
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

NONPARAMETRIC RECURSIVE KERNEL ESTIMATORS OF
DISTRIBUTION FUNCTIONS

Isogai, Eiichi
Department of Mathematics, Faculty of Science, Niigata University

Hirose, Keiichi
Department of Mathematics, Faculty of Science, Niigata University

https://doi.org/10.5109/13435

出版情報：Bulletin of informatics and cybernetics. 26 (1/2), pp.87-99, 1994-03. Research
Association of Statistical Sciences
バージョン：
権利関係：



 Bulletin of Informatics and Cybernetics, Vol. 26, No. 1N2, 1.994

  NONPARAMETRIC RECURSIVE KERNEL 

ESTIMATORS OF DISTRIBUTION FUNCTIONS

               By 

Eiichi IsoGAI* and Keiichi HIRosE*

                    Abstract 

   In this paper we propose nonparametric recursive kernel estimators 

for distribution functions and study their asymptotic properties, includ

ing strong uniform consistency. Rates of convergence of the mean square 

error are also investigated. Asymptotic normality of our estimators is 

shown.

1. Introduction 

    Let X1, X2i ... be independent and identically distributed random variables having 

a common cumulative distribution function (cdf) F. 
   In this paper, we consider the problem of estimating the cdf F. Traditionally, as an 

estimator of F, the empirical distribution function was chosen. It is well known that the 

estimator is strongly uniformly consistent. On the other hand, alternative estimators 

of the cdf F have been considered by (to mention a few) Nadaraya [6], Yamato [18], 
Winter [14, 15], Hill [4], Puri and Ralescu [7], Yukitch [19] and Sarda [10]. Especially, 
for kernel-type estimators, Singh et al. [11] investigated their asymptotic properties 
including strong uniform consistency and asymptotic normality, and also derived rates 
of convergence. 
   Under a certain condition on the cdf F, Read [8] showed that the empirical distri

bution function is inadmissible with respect to the mean integrated square error. Reiss 

[9] and Falk [2] showed that the kernel-type estimators have an asymptotically bet
ter performance on the level of deficiency than the empirical distribution function for 
appropriately chosen kernels and sufficiently smooth F. 

    By the way, the kernel-type estimators mentioned above are not recursive in nature, 
i.e. when the sample size increases, the estimators must be computed from the beginning. 
Besides, we are required to store extensive data in order to calculate them. With these 
things in mind, we propose a class of recursive kernel estimators {Fn }. By " recursive 
" , we mean that the estimator F,,, based on the first n observations is a function of F„_1 
and the nth observation. Throughout this paper, the cdf F is assumed to be absolutely 
continuous with respect to Lebesgue measure, and let a probability density function 
(pdf) of F be denoted by f.
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   In Section 2 we shall define a class of recursive kernel estimators of the cdf F. 

Section 3 gives consistency of the estimators. In Section 4 asymptotic expansions of the 

mean square error are derived. Also, our estimators are compared with the nonrecursive 

kernel-type estimators from the viewpoint of the mean square error. In the last section 

we shall show the asymptotic normality of the estimators.

2. Recursive kernel estimators 

   In this section, we shall propose a class of recursive kernel estimators which is a 
modification of the kernel-type estimators. 

   Let k (called a kernel) be a realvalued Borel measurable function on the real line 
R such that 

Jk(y)dy=1,              Mo=Ik(y)Idy<oo and 

where throughout this paper all integrals are taken over R, unless otherwise specified. 

Let  {hn} (called bandwidths) be a sequence of positive numbers converging to zero. For 
each n > 1, set 

     xx 

               hn kn(y) =lk(y/hn), Kn(x) =kn(y)dy, K(x) = f k(y)dy 
and 

n fn(x) = n-1 E kj(x  Xi). (2.1) 
j-1 

    Now we define the recursive kernel estimators {Fn} of the cdf F as 

    xn           Fn(x) = ffn(y)dy = n-1 E Kj(x  Xj) for n > 1. (2.2) 
j=1 

These estimators can be recursively computed as follows: 

Fn(x) = (1  n1)Fn_i(x) + n-1Kn(x  Xn) for n > 1, 

where Fo(x) = K(x). 

   REMARK 2.1. (i) Let k be a pdf. Then fn(x) in (2.1) and Fn(x) in (2.2) are a 
pdf and a cdf, respectively. (ii) The nonrecursive kernel-type estimators are defined by 

n Fn(x) = n-1 E K ((x  Xj)/hn) for n > 1. (2.3) 
j-1 

(iii) As an estimator of the pdf f , Wolverton and Wagner [16], and Yamato [17] proposed 
the recursive kernel estimator fn(x) defined by (2.1).
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3. Consistency of the estimators 

   In this section, the estimators {Fn} defined by (2.2) are shown to be weakly con
sistent in quadratic mean and to be strongly uniformly consistent. 

   The following theorem gives weak consistency in quadratic mean. 

   THEOREM 3.1. The following relation holds true: 

                sup E[I Fn (x) — F(x) I2] —* 0 as n --> oo, 

where all suprema are taken over R throughout this paper. 

    PROOF. First of all, we shall prove 

sup lEKn(x—Xn)—F(x)I —+0 as n oo.(3.1) 

Fix any x. By Fubini's theorem, we have 

                    frEK(x — Xn)=Jk(u) f (t — h,u)du)dt.(3.2)                                                  00 

Hence, by the assumption on k, we get 

              sup I EKn (x — Xn) — F(x) I 

            = sup f k(u)(f (t — hot) — f (t))du dt 
< f f If(t — hen) — f (t)I dt Ik(u)Idu.(3.3) 

By using a theorem on the continuity of transformation of L1function (e.g. Wheeden 
and Zygmund [13, p.134]) and the convergence of hi, to zero, we get that f If (t — hnu) — 
f (t) I dt 0 as n —+ oo for each u. Thus, in view of the fact that k, f E L1 and the 
dominated convergence theorem, the right-hand side in (3.3) converges to zero. The 
relation (3.1) follows from this. 

    We shall now prove the theorem. Since 
2 sup E[Kn2(x — Xn)] = sup f f hn 1k((u — y)/hn)du f(y)dy 

2 < f f I k(t) I dt f (y)dy = Mo 
from (2.2) we get 

sup V ar(FF (x)) < n-2 E s up E[K? (x — Xj )] < MV n. (3.4) 
j-1 

On the other hand, by (3.1) and the fact that 

         sup IEFn(x) — F(x)I < n-1Esup IEKK(x — Xi) — F(x)I, 
j=1
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we get 

sup I EFn (x) — F(x) I —> 0 as n --* oo.(3.5) 

x Clearly 

                                                                2 
sup E[I Fn (x) — F(x) I2] < sup V ar(Fn (x)) +sup I EFn (x) — F(x)l) . 

Thus, from (3.4) and (3.5), we obtain the theorem.^ 

    We next consider strong uniform consistency. Here, we assume the following con
dition. 

   CONDITION A. One of the following is true: 
(i) The pdf f is almost everywhere continuous, and I xk(x) I --+ 0 as lxi —+ oo, 
(ii) The pdf is bounded on R, 
(iii) The kernel k has a compact support, 
(iv) f So(x)dx < oo with Sp(x)  suplyl>>>IaI I k(y)I 
where the radial majorant io of k is assumed to be measurable. 

   The following lemma can be easily proved by Theorems 2 and 3 of Devroye [1], 
Corollary C of Glick [3] and Theorem 2 of Stein [12, p.62]. 

    LEMMA 3.1. Assume Condition A. Let k be a bounded pdf. Suppose 

   nhnCo 
            log log n 

-------- —> oo as n—>oo or E(n2hn)-1 < oo. (3.6) 
                                                           n=1 

Then

/' 

               JI fn(x) — f (x) I dx —> 0 as n —> oo w.p.l. 

    We shall now give a theorem concerning strong uniform consistency. 

   THEOREM 3.2. Assume Condition A. Let k be a bounded pdf and Pin} satisfy (3.6). 
Then 

sup l Fn (x) — F(x)j—+ 0 as n --> oo w.p.1. 

x 

   PROOF. It is clear that 

x 

     sup I FF(x) — F(x)I = sup".                 upJ(f,-,(t) — f(t))dt <I I fn(t) — f(t)I dt, 
which, together with Lemma 3.1, yields the theorem.^

4. Asymptotic expansions of the estimators 

   In this section, under the assumption that for an integer r > 1 the rth derivative f(r) 
of f is integrable, we shall give the asymptotic expansions of our estimators Fn. Similar
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results hold for  Fn, provided that f(r) is bounded for an integer r > 0. We shall also 
compare our recursive estimators with the nonrecursive kernel-type estimators given by 

(2.3) from the viewpoint of the mean square error. 
   As in Singh et al. [11], for each integer r > 1, let K,. be the class of all kernels k 

such that 

f y?k(y)dy =r                   = 0and Mr =rtJIyrk(y)Idy < oo. 0 if                 j=r  1 

   The following lemma provides the asymptotic behavior of the variance of Fn. 

    LEMMA 4.1. The following holds true: For each x, 

Var(Fn(x)) = n1F(x)(1  F(x)) + o(n-1) as n -> oo. 

   PROOF. By (2.2), we get 
nn 

Var(Fn(x)) = n-2 E E[Ki (x  Xi)] n-2 E{EKK(x  Xj)}2. (4.1) 
j-1j-1 

By using (3.1), we have 

n n-1 E{EKK(x  Xj)}2 = F2(x) + o(1) as n -> oo. (4.2) 
j-1 

Let I(A) denote the indicator function of A. Since K(x) = f k(t)I(x > t)dt, it follows 
from the assumption on k that 

            sup I K(x)I < Mo, K(x) -41 as xo0 
s0 as x -• -oo, 

         K2((x  y)/hj)I(x > y)f(y) -+ I(x > y)f(y) as j  oo 

and 

k2((xy)/hj)I(x<y) Ay) -->0 as j-*oo. 

Hence, by the dominated convergence theorem, we have 

fK2((x  y)/hj )I (x > y)f(y)dy = F(x) + o(1) as j -* oo 
and 

JK2((x  y)/hj)I(x < y)f(y)dy = o(1) as j -> oo, 
which imply 

E[K2(x  Xi)] 

     = f K2((x  y)/hj )I (x > y)f (y)dy + J K2((x  y)/hj )I (x < Of (y)dy 
       = F(x) + o(1) as j -> oo.
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Thus 

n n-1 E E[K; (x — Xi)] = F(x) + o(1) as n --+ oo. (4.3) 
j=1 

From (4.1)(4.3), we obtain the lemma.^ 

   We shall give a uniform upper bound of the absolute value of the bias of Fn. 

   LEMMA 4.2. For an integer r > 1, let the rth derivative f (r) of f be integrable. Let 
k E 1Cr. Then 

n 

         sup IEFn(x) — F(x)I < n-1 E h, Mr f If(r)(t)Idt. 
xj=1 

    PROOF. By (3.2), the Taylor expansion and the fact that k E Kr, we have 

EFn (x) 
         nx 

      = n-1Jk(u) f (t—hju)du dt 
j=1 

nxr-1 = n1m! f(m)(t)(—h.)m Jumk(n)du 

                  L 

             j=1°° m=0 

        (i ur+!J)(j_h—hu—s)r-1f(r)(s)ds dut       1), 

     = F(x) nhrx [Jnrk(n) {j'(y_1_hf(t_huY)dY}du]dt.(4.4) 
         Hence 

    sup I EFn (x) — F(x) I 

          x 

       ?~hr.< n r_1!f [J{J'                                  ly  lIr-llf(r)(t—hjuy)Idydudt    () 

   nhr1      = n-1 r j1Iurk(u)IduIy11r-1dyl If(r)(t)Idt 
j=1()o 

n 

    = (n-1h;) Mr J I f(r)(t)I dt, 
j=1 

which concludes the result of the lemma.^ 

    REMARK 4.1. We note that for r > 3 any fixed k in Kr can be negative, thus 
leading to the negative estimator Fn for the cdf F. But the bias E[FF (x)] — F(x) of
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 F(x) is reduced in absolute value. Hence, one can improve the rates of convergence of 
the bias to zero by using the kernel k in Kr. 

   From Lemma 4.2, (3.4) and the fact that 

EI Fn(x) — F(x)l2 = Var(Fn(x)) + I EFF(x) — F(x)I2, 

we can easily get the following result concerning a uniform upper bound of the mean 
square error of Fn. 

   PROPOSITION 4.1. For an integer r > 1, let f (r) be integrable. Let k E Kr. Then 

2 n2 supElFn(x) — F(x)I2 < Mon-1 + n-1Eh; (Mr f If(r)(t)Idt) . 
j=1 

We shall now give the exact asymptotic behavior of the bias of Fn. 

   THEOREM 4.1. For an integer r > 1, let f(r) be integrable. Let k E K,. and On} 
satisfy 

n Eh? --).00 as n —> oo. 
j=1 

Then, asn —>oo, 

n  EFn(x) — F(x) =n-1 E h~{(-1)5.1,1x                               f(r)(t)dt+o(1)} 
j=1 

uniformly in x, where 

                    Pr =1r!Iyrk(y)dy• 
    PROOF. Set 

nx bj = h;, Bn = E bj, a(x) = (-1)r p,If(r)(t)dt 
j=1 

and 
    x1 

aj(x) =—-------- (r11)!Loof urk(u)f(y — 1)r-1 f(r)(t — hjuy)dydudt. 
From (4.4) we get 

n {EFn(x) — F(x)}/(n-1Bn) = RV E bjaj (x). (4.5) 
j=1 

Since 
    x1      a(x)1![Iurk(u){j(y — 1)r-1f(r)(t)dydudt, 

               (r — 1)o0
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we have 

    sup laj(x)  a(x)I 

x 111r 
          1Iurk(u)Ily — i r-1JIf(r)(t — hjuy) —f(r)(t)Idtdy du      (r )!Jo 

       1  

   (r  1)t/3, say.(4.6) 

By virtue of the theorem on the continuity of transformation of L1function, the fact 
that f (r) E L1 and the dominated convergence theorem, we have 

    fo1 Iy — ilr-1JIf(r)(t — hjuy)  f(r)(t)Idt--4dy~ 0 as j -> oo 

         for each u. Thus, by using the fact that f(r) E L' and urk(u) E L1 and the dominated 
convergence theorem, we have Ij — 0 as j -* oo, which, together with (4.6), yields 

sup laj(x)a(x)I->0 as j -^oo.(4.7) 

x Clearly 

nn 

    sup BnB,n              1Eb jaj(x)-a(x) <1Ebjsup laj(x)a(x)l. 
J=1j-1 

Since Bn I oo as n --+ co by the assumption made, in view of this inequality, Toeplitz's 
lemma (see Loeve [5, p.250]), (4.5) and (4.7), we obtain the result of the theorem. ^ 

    By virtue of Lemma 4.1 and Theorem 4.1, we have the following corollary concern
ing the exact asymptotic behavior of the mean square error of Fn(x). 

    COROLLARY 4.1. Assume all the conditions of Theorem 4.1. Then, for each x, as 
n -+ oo, 

EI Fn (x)  F(x) I2 

                                                 2 

                             nIx2= n1F(x)(1 F(x))+ n-1 Ehjµ,.f (r)(t)dt 
j-1 

                                      2 
n +0n-1 + (n_1h;). 

j-1 

   Let r > 0 be an integer. Then, under the assumption that f (r) is bounded, we 
can obtain similar results. Let k E K,.+,. Then, by the Taylor expansion, we have the 
following result instead of (4.4): 

EFn (x) 

n 

        = F(x) + n-1 E1-------1(j)r+1 I ur+lk(u)f(r)(x — Ohju)du 
J=1(r-} 1).
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with 0 < 0 < 1. 
   The four results below can be proved by the same manner as above, so we omit the 

proofs. 

   LEMMA 4.3. For an integer r > 0, let f (r) be bounded. Let k E Kr+i. Then 

n 

          sup IEFn(x) — F(x)I < n-1 Eh;+1 Mr+1IIf(r)II, 
j=1 

where IIP)II = Sups I f(r)(x)I 

PROPOSITION 4.2. For an integer r > 0, let f (r) be bounded. Let k E Kr+1. Then 

                                                      2 

                              n
supEIF(x) — F(x)I2 <Mn-1 +n-1Lh~+1 (Mr+iIIfII)2. 

x j=1 

    THEOREM 4.2. For an integer r > 0, let f (r) be bou'nded. Let k E Kr+1 and Pin} 
satisfy 

n Ehi.,:+1-->oo asn -->oo. 
j=1 

Then, for each continuity point x of PO, as n --> oo, 

                                        n EFn(x) — F(x) = n-1 E h,,,+1 {(1)r+lfcr+if(r)(x) + o(1)}, (4.8) 
j=1 

where 

1                  µr+1 = (r---------+ 1)!JYr+lk(Y)dY• 
If f (r) is uniformly continuous, then (4.8) holds uniformly in s. 

    COROLLARY 4.2. Assume all the conditions of Theorem 4.2. Then, for each conti
nuity point x of f('), as n —> oo, 

EIFn(x) — F(x)I2 

                                                  2 

                             n
=n1F(x)(1 — F(x)) + n h1 (r+if())2 

                                                             j=1 

                        n +o(_+(fl_1h+1)2). E  
j=1 

    We shall here compare our recursive estimators {Fn} with the nonrecursive esti
mators {En} given by (2.3) in terms of the mean square error. For an integer r > 1, let 
f(r) be integrable and k E Kr. We consider the following popular choice of hn :
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hn=n-a with 0<a<r-1. 

Set 

                        Jx2         a(x) = F(x)(1  F(x)) and b(x) =rf (r)(t)dt. 

From Corollary 4.1, we have, as n -* oo, 

MSE(FF(x)) E. EIFF(x)  F(x)I2 
                   = a(x)n-1+ b(x)(1  ar)-2n-2ar+ o(n-1+ n-2«r). 

On the other hand, we have from Corollary 4 of Singh et al. [11] that as n --> oo, 

MSE(Fn(x)) = a(x)n-1 + b(x)n-2"r + o(n-1 + n-2ar). 

Let us find the value of a which minimizes each mean square error. It is easy to see 
that for a fixed but sufficiently large value of n the mean square error of Fn (x) attains 
the minimum at a = r-1  (r log n)-1 while the mean square error of Fn(x) attains the 
minimum at a = r-1 when 0 < a < r-1. Now, as an a in the neighborhood of r-1, 
we choose an arbitrary a with (2r)-1 < a < r-1. Then, for any x with 0 < F(x) < 1, 
we obtain that limn , MSE(Fn(x))/MSE(Fn(x)) = 1. Thus, in this case, Fn(x) is 
asymptotically equivalent to Fn (x) in the sense of the mean square error.

5. Asymptotic normality of the estimators 

   In this section, we shall show the asymptotic normality of the estimators {Fn }. 

   THEOREM 5.1. For an integer r > 1, let f(r) be integrable. Let k E Kr and On} 
satisfy 

                                     n 

                                         i                          n-12Eh, ->0 asn - oo. 
,j-1 

Then 

na (Fn(x)  F(x)) N(0, F(x)(1  F(x))) as n -^ 00 

for each x with 0 < F(x) < 1, where " -->" stands for convergence in law. 

    PROOF. Clearly 

    n2(Fn(x)  F(x))/(F(x)(1  F(x)))2 

    = {(F(x)  EFn(x))I (Var(Fn(x))) 2 } {nVar(Fn(x))/(F(x)(1  F(x)))} 
      +n21(x)  F(x))I (F(x)(1  F(x)))2   n.(5.1) 

From Lemma 4.2 and the assumption made, the second term of the right-hand side of 

(5.1) converges to zero as n tends to infinity. Lemma 4.1 implies that 

{nVar(Fn(x))/(F(x)(1  F(x)))} --+ 1 as n -+ oo.
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Hence, taking (5.1) into account, it suffices to show 

(Fn(x)  EFF(x))/(Var(Fn(x)))i  N(0, 1) as n -> oo.(5.2) 

Set Vn = Kn(x  Xn)  EKn(x  Xn) for n = 1, 2, .... Then, V1,172, ... are independent 
but not identically distributed random variables; EVn = 0 for n = 1, 2, .... It is clear 
that 

nn (FF(x)  EFn(x))/(Var(Fn(x)))1 = >Vj I (Var >Vj . (5.3) 
j=11=1 

From Lemma 4.1, we have 

                             n n-1Var Vi) = F(x)(1 F(x)) + o(1) as n --> oo. (5.4) 
                        j=1 

Since I Kj (x  X j) I < Mo for j = 1, ... , n, we get 

E[IKj(xXj)I3] < Mo for j = 1,...,n. 

Hence, by Holder's inequality and (5.4), we have, as n -+ oo, 

3 3 

nn~ n n ~ E E[IV I3] (Var V; < 8EE[IKj(x  Xj)13] I (Var (Vi)) 
J=13=1j=1j=1 

< {8Ma /(F(x)(1 F(x)) + 0(1)) 1 }n i , 

which implies 

                                           n 

      E (var(Vi))-+oasoo. 
j=1j=1 

Thus, by Lyapounov's theorem and (5.3), (5.2) is established. This completes the proof. 

                                                        0 

    The following theorem can be proved in the same manner as Theorem 5.1 by using 

Lemma 4.3. 

    THEOREM 5.2. For an integer r > 0, let f(r) be bounded. Let k E Kr-F1 and Pin} 
satisfy 

                                      n 

                        n2Eh;+l-->0 asn -^oo. 
j=1 

Then 

n2 (Fn(x)  F(x)) - N(0, F(x)(1  F(x))) as n -+ o0 

for each x with 0 < F(x) < 1.
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