olkin ([12], p.56), we have f2(x, y, 7r*) < f2(x', y, 7*) 
for x <M x' and y E Dn. Similarly, f2(x', y, it*) < f2(x', y', 7r*) for x' E Dn and y <M y'. 
Thus we obtain (ii).0 

   Nomakuchi and Sakata [13] proved that the test function 

           <Plvs(xl, x2) 1 if (xi, x2) E A(i, i) for some i                       0 otherwise 

is unbiased under an exponential family with Schur concave densities. Admissibility of 
(IONS is discussed by Iwasa [8] . 

    For 7r = (7r1 i • • • , 1rn) E ST, let g, (i, j) = 1 if j = iri and = 0 otherwise. Then 
G2,n = {g, : 71 E Sn} and 4)2'n = {cp9ir : it E Sn}. The power function of co9,r is given by 

ai(91)a,r,(02) = f2(a(91), a(02),7). Since SpNs is identified with So9,r* , we obtain 
the following theorems from Lemmas 2.1 and 3.1. 

    THEOREM 3.1. SpNS is uniformly most powerful in 4.2,n. 

    THEOREM 3.2. The power function of cpNs, denoted by NNs(91i 02), satisfies that 

QNs(01, 02) < QNS(01, 0'2) for 0* < 91 < 01, 0* < 92 < 912.

4. The case of k = 3  an arrangement ordering on the set of Latin squares 

   We discuss the case of k = 3. Although our idea can be extended to the higher 
dimensions, we do not deal with the case of k > 4 in this work. As noted before, a test 
Sp9 E 4•3,n is identified with a Latin square of order n. We denote by Li, the set of all 
Latin squares of order n. 

    Two permutations it = (in,..., 7rn) and o = (o-i, • • • , Qn) are said to be discordant 
if 7ri # o f for all i = 1, • • • , n, and n permutations 7r1, • • • , irn of order n are said to 
be ndiscordant if 7ri and 7r4 are discordant for any i # j. We denote by Pn the 
set of all ordered ndiscordant permutations of order n. We distinguish, for example, 
(7r1, ir2, 73, • , irn) and (ir2, 7r1, ir3, • • • , irn) in Pn. Pn is not empty for all n > 2. 
   To begin with, we define an ordering on Pn. Before giving the definition, we shall 

present a result on ndiscordant permutations of order n. 

    For the sake of convenience and simplicity, we consider a matrix representation of a 

permutation 7r. For in = (7rl, • • • , 7rn), we define a matrix A(7r) = (Aij(ir)) as )ii(r) = 1 
if j = 7ri, and = 0 otherwise. We denote by In the identity matrix of order n and by



One-sided test of the minimum parameter115

 Qn = (qi j) the matrix of order n such that qi j = 1 if i + j = n + 1, and = 0 otherwise. 
A ® B denotes the Kronecker product of A = (ai j) and B, i.e. A 0 B = (aii B). 

    For n = 2P (p = 1, 2, • • .), we define n permutations Tn'1, • • • , Tn'n as 

A(Tn'1) = Q2 ®. ••®Q2 (= Q2P), 

A(Tn'2) = Q20•••0Q20I2 (=Q2P-1 ®I2), 

                                                                                                   • A(Tn'n) = I2®•••®I2 (= /20. 

Identifying 12 and Q2 with 1 and 0 respectively, A(Tn'i) gives a representation of i — 1 
by the binary system. Let P,: = (Tn,l, , Tn,n) 

LEMMA 4.1. Pn E Pn . 

   PROOF. It is sufficient to show 
         n ' 

E Aij ern 'µ) = 1 for all 1 < i, j < n. (4.1) 
µ=1 

When n = 2, (4.1) is obvious. Assume that (4.1) is true for n = 21'. Let n = 2P+1. Note 
that 

         A(T2P+1i) —Q2 0A(72P'i) 1 <i< 2P I
2®A(T2P''-2P) 2P+1 <i < 2P+1. 

Therefore, if 1 < i, j < 2P, we have 

21)+12P+1 2P 
      2P+12P+12 

E ~i7(T~µ) = E )ij(T'P) = E ~^i,(TP'P) = 1. 
µ=1µ=2P+1µ=1 

The other cases are similar. The proof is completed by induction.^ 

   A proof of the following theorem is given in Appendix. 

    THEOREM 4.1. (7r1, 72, • • • , 7rn) E Pn satisfying 

7<1 <A 72 <A ... <A 7rn(4.2) 

exists if and only if n = 21) (p = 1, 2, • • •), and it is uniquely given by Pn . 

   Theorem 4.1 implies that ndiscordant permutations of order n are not totally 

ordered by <A except the special cases. Thus we consider the following extension of the 

arrangement ordering. 

DEFINITION 4.1. Let P = (7r1, • • • , 7rn), P' = (o 1, • • • , Qn) E Pn. We define P <b 
P' if for some i < j, 

o•i <A 7ri, 7rj <A Qj and 7rh = O'h for all h O i, j. 

Furthermore, P <B P' if there exist some elements Pi, • • • , Pr E Pn satisfying P = 
pl<b...<bpr=p,
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   We note that although Ln is identified with Pr„ the one-to-one correspondence be
tween Ln and Pn is not unique. Here we consider three one-to-one mappings 0<r> , 0<c> 
and A<n> from Ln to Pn defined as for a Latin square L = (l) 

Q<r> (L) _ ((1n, • • • , iln), • • • ,(1n1, • • • 'inn))) 

                Q<c>(L) _ ((111, • • • 11711), ... ) (lin, • • • 'Inn)), 

               0<n> (L) _ ((ill, • • • , lln), ... , (inl, • • • , Inn)), 

where /ii is v satisfying 1j, = i. For example, for a Latin square 

                         3 1 2 
L= 2 3 1 , 

                          1 2 3 

we have 

0<r>(L) = ((3,1, 2), (2, 3,1), (1,2,3)), 

0<c>(L) = ((3, 2,1), (1, 3, 2), (2,1, 3)), 

0<n>(L) = ((2, 3,1), (3,1, 2), (1,2,3)). 

    We define an ordering on Ln through Q<r> , 0<c> , 0<n> 

    DEFINITION 4.2. Let L, L' E L. We define L <C L' if at least one of 

0<r> (L) <B 0<r> (Li), 0<c> (L) <B 0<c> (LI ), 0<n> (L) <B 0<n> (L') 

holds. Furthermore, L <c L' if there exist L1, L2, • . • , Lr E Ln satisfying L = Li. 
L2<c...<cLr=Li. 

    REMARK 4.1. Even if we replace <B with <b in the definition of <c, the ordering 
<c does not change. Such is not the case in Definition 4.1. 

    The following relations are induced through 0<r>, 0<c>, .6,<n> respectively. 

      1 3 2 3 1 2 3 2 1 2 3 1 
       3 2 1 <° 2 3 1 , 1 3 2 , 3 1 2 . 

      2 1 3 1 2 3 2 1 3 1 2 3 

    A 2 x 2 submatrix of a Latin square which consists of only two different numbers is 
called as an intercalate (cf. Denes and Keedwell [4]). Intercalates play an important role 
with respect to <c. By exchanging the two numbers within an intercalate, the binary 
relation <c is induced as follows.
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   Let  Ln be the Latin square of order n obtained uniquely from Pn by the inverse 
mappings of A<r>, 0<c>, Q<n> 

   The structure of Ln induced by <c is very complex. The maximum element does 
not always exist in Ln . But, when n = 2 or 4, the maximum element in Ln is given by 4 3 2 1 ) 

         * _2 13 4 1 2             L
21 2or L4= 2 1 4 3 

1 2 3 4 

respectively. The maximality of L4 is verified by the intercalateargument above. 
   For x, y, z E Rn and L = (di j) E Ln , let 

n n 

f3(x, y, z, L) =xiyj 
i-1 j=1 

The following lemma is an extension of Lemma 3.1 to the' case of k = 3. 

LEMMA 4.2. (i) If L <c L', then f3(x, y, z, L) < f3(x, y, z, L') for x, y, z E Dn. 
(ii) If x, x', y, y', z, z' E Dn satisfy x <M x', y <M y', z <M z', then f3(x, y, z, Ln) < 

Ln*). 

   PROOF. (i) It is sufficient to prove the case of L = (lii) <' L' = (l). We show the 
case of 0<r> (L) <b 0<r> (L') (cf. Remark 4.1). The other cases are shown similarly 
since 

n nn nn n 

f3(x,y,z,L) = Ex2Eyjzli, = yj Ezioxi = EzhExiyihi 
i-1 j_1 j-1 i-1 h-1 i-1 

where 1hi is j satisfying lij = h. Let iri = (lil i • • • , lin) and cri = (1i1, • • • , li) for i = 
1, • • , n. From the definition of <b, there exist i1 < i2 satisfying cri' <A 7.1i , 71 Za <A xi2 
and of ='ri for i i1, i2. Then, since {1z1j,1$2j} = {li1j, li2j} for all j, it holds that 

nnn 

   Eyj(z1—zli)~'Eyj(zl:— zl)=Ey'(zl!— z1+zl~—zl) = 0.       2.72JilJsl)~i2Jt2Ji19t19 
j-1j-1j-1 

Therefore, we have from Lemma 3.1 (i) 

n n 

f3(x, y, z, L) — f3(x, y, z, L) = E xi yj(zl; — zii,) 
i-1 j-1 

    nn 

                           = xi2 E yj (zls2 — z122) + xi1 E yj (z1=1~ — zi 1 ) 
j-1 j-1 

                             = (xi2 — xil) yj (zls
2 — z1,2i ) 

j-1 

                           = (xi2 — xi1){f(y,z)Ci2) — f(y,z,7ri2)} > 0.
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(ii) From the definition of Ln, we have 
  nnn 

f3(x) y, z, Ln) = xif2(y, z, Tn'i) = E yif2(z, x, Tn'i) = EZif2(x,  y, Tn'i). 
     i-1i-1 i-1 

Since Tn'1<A<A Tn'n,we have f2(y, z, Tn'1) < • • • < f2(y, z, Tn'n) from Lemma 3.1 
(i). Therefore, from Lemma 3.1 (ii), it holds that f3(x, y, z, Ln*) < f3(x', y, z, Ln) for 
x <M x'. Similarly, f3(x, y, z, Ln) < f3(x, y', z, Ln) for y <M y' and f3(x, y, z, Ln) _< 
f3(x, y, z', Ln) for z <M z'. This completes the proof.^ 

   For L = (lij) E Ln, let gL(i, j, h) = 1 if h = lij and = 0 otherwise. Then G3'n = 
{gL : L E Ln} and 4)3,n = { Sp0L : L E Ln } . The power function of Sp9L , where L = (lii ), 
is given by 

n n 

EE ai(0i)aj (92)ai,,(03)• 
                             i=1 j=1 

Therefore, we obtain the following theorems from Lemmas 2.1 and 4.2. 

    THEOREM 4.2. If L <c L', SPgL, is uniformly more powerful than Sp9i . In particu
lar, when n = 2 or 4, cp9i, is uniformly most powerful in 4)3'n. 

    THEOREM 4.3. For n = 21' (p = 1, 2, • • •), the power function of SpgLn, denoted by 
,QLn(9), is monotone in the sense that 

Az (0) < /.3Ln (9') if 0* <0i <0'i for i = 1,2,3. 

In particular, co9L, is unbiased for Ho vs. H1. 

    REMARK 4.2. We note that a maximal Latin square does not necessary correspond 
to a test which is uniformly more powerful than the min-test even if supe>ea,OEO an(0) = 
1. For example, although a Latin square 

                3 2 1 ) 
L= 2 1 3 

                          1 3 2 

is a maximal element in Ln, the critical region of SpgL does not contain that of the 
min-test. 

5. Modification for Ho vs. H1 

   In this section, we assume that { fe(x)} is an exponential family, that is fe(x) = 
71(9)h(x) exp(x9). 

   As mentioned in the introduction, there exist no nontrivial unbiased tests for Ho 
vs. H1. Thus our unbiased test for Ho vs. H1 is not a level 1/n-test for Ho any longer. 
We propose a method to construct level-1/n tests for Ho by combining results of Li [11] 
and our results in the previous sections.
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   Let m =  f  x  fe.  (x)dx and no be the number satisfying z(-%°-) < m < z(nn t). 
Assume that n — no > 2. Then, we define as 

                  i+ 
     z* (0) = m, z* (ifl) = z(o ),i= 1, ... ,n — no, 

     nn 

     a$(0) =Fe(z*())—FB(z*(Z 
n1)),i= 1,•.•,n—no 

A*(il, • • • , in) = {(xi, • • • , xk) E Rk : z*(22---------n 1) < xi < z*(n ),j = 1, ... , k}. 
For g E Gk,n—n°, let cog* be a test function defined as 

                                     n-no 

sc,y(xl, • • • , xk) = E g(il, ... , ik)XA•(il,... ik)(xl, ... , xk). 
il,•••,ik_1 

Let *k'n—n° = {SD*9: g E Gk'n—no}. 

    THEOREM 5.1. 509 E ,*k'n—n° is a level-1/n test. 

    PROOF. 

                                          n-no 

I cpgdFel ... dFek = E a$1(81) ... a%(ek)g(i1, ... , ik). (5.1) ii,... ik=1 

By Lemma 1 of Li [11], a:(0) is a nondecreasing function of 9 in {0 < 9* } for all 
i = 1, • • • , n — no. Therefore, the supremum of (5.1) under Ho is equal to that under Ho. 
It is shown as Theorem 2.1 that the supremum under Ho is not more than 1/n. ^ 

   For x, y E Dn, x is said to be weakly submajorized by y, denoted by x <w y, if 
Ea i xi <>a a xi for all j = 1, • • • , n. 

   LEMMA 5.1. (i) For all 9 > 9*, a* (0) = (a7(0), • • , an* _no (9)) E Dn—no • 
(ii) If 9* < 9 < 9', then a* (9) <H' a* (9'). 

   PROOF. Noting that a7(9) < ano+1(9) and ai (9) = ano+i(0) for i = 2, • • • ,n — no, 
the proof is an analogy of that of Lemma 2.1.^ 

   Lemma 5.1 (i) implies that the arguments based on the arrangement orderings 
discussed in Sections 3 and 4 are also available for comparisons of power functions of 
tests in *2'n-n° and*3'n-n° (cf. Lemma 3.1 (i) and Lemma 4.2 (i)). 

   The next lemma is a generalization of Lemma 3.1 (ii). 

LEMMA 5.2. If x, x', y, y' E Dn satisfy x <W X/ <W y', then f2(x, y, ir*) < 
f2(x',^ ,f)• 

   PROOF. It is proved similarly as Lemma 3.1 (ii) by Theorem A.7 of Marshall and 
Olkin ([12], p.59).^
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    For the power function of 4pg*,. E *2'n-n° and cog*,. E (D*3'n-n°, we can prove 
n n° 

a monotonicity result analogous to Theorems 3.2 and 4.3 by using Lemmas 5.1 (ii) and 
5.2. 

   Li [11] proposed a test co* whose critical region is given by U° A* (i, • • , i) for 
any k. When k = 2, co* belongs to *2'n-n° and is uniformly most powerful in j*2'n-n° 
However, when k = 3, co* does not belongs to *3'n-n°. And, if supe>e*,BE®an-n°(G) = 
1, we can find a test which is uniformly more powerful than co* in (D*3'7i-n° . Let L = (lij ) 
be a Latin square of order n—no such that li(n—n°) = i for all i = 1, • • • , n—no. Certainly 
such a square is constructed by rearrangement of rows of a Latin square. Then it holds 
from Lemma 5.1 (i) that 

 rn—n°nC—n° 

  Jgo*dFe1dFo2dFe3 = E a7(0i)a7 (02)ai(03)<_L, ai (01)ann°(92)aa (83) i-1i=1 

n—no 

E ai(0l)ai(02)4,3(03) = co9LdFeldFe2dFe3 
i,j=1 

under H1. On the other hand, from supe>9.,eE0 an-n°(8) = 1 and Theorem 5.1, we 
have 

Hp E[cp*] = sup E[cpyL] = 1/n. 

    Furthermore, in some cases, it is verified that cog*E v k,n-n°is more powerful than 

other tests presented in the introduction near the point (0*,..., 0*). For example, let 
Xi N N(01,1), O = R, k = 3 and n = 20. Then m = 0* and no = 10. Therefore, at 
(0*, 0*, 0*), the power of cog* E *3,10 is 0.0125, which is 100 times that of the min-test, 
10 times that of co* by Li [11] and 1.25 times that of a test T* by Shirley [15].
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A. Appendix 

    We give a proof of Theorem 4.1. To begin with, we give some notations. For a 

permutation it = (xi, • • • , ire), let C(7r) and c(7r) be the set of all concordant pairs and 
the number of the concordant pairs respectively, that is, 

C(7r) = {(i, j); i < j and it < 7ri } and c(7r) = #C(ir). 

Obviously 0 < c(r) < n(n — 1)/2. 
   When a <a 7r, let it A a and it V a be the integers i and j satisfying i < j, 

iri=o•i<irj=o'i and 1rh=ch for all h�i,j
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respectively and 

d(7r,o)=1#{i;7rno'<i <7rVa,7r,rnC <7ri <7r,rvo}. 

Then we have the following. 

LEMMA A.1. If o• <a 7r, c(7r)  c(o) = 2d(7r, (7) + 1. 

    PROOF. We need to examine only the pairs containing 7r A a• or 71-Va. For i < 71 A o 

(i, 7r V o) E C(7r) (i, 7r A o•) E C(a), 

(i, 7r A a) E C(7r) (i, 7r V o) E C(a). 

The case of ir V cr <iis similar. When irAc<i<7rVo•, 

(i, 71 V o) E C(7r) ' Or A o, i) C(a), 

              (ir A o, i) E C(7r) b (i, ir V c) C(o). 

Moreover (7r A a, 71 V cr) belongs to C(7r) but not to C(o ). Hence, noting that (7r A a, i) 
C(7r) and (i, 71 V a) ct C(7r) never occur at the same time, we have 

c(7r)  c(u) = 2 x #{i; (7r A o, i) E C(7r) and (i, 7r V o) E C(7r)} + 1 = 2d(7r, c) + 1. ^ 

    When ir and a are discordant, we use a symbol o• I ir. 

COROLLARY A.1. If Cr <A ir and 71 1 c, 

c(7r)  c(o) > 2 

where [n/2] is the minimum integer not less than n/2. 

    PROOF. Let a°, v.1, • • • , or satisfy a = <a • • • <a ar = 7r. Then, since #{i : 7ri 
oi} < 2r, 7r 1 a implies 2r > n, that is, r > [n/2]. Therefore, from Lamma A.1, 

c(7r)  c(u) _ c(D•b-1)  c(ai) > r > 2[].^ 
i-1 

   LEMMA A.2. If (7r1, • • • , 7rn) E Pn satisfies (4.2), it holds that 

(i) 71-1 = (n, n  1, ... , 1), irn = (1, 2, . . . , n), 
(ii) c(7ri)  c(7r~-1) = n/2 for all i = 2, • • • , n, and n is even. 

    PROOF. Since 7ri 17ri-1 (i = 2, • • • , n), from Corollary A.1, 

        c(7rn)  c(7r1) = E c(7ri)  c(7ri-1)>(n  1)2>n(n21). (A.1) 
                              i-2 

Since 0 < c(7) < n(n  1)/2, the equalities must hold in (A.1). This leads to the 
conclusions.^
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    From now on, we assume that n is even, i.e. n = 2K. 
   For  a  partition T = {(i1, j1), • • • , (i", ix)} of {1, 2, • • • , n} and a permutation it E Sn, 

we define permutations lr(T)h (h = 0,1, • • • , ic) recursively as ir(T)° = 7r and 

   ~(T) h = ir(T)jh 1, 7r(T)/A = ir(T)h 1 and ir(T)1 = (T)ir1 for all 1 0 ih, 

for h = 1,•••,K. 

   The problem to find a satisfying 

                       (1) o <A ir 
          (2) c 11r(A.2) 

                      (3) c(ir) — c(o) = rc 

for a given it is reduced as follows. 

LEMMA A.3. For a given lr, there exists a permutation a satisfying (A.2) if and 
only if there exists a partition T = {(i1, j1), • • • , (i", j")} satisfying that 

(ih, jh) E C(ir) for all h = 1, • • • , K(A.3) 

and that 

d(ir(T)h-1, 7r(T)h) = 0 for all h = 1, • • • , K.(A.4) 

And then, ir(T)" is a permutation satisfying (A.2). 

    PROOF. If a satisfies (A.2), there exist permutations a°, • • • , (7r such that a = 
0.r <a • • • <a a1 <a 0.0 = ir from (1). Then r = K from (2) and (3). Therefore, 
T = {(0.0 A 0.1,0.0 V ad),(0A-1 A a" 0."-1 V o )} is a partition of {1, 2 • • n} from 

(2) and d(a•a-1, o) = 0 for all i = 1, • • • , x from (3). Thus To satisfies (A.3) and (A.4). 
The converse is obvious.^ 

    REMARK A.1. Although ir(T)1, • • • , ir(T)"-1 depend on the arrangement of the 
pairs in a partition T, it does not depend on the arrangement whether the condition 
(A.4) holds or not because Ir(T)" does not. 

    REMARK A.2. a satisfying (A.2) is not always unique. For example, both (3, 1, 4, 2) 
and (2, 4, 1, 3) satisfy (A.2) for (1, 3, 2, 4). 

   LEMMA A.4. (i) a satisfying (A.2) is uniquely given by A ® Q2 ®Ip when ir = 
A 0 12 0 Qp, where A is a permutation matrix and p> 1. 

(ii) No permutation satisfies (A.2) when it = I9 ® Qp, where p is even and q is odd. 

   PROOF. Let I(s) = {p(s — 1) + 1, • • • , ps} and J(s) = I(2s —1) U I(2s). 

(i) Step 1 : First we prove the case of A = I1, i.e. 7r = I2 ® Qp. Let a partition 
T = {(i1, j1), • • • , (ip) jp)} satisfy (A.3). Then ih E I(1) and jh E I(2) for any h. 
Suppose that there exist (ih17 jh1) and (ih2, jh2) satisfying ih1 < ih2 7 3h1 < 3h2. Without 
loss of generality, we can assume that h1 = 1, h2 = 2 (cf. Remark A.1). Then we have
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ir(T)~2 < ir(T)}1 < ir(T)L < ir(T)21 from iri2 < ~il < 7i-j2 < ~r~. On the other hand, 
i2 < ji < j2. Hence we have d(7r(T)1, ir(T)2) # 0, which implies that (A.4) is not 
satisfied. Therefore T must be TO = {(h, 2p — h+ 1); h = 1, 2, • • • ,p} in order to satisfy 
(A.4). TO certainly satisfies (A.3) and (A.4), and ir(TO)p = Q2 ®Ip. 
Step 2 : Next we prove the general case. Let a be the order of A. From Step 1, 
T1 = {(2p(s — 1) 4 h, 2ps — h + 1); s = 1, • • • , a, h = 1, • • • ,p} is the unique partition 
satisfying (A.3) and (A.4) among all partitions {(ii, ii), • • • , (iap, jap)} such that there 
exists J(sh) containing both ih and jh for all h= 1, • • • , ap, and then ir(Ti)ap is given by 
A 0 Q2 ® Ip. Therefore, the proof is completed if we show that any partition T', which 
contains a pair (ih, jh) such that 

ih E J(s), jh E J(s1) for some s < s',(A.5) 

does not satisfy both (A.3) and (A.4). Assume that T' satisfies (A.3). Without loss 
of generality, we can suppose that (i1, ji) has the smallest first-entry among the pairs 
satisfying (A.5) (cf. Remark A.1). If ih < it and ih E I(2s — 1), then jh E I(2s) by 
(A.3). Thus it E I(2s) leads to a contradiction that I(2s) contains more than p numbers. 
Therefore, it E I(2s — 1) for some s. Then, since it < i < jl and ira1 < ir2 < ir~ for any 
i E I(2s), we have d(ir(T')°, ir(T1)1) # 0. Hence the proof is completed by Lemma A.3. 
(ii) When q = 1, it is obvious. We prove the case of p = 2p0 and q > 3. Suppose that 
T = {(i1, j1), • • • , (ipoq, jpoq)} satisfies (A.3). Then, for all h = 1, • • • , p0q, there exist sih 
and sih satisfying 1 < sih < sih < q, ih E I(sih) and jh E I(sih). If sih — sih > 1, it is 
shown by the same argument as Step 2 of (i) that (A.4) is not satisfied. However, since 
q is odd, it is impossible that sih — sih = 1 for all h. By Lemma A.3, no permutation 
satisfies (A.2).^ 

    PROOF OF THEOREM 4.1. Let n = q • 2", where p> 0 and q is an odd number. 
Assume that P = (7r1, • • • , irn) E Pn satisfies (4.2). Then, from Lemma A.2, 

1n =(1,2,•••,n)=Iq®I2®•..®I2 

p and 7ri-1 (i = 2, • • • , n) is a permutation a satisfying (A.2) for ir = qr2. Therefore, 
by Lemma A4 (i),1rn,~~-1,,n-2P+1are uniquely determined by Iq 0I2w, Iq0 
12P-1 0 Q23 • • • , Iq ® Q2p respectively. If q> 3, i.e. n > 2", there exist no permutations 
satisfying (A.2) for ir = 1T.n-2"+1 from Lemma A4 (ii). Hence we have q = 1, i.e. n = 2". 
When q = 1, the permutations (ir1, • • • , 7rn) determined above is Pn . Hence the proof is 
completed.^
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