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                     Abstract 

   This paper examines the tests of homogeneity of odds ratios in in
dependent experiments. Breslow and Day [2] and Tarone [10] proposed 
the tests which incorporate the Mantel-Haenszel estimator, but are es
sentially based on the efficient scores from the likelihood function. To 
broaden the distributional assumption and also to include the Mantel
Haenszel estimating equation, we introduce estimating equations and 
develop a homogeneity test. The extension makes it possible for us to 
apply this procedure to 2 x 2 tables which follow a negative binomial 
distribution.
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1. Introduction 

   The analysis of the association between two factors in a series of independent 
2 x 2 tables is often conducted under the hypothesis that the odds ratios are constant 
across strata. However, it is important to confirm this homogeneity of odds ratios before 
incorporating them into an analysis. Several homogeneity tests have been proposed. The 
Pearson chi-squared test was introduced by Zelen [12] and later corrected by Halperin 
et. al. [4]. In addition many statistical packages, such as SAS, employ the likelihood ratio 
chi-squared test. These two procedures are closely related to the maximum likelihood 
estimator which is consistent in large sample cases when the number of tables is fixed 
and the sample size in each table is large, but inconsistent in sparse cases, i.e. the 
sample size in each table is fixed and the number of tables is large. Recently, due to the 
rapid development of computer technology, the Pearson chi-squared test based on the 
conditional maximum likelihood estimator has also been used. This test is superior to 
the former tests since the conditional maximum likelihood estimator is dually consistent 
i.e. consistent in the sparse cases as well as in the large sample cases. 

    The Mantel-Haenszel estimator of the common odds ratio is also dually consistent 
(Gart [3] and Breslow [1]) and is preferred for estimation problems. It is also consistent 
when subject responses are correlated within tables (Liang [5]). The MantelHaenszel
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estimator has these properties because it is given by the solution of a simple estimating 
equation. To save the computational time needed to compute the Pearson chisquare 
test based on the conditional maximum likelihood estimator, Breslow and Day([2], p142) 
proposed the use of the Mantel Haenszel estimator in place of the conditional maximum 
likelihood estimator. Later, Tarone [10] suggested subtracting a correction factor from 
the test statistic because of the inefficiency of the Mantel-Haenszel estimator. How
ever, the Pearson chisquared test is equivalent to the efficient score test based on the 
likelihood function. Therefor, we feel that it reduces the effectiveness of the Mantel
Haenszel estimator. To broaden the distributional assumption and also to include the 
Mantel-Haenszel estimating equation, we introduce estimating equations and develop a 
homogeneity test. The extension makes it possible for us to apply this procedure to 2 x 2 
tables which follow a negative binomial distribution.

2. Proposed test 

2.1. General theorem 

    We are interested in a univariate parameter 9 . For the inference of 9 suppose that 
the data are obtained from K independent experiments. Let xk represent a random 
sample of size nk from an underlying distribution in the k-th experiment. We use an 
estimating function for 9 given xk which is denoted by gk(xk; 9) . Assume that each 
estimating function satisfies the assumptions below. 

       Assumptions 
   (1) E{gk(xk; 9)} = 0 for any 9. 

   (2) E{ B gk (xk ; 9) } < 0 for any 9. 
    (3) There exist a variance function Vk (9) such that 

gk(xk 9) N(0, 1) as nk —^ 00 V
k(9)1/2 

Let the estimator 9 for the parameter 9 be defined by the solution of the equation 
gk(xk; 9) = 0. We first consider the statistic 

T =Egk(xk;or 
k=1() 

which is obtained by a method similar to the score test statistics. We have the following 
theorem for the distribution of T. 

    THEOREM 2.1. Let D1 and D2 be independent random variables that follow chi
squared distributions with K-2 and 1 degree of freedom, respectively. The statistic T is 
asymptotically equivalent to D1 + cD2 in the large sample cases where 

        KK 
E Vj(9) E E{ Bgk(xk ; 9)}2/Vk(9) 

j=1 k=1    C =
2 

                 [EE{gk(xk; 9)}
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    PROOF. Let 

 Y =  (91(x1;  9) V1(8)-1/2, 92(x2; 9) V2(0)-1/2, ... , 9K(xK; 9) VK(9)-1/2)t 

Note that we substitute 0 not B in the variance function. We consider the asymptotic 
variance of y denoted by 

            AVar(y) = V-1/2(I bat)(I1abt)V-1/2 

where 

                V = diag{V1(0), V2(9), • • • , VK(0)}, 

                a = (V1 /2(0), V2 /2(0), ... , VKl2(0))t, 

     b =V-1/2(E{~Bgl(xl; 9)}, E{aeg2(x2; 0)},•... ,E{~09K(xK; 0)})t, 
              I is the order K identity matrix and 9 = atb. 

We choose a base in RK whose first and second members are a and b. If we construct 
an orthogonal matrix r based on the base by GramSchmidt process, then 

rtAVar(y)r = rtv-1/2(I bat)(I abt)V-1/2r 

                        = diag(0, c,1,1, ...,1). 

So we can divide > gk(xk ; 0)2/Vk(0) by two random variables which are asymptotically 

equivalent to cD2 and D1 . Since O. is a consistent estimator for 0, Vk(0)/Vk(0) converges 
in probability to 1 when nk --> oo for all k. We can show that the statistic T is 
asymptotically equivalent to >gk(xk ; 0)2/Vk(0).0 

    CauchySchwarz's inequality derives that c is not less than unity and c equals 
to 1 if and only if Vk(0) = a E{aegk (xk ; 0) }, for some constant a . If we use the 
derivative of log likelihood for an estimating function, the statistic T, which is equivalent 

to efficient score test, is asymptotically equivalent to a chisquared random variable with 

K-1 degree of freedom. Generally, the statistic T is asymptotically larger than the chi

squared random variable with K-1 degree of freedom. We next consider a correction of 

T which is asymptotically equivalent to the chisquared random variable. 

    THEOREM 2.2. Let 

                                                                   2 

      =9k (xk;B)2                      [Egk(xk  ; 0) E{ae9k (xk ; 0) }/ Vk(e) T
Vk(0)E{ae9k(xk0)}/ Vk(0) 

              k = 1 

Then Ta follows an asymptotic chisquared distribution with K-1 degrees of freedom.
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   PROOF. In the proof of THEOREM 2.1 , E gk (xk ; e)2/Vk (8) is divided by two 

random variables. That asymptotically equivalent to cD2 is equal to the square of the 

second factor of rty. It is expressed by the following form 

const.Egk(xk ;8)E{ae9k(xk ; 9)}/Vk(8). 

T* is the result of subtracting the extra part of above form from T. ^ 

   COROLLARY 2.3. If we replace E{-6aegk (xk ; 19)} and Vk (8) by consistent estimators 
respectively, T* also follows an asymptotic chisquared distribution with K-1 degree of 

freedom.

2.2. Several 2 x 2 tables 

   We apply THEOREM 2.2 to test for the homogeneity of odds ratios in several 2 x 2 
tables. Consider K 2 x 2 tables with a pair of independent binomial observations (xk, yk) 
with denominator (nk,mk) and success probability (plk,p2k)for each k (k =1,2,..., K). 
Put the odds ratio in the k-th table "kk = plkg2k/p2kglk where qik = 1—pik for i=1,2. We 
use gk (xk, yk; 7,b) = Rk  OSk for estimating functions where Rk = xk (mk  yk)/(nk + 
mk), and Sk = yk (nk — xk)/(nk +mk). The MantelHaenszel estimator of the common 
odds ratio is given by the solution of an estimating equation E gk (xk , yk; ) = 0. We 
can estimate consistently E{aegk (xk, Yk ; 0)} by —Sk. Robin et. al. [8], Phillips and 
Holland [7] and Sato [9] have discussed the consistent estimator of Vk(0) in relation 
to estimation problems of the variance of the MantelHaenszel estimator. We use the 
estimator proposed by Phillips and Holland [7] as follows 

Vk =2(Rk +'CkSk)(Pk + Qk) 

where Pk = (xk + mk  yk)/(nk + mk), and Qk = (yk + nk — xk)/(nk + mk) . Then 
we propose the following test statistics 

2 

        (Rk—Sk)2}                          {E(Rk  '1Sk)Sk/Vk T. = 

--------------- k _1VkE4117 

This procedure can be also applied to the noncentral hypergeometric model since Vk 

and —Sk are also a consistent estimator for Vk (0) and E{ 4 gk (xk, yk ; Oil, respectively.

2.3. The extended homogeneity test in negative binomial models 

   We next consider the extension of the homogeneity test in negative binomial mod
els. Let xk% (i=1,2,..., nk) and yki (j=1,2,..., mk) be samples of size nk and mk from
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 k-th experiment having negative binomial distributions NB(pkl,S) and NB(pk2i6), re
spectively. The probability function of NB(p,S) is given by 

           x-1 x 1 1/b pr(x, P, 6) = ~~(11(1+hS)1-------+ SP 1 +SP. 
Yanagimoto [11] proposed the extended odds ratio 4'k in negative binomial models as 
follows

k =Pkl(1 + 61k2)  
1k2(1 + 6µk1)• 

For simplicity, we denote the sum of the samples of the k-th experiment by xk+ and 
yk+ , respectively. When S = —1 and 0 < Pki < 1 for i = 1,2 then xk+ and yk+ 
have independent binomial distribution with denominators (nk, mk) and also success 
probabilities (pki, Pk2), and ,bk equals to the odds ratio in binomial models. We can 
easily extend the above homogeneity test for given S. We use the following estimating 
function 

gk(xk+) yk+ ; ) = ilk —Sk 

where Rk = xk+(mk + Syk+) /(nk + mk) and Sk = yk+(nk + Sxk+) /(nk + mk) • 
For consistent estimators of E{ 4gk(xk+, yk+ ; O)} and Var{gk(xk+, yk+ ;)} , we 
use —Sk and 

Vk =  {xk+(mk + Syk+)
1+,by"k+(nk+Sxk+)}l      •{mk+ +S(yk+—xk+)+ ,byk+(nk + Sxk+ — 6yk+)}/(nk + mk). 

Vk has been given by Yanagimoto [11] as an extension of Phillps and Hollands estimator 
in binomial models. Then we have 

=Kgk(xk+) yk+ ;')2 
                                   k=1                                  Vk 

and 2 

         ~• K9k(xk+, yk+ ;)2{E(Rk — OSk)Sk/Vk  
k -iVk SkiVk 

We can easily show that T` equals to T` when S = -1 .

3. Example 

   As an illustration of this procedure we use the data from the casecontrol study 

of esophageal cancer given by Breslow and Day([2],p145). The data are summarized 
in six 2 x 2 tables. We obtain the MantelHaenszel estimate, On the other hand, the 
Pearson chisquared test based on the maximum likelihood estimator and the Mantel
Haenszel estimator are 9.320 and 9.323, respectively. Tarone's correction of the Pearson 
chisquared test is 9.299. For this data, the proposed test statistic is smaller than the
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other three test statistics. Several sparse cells bring the result because the Pearson chi
squared tests don't perform well when the data are sparse.(Liang and Self [6] ) Also the 
proposed tests may be conservative because estimator of variance is not so accurate in 
the sparse table. As an improvement, we may use the conditional expectation of the 
square of gk(xk, yk; 0) conditioned all marginals substituting for . We need the 
further study 

          fabout the distribution of T.in sparse cases and the estimator of variance of gk(xk, Yk; 1i')•
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