
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A SEQUENTIAL STOCHASTIC ASSIGNMENT PROBLEM FOR
A RANDOM SEQUENCE WITH UNKNOWN NUMBER OF VALUES
PER PERIOD

Nakai, Toru
Department of Economic Engineering, Faculty of Economics, Kyushu University

Teraoka, Yoshinobu
College of Integrated Arts and Sciences, University of Osaka Prefecture

https://doi.org/10.5109/13433

出版情報：Bulletin of informatics and cybernetics. 26 (1/2), pp.35-54, 1994-03. Research
Association of Statistical Sciences
バージョン：
権利関係：



 Bulletin of Informatics and Cybernetics, Vol. 26, No. 1N2, 199.E
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PROBLEM FOR A RANDOM SEQUENCE WITH 

    UNKNOWN NUMBER OF VALUES 
             PER PERIOD

                By 

Toru NAKAI* and Yoshinobu TERAOKAt

                     Abstract 

   In this paper, we treat a sequential stochastic assignment problem for 
the random number of jobs per period. In Section 2, we consider several 
preliminary results about an optimal selection problem as in Nakai [10]. 
We treat this problem for two cases, i.e., a case with known number of 
arriving jobs and a one with unknown number. In Section 3, we treat a 
case with a previously known about the total number of arriving jobs. In 
Section 4, we consider a case not knowing about the number of jobs but 
only knowing the probability distribution of this number at each period. 
For these problems, there exists threshold values depending only on the 
distribution function of the arriving jobs. We obtain the optimal policy 
and the expected value obtainable by this policy by using these threshold 
values.

1. Introduction 

   Derman, Lieberman and Ross initially treated a sequential stochastic assignment 
problem in [3] at 1972. In this problem, the decision-maker hires n persons, and we 
represent their abilities as pl , p2, • • , pm. We assume 1 > pl > p2 > • • > p„ > 0 
without loss of generality. If the decision-maker assigns a perfect man to a job with a 
value x, he will obtain a reward x. If he assigns a man with ability p, then the reward is 
px. On the other hand, n jobs will arrive in sequential order, i.e., first job 1, next job 2 
and so on. We assume to represent value of each job as a nonnegative iid (independently 
and identically distributed) random variable with known distribution function. If a man 
is assigned to a job, he is unavailable for future decisions. The objective of this problem 
is to find an optimal policy for n men which maximize the total expected reward. This 

policy is determined by threshold values which depend on the distribution of the jobs 
and independent of the pi, p2 • • • , pm.
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   On the other hand, there is a well known property about the inequality as Lemma 
1.1. (Hardy, Littlewood and Polya [4]) 

   LEMMA 1.1. (Hardy's Lemma) 
Let al>a2> •••>an>0 and bl>b2> ••>bn>0, then 

n max Y , _ E aibi, QESn i=1 i=1 

where Sn is a symmetric group on n letters. 

    If we can observe the values of n jobs at the same time, it is, therefore, optimal to 
assign n men to n jobs in sequential order. In other words, we assign the p1 man to a job 

with the largest value, and p2 to the second largest one, and so on. For the sequential 
stochastic assignment problem, the decision-maker could not observe n jobs at the same 
time, and observe only one at a time. It is, therefore, a stochastic generalization of the 
Hardy's Lemma. 

    For the sequential stochastic assignment problem, there are many observations such 
as Albright [1] • Nakai [5] • [6] • [7] • [8] • [9] • [11] • [12] etc. In most of these sequential 
stochastic assignment problems, the decision-maker observes one at a time in sequential 
order, and not observes some of them at the same time. In this paper, we will observe 
a problem where the decision-maker could observe the random number of jobs at the 
same time. 

    Concerning a sequential decision problem where the number of observations at same 
time is a random variable, Nakai considered an optimal selection problem in [10]. For a 
sequence of iid random variables, the objective of this problem is to maximize the total 
expected reward by selecting a given number of jobs. 

    In Section 2, we rearrange the results obtained in Nakai [10]. In Section 2.1, we 
consider several preliminary results. Initially we generate a fundamental sequence and 
observe several properties about it. In this problem, we assume that these random vari
ables appear uniformly and independently of the other variables. Therefore, concerning 
the number of observable values, it is possible to obtain the probability distribution of 
this number at each stage. As treated in Nakai [10], we consider an optimal selection 
problem in Section 2.2. By using the preliminary results, we consider the optimal policy 
and the total expected reward obtainable under this policy. 

    We also consider an optimal selection problem, where the number of arriving jobs 
is unknown, in Section 2.3. The only knowledge about this number is a probability dis
tribution. We will consider similar properties in Section 2.2. We also state fundamental 
results as in Nakai [10]. We need the results in this section for the future observations. 

    In Section 3 and Section 4, we will consider a sequential stochastic assignment 
problem where the number of arriving jobs per period is random. If the decision-maker 
is able to observe only one job, this problem is similar to one considered in [3]. On the 
other hand, whenever the decision-maker can observe every job at the same time, this is 
the same to Lemma 1.1. The type of a problem treated here is, therefore, a one between 
these two types of problems.
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   In Section 3, we treat a case with a previously known about the total number of 
arriving jobs. In Section 4, we consider a case not knowing about the number of jobs 
but only knowing the probability distribution of this number at each period. For this 
case, since the total number of arriving jobs is variable, it is not always impossible to 
assign all n men to arriving jobs, but also possible to rest the jobs. This is an essential 
difference to the one considered in Section 3. 

    For these problems, there exists threshold values depending only the distribution 
function of the arriving jobs, which is similar to the problem such as in [3] etc. We 
obtain the optimal policy and the expected value obtainable by this policy by using 
these threshold values.

2. Optimal Selection Problem 

2.1. Preliminary 

    Consider that k jobs arrive, and let the k nonnegative iid random variables be 
 {Xi}i=1,...,k where k = 0, 1, • • • , oo. Let the observed value's of these k jobs be x1, • • • , xk 

For x1, • • , xk, rearrange the order from greatest to least, and let the ordered values be 
(x(1), • • , x(k)) where x(1) > • • • > x(k). If we arrange the order from least to greatest, 
then the resulting values are well-known order statistics. 

   If k jobs arrive, then the density function gk,i(x(i)) of the i-th greatest value X(i) 
is given by 

t 
gk,i(x(i)) = (i — 1)!(k — 1-------------------t(F'(x(i)))k-i(1 — F(x(i)))i-1 f (x(i))(x1, ... , xk). (2.1) 

We assume the X's to be absolutely continuous with a density function as f (x). 
    Consider a sequence where 0 = oo > al > • • • > an > • • • > 0. Initially we define a 

nonnegative function Uk(ai, ai_1Il, y) as follows. 

                                      a1Ay Uk(ai, ai_1I1, y) = f x(l)hk,l(x(i))f(x(i))dx(l) 

                             0 

                        fy 
                       JUk(ai-1, ai_211 + 1, x(l))f(x(~))dx(i), (2.2) 

                                                a,_1Ay 

where 

Uk(ai,ai1Jk+1,y)=ai (y>0)(2.3) 

and                                     t 

hki(x(t)) =(kk.1 t(F(x(r)))k-l.(2.4) 

    Next we construct a sequence {ai,k}i_0 1,... of nonnegative numbers as follows. 

ai,k = Uk(ai, ai-1l1, oo) (i = 1, 2, ...),(2.5) 

where ao,k = oo. For this sequence, we obtain Lemmas 2.1, 2.3, 2.4 and 2.5. For the 
proofs of these properties, see Nakai [10].
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    REMARK 2.1. Concerning a function  Uk(ai, ai_iIl, y) defined in (2.2), we remark 
the next things. 

ai,k = Uk(ai, ai-1I1, 00) 
    a,a,-1         =faihk,l(x(1))f(x(i))dx(i)+             o JX(l)hk,l(X(l))f(X(l))dX(l) 

                                                                                       t + fy                  Uk(ai-i,ai-2I2,x(1))f(x(1))dx(1), (2.6) 
                           a. 1 

and 

a1,k = Uk(ai, ooI1, oo) 

   falo0                aihk ,i(x(i))f(x(i))dx(i) +  (2.7)             ojx(l)hk,l(x(l))f(x(l))dx(l). 

                                                                     l

   LEMMA 2.1. For a sequence {ai ,k}i—o,i,•••, it has a following property. 

ai ,k>a2,k>...>ai,k>0. 

In other words, it is also a nonincreasing sequence with respect to i. 

    LEMMA 2.2. For two sequences {ai}i0 ,1,... and {ai,k}i=o,1,..., ai,k > ai. 

   LEMMA 2.3. The sequence {ai,k}i0,1,... is obtained by the following equations. 

kAi 

ai ,k =
as-1+1 

                        x(j)gk>j(x(j))dx(j) 
                        j=1 

                      kA(i-1) 

                + E ai—j kCj(1 — F(ai_j))2(F(ai—j))k_i 
j=0

LEMMA 2.4. For two sequences {ai}i_o,i,... and {ai,k}i0,1,•••, 

ai ,k = E[X(i)], (1 < i < k) aik = 0 (i > k).

    LEMMA 2.5. Let {a1}1=1,2,... and {bi}i-1 2,... be two decreasing sequences of non
negative numbers. If ai > bi (i = 1, 2, • • .), then the function Uk(ai, ai_1I1, y) has the 
following property. 

Uk(ai, ai—i Il, y) — Uk(bi, bi—1 Il, y) >— 0.
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2.2. Optimal Selection Problem (The Case of Known Number of Jobs) 

    We consider an optimal selection problem which is a generalization of a well-known 
secretary problem. We describe a basic problem as follows. Suppose an employer wants 

to employ n jobs within the next N periods, and there are m  (> n) jobs. His objective is 
to maximize the total expected reward of the jobs. Each period, the employer observes 
several of these jobs. The number of jobs on a given period is a random variable, and the 
employer knows the probability distribution of this number on any given day. When the 
number of jobs on a given day is k, the employer observes the amounts of these k jobs. 
After that, he decides whether to select or to reject for each job (each job will accept an 
offer). The number of remaining jobs becomes m — n, since we treat a problem without 
recall. We assume an amount of each job as iid random variable {Xi}i=1,...,m• 

    During N periods, each job chooses an appearing period at random, independently 
of the other jobs. Consider that N periods remain. Then the probability of appearing 

on the initial period is —1 each job. The number of observed jobs is, therefore, not 
always one, but also several. The unselected job is not available for future decisions. 
Nakai treated in [10], and omit the proofs for this case. 

   Consider that N periods remain, and there are m jobs for n positions (n < m). We 
consider (N, m, n) be the state variable, and refer to this problem as PN,m,n For this 
problem, if the number of arriving jobs on the initial period is k, we refer this subproblem 
as PN,m,n(k). When the ordered values of the amounts of k jobs are X(i), • • • , X(k), we 
refer to this subproblem as PN,m,n(k; X(1), ' • • , x(k))• 

   In general, when the problem is in state (N, m, n), let pN,m(k)(k = 0, 1, • • • , m) be 
a probability that k jobs arrive on the initial period. Since each job chooses an arriving 
period at random, this probabilities {pN,m(k)}k0,1,•••,m is equal to 

          PN,m(k) = mCk(NN1)m-k. (0 < k < m,pi,m(m) = 1) (2.8) 
For the general case, we can obtain similar results for the general case. 

   The objective of this problem is to maximize the total expected amounts from the 
n selected jobs. We will obtain the optimal policy for this problem and get the total 
expected amounts obtainable under this policy. We also consider the properties about 
problem. 
    Moreover, let vN,m,n, vN,,,,,n(k) and vN,m,n(k; x(1), • ' • , x(k)) be the total expected 
amounts in an optimal policy for PN,m,n, PN,m,n(k) and PN,m,n(k; X(1), • • • , X(k)), re
spectively. These values exist and satisfy the recursive equations in Equations (2.9) to 
(2.11). 

vN,m,n =VN,m,n (k)PN,m (k) (2.9) 
k=0 

vN,m,n(k) =E[vN,m ,n(k; X(1), ... , X(k))] (2.10) 

          VNmn(k; X(1), • • • , x(k)) =max{Ex(j)+vN—l,m—k,n—i}(2.11)                                       1<i<k                                        — — j=1
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   We can derive these equations from the dynamic programming formulation of 
 PN,m,n  • Concerning Equation (2.11), we note that the following. If the employer decides 

to select i jobs out of k (i < k), he will select the i jobs with the largest values. Hence, 
we should first consider the job with the largest value. If the employer rejects these jobs, 
then he rejects the others observed on that period as well. If the employer selects the 
first job, the employer decides whether to select or reject a job with the second largest 
value, and so on. Thus, in order to achieve his objective, the employer makes decisions 
regarding the jobs in the order of their magnitude of amounts. 

    We next define two sequences {aN m}i=1,... and {aN m(k)}i=1 ... of nonnegative 
numbers. We recursively determine this sequence as a function of N in the following 

manner where 0 < k < m. 

m aN,m = E aN,m(k)pN,m(k),(2.12) 
k=0 

                 aN,m(k) =Uk(aN1,m—k)aN1,m-k11,oc),(2.13) 
aN,m (0) =aN-1(2.14) 

where aN,m = 4,m(k) = oo, a,0 = 0. We call these values as the threshold values of 
this problem. 

    We get the optimal policy for this problem and the total expected value obtainable 
under this policy in the next two propositions. (See the details in Nakai [10]) 

    PROPOSITION 2.1. When the problem is in state (N, m, n), supposes that the em

ployer observes k jobs with ordered values (x(1), • • • , x(k)). The optimal policy for the 
employer is as follows. 

    Let j be the largest number that satisfies(j)-k                                        >ak—+1and 1 < j < k A n, i.e., 
X0+1)ak-~ or j = k A n. Then the employer decides to select j jobs with the 
largest value, i.e., x(1), • • • , x(j). If no such j exists, the decision-maker selects no job. 

PROPOSITION 2.2. The values vN,m,n and VN,m,n(k) satisfy the following equations. 

vN,m,n =aNi ,m ,(2.15) 
i=1 

VN,m,n(k) = E ak,m(k)• (2.16) 
i-1 

    Lemma 2.3 yields the next proposition. 

PROPOSITION 2.3. The sequences {aN ,m}i1,2,.•. and {aN m(k)}ti=1,2,... satisfy the 

following recursive equations, for n> 1. 
            mAi

N,a'-3                                                 l,m-k        am(k) = Ex(j)gM,j(x(j))dx(i) 
                                         -i+1            j=1 JN 

                        N
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              kA(i-1) 

         +  E  aN  1,m-k kCj(1 — F(aN 1 mk))?(F(aN l,mk))m-~ (2.17) 
j=0 

aN = > aN,m(k)pN,m(k)(2.18) 
m-0 

    From Lemma 2.4, we get the following relations. 

                                     i(                                ali,m =al,m(m) , 
ai m(m) = E[X(i)]. 

Lemma 2.1 yields Corollary 2.1. 

    COROLLARY 2.1. The two sequences {aN m}i=1,2,... and {ail m(k)}i=1 2 ... are 
nonincreasing sequences with respect to i. 

    REMARK 2.2. By this corollary, the sequence {aN m }k=1,2,... is a nonincreasing 
sequence with respect to k. However vN,m,n and vN,m,n(k) are not always increasing 
or decreasing with respect to N. We can not show these facts. This situation arises 
because the decision-maker knows the total number of jobs a priori.

2.3. An Optimal Selection Problem with Unknown Number of jobs 

   We consider an optimal selection problem where the total number of jobs is un
known a priori. We also assume a same situation as considered in the last subsection. 
During given planning period, each job appears to the decision-maker with an amount 
which is a realization of the iid random variables {Xi}a=1...~. When N periods remain, 
let pN(k)(k = 0, 1, • • • , oo) be a probability that k jobs appear at the initial period. We 
also assume that (>k _1 kpN(k) < oo) and the random variables {Xi}i=1 ... are abso
lutely continuous with a density function f (x). 

    During N time period, the employer observes the arriving jobs, and selects n of 
them in order to maximize the total expected amount. We consider (N, n) as a state 
variable of this problem, and let QN,n be a problem in this state. For the optimal 
selection problem Q(N, n), let QN,n(k) be a subproblem of this problem when the 
employer observes k jobs. When the ordered values of these k jobs are 5(1), • • • , x(k), let 
QN,n(k; x(1), , x(k)) be a subproblem for this situation. 

    For the problems QN,n, QN,n(k) and QN,n(k; x(1), • • • , x(k)), let N , vN,n(k) and 
vN n(k; x(1), • • • , 5(k)) be total expected reward obtainable under the optimal policy, 
respectively. By the optimality principle, we obtain the following recursive equations. 

00 

vN n = E  ,n(k)p (k)(2.19) 
k-0 

vN n(k) = E[vN n(k; X(1), ... , X(k))] (2.20) 

            vNn(k; x(1), • • • , x(k)) =ma ~xk{Ex(j)+vN1,n-i}.(2.21) 
                                          j=1
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    Concerning these recursive equations, we note similar comments as in the last sub

section. 

    Recursively define two sequences,  {aN}i—i,... and {aN(k)}i=i,... of nonnegative 
numbers, where 0 < k < oo. 

aN = E aN(k)pN(k),(2.22) 
k-0 

aN(k) = Uk(aN—i, a 'N. 11 11, O0),(2.23) 
aN(0) = aN1(2.24) 

where 

aN = aN(k) = oo, at = 0. 

    REMARK 2.3. For the problem in the last subsection, we defined that 

al ,k = al,k(k) = Uk(0, coil, oo) = E[X(k)]• 

For the problem considered here, we define ai and ai (k) as follows. 

00 

ai = E ai(k)pi(k), 
k-0 

aii(k) = Uk(0, ooll, oo) = E[X(i)]. (1 < i < k) 

We consider that Xi)is the i-th largest value for the k iid random variables. 

   We have already obtained the solution for this optimal selection problem as the 
next propositions. (Nakai [10]) 

   PROPOSITION 2.4. The optimal policy of an optimal selection problem QN,n is 
stated as follows. 

    When the problem is in state (N, n), we suppose a condition that the employer 
observes k jobs with ordered value (x(i), • • • , x(k)). The optimal policy for the employer 
is as follows. 

   Let j be the largest number that satisfies xu) > aN  1 and 1 < j < k A n, i.e., 
x< ak-j or j = k A n. Then the employer decides to select j jobs with the largest 
value, i.e., x(i), • • • ,x(2). If no such j exists, the decision-maker selects no job. 

    PROPOSITION 2.5. For the problems QN,n and Qp,r,„(k), the values of v'1;1,,,, and 
v(k) satisfy the following equations. 

v*N,„ = E aiN,(2.25) 
i-1 

vlv,„(k) = > ak(k).(2.26) 
i=i
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   We have already obtained these two propositions in Nakai [10], and omit the proofs 
here. 
    Lemma 2.3 yields the next proposition. 

    PROPOSITION 2.6. The two sequences  {aN}i_1,2,... and {aN(k)}i=1,2,... of non
negative numbers satisfy the following relations. 

                                         aN -1 aN(k)E,~'-i+1 x(j)gM,j(x(j))dx(j)                             j=1 aN-1 
kA(i-1) 

             + E aN 11 kcj (1 — F(aN 1 1))j (F(aN 1 1))i—j,(2.27) 
j=o 

aN = E aN(k)pN(k)(2.28) 
m=0 

    By Lemma 2.4, we obtain the equations 

co 

                     ai = E ai(k)pk, 
k=0 

al(k) = E[X(i)]. 

    Lemma 2.1 yields the next property. 

    COROLLARY 2.2. {aN}i=1,2,... and {4(k)}1=1,2,... are nonincreasing with respect 
to i. 

    By Proposition 2.5, we get the next lemma obviously. 

    LEMMA 2.6. vN „(k) and v7v n are increasing with respect to n. 

    LEMMA 2.7. {aN}1=1,2,... and {aN(k)}i=1,2,...(1 < k < n) are nondecreasing se
quences with respect to N. 

   PROOF. We employ the induction principle on N. It is clear for the case N = 1. 
We assume this lemma for any values less than N — 1. Next we are going to prove this 
lemma for the case with N. 

   Since 
aN(k) = Uk(aN_1, aN _1 

Lemma 2.2 yields 
aN(k) > aN-1 

We get, therefore, the following inequality. 

co 

aN E aN1pN(k) 
k=0 

oo 

                         = aN_, >pN(k) 
k=0 

                              = aN -1,
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since 
             0 

1                    aN= EaN(k)pN(k). 
 k-0 

This completes the proof.^ 

    REMARK 2.4. For the problem in the last subsection, we can not obtain a similar 

inequality 
00 

aN,m~ E aNl,mkpN(k). 
k-0 

It is, therefore, difficult to show the property similar to this lemma. 

    LEMMA 2.8. vN n and v(k) are nondecreasing functions with respect to N. 

    PROOF. Since 

nk 
              vN n = E aN and vN,n (k) = aik (k), 

i-1i-1 

Lemma 2.7 yields this lemma.^

3. Sequential Stochastic Assignment Problem with Known Number of jobs 

    Concerning an optimal selection problem, we consider a sequential stochastic as
signment problem. In this problem, the decision-maker hires n persons with abilities as 

Pi, P2, • • • , pn where 1 > Pi > 132 > • • • > pn > 0. If he assigns a perfect man to a job 
with a value x, he will obtain a reward x. If he assigns a man with ability p, then the 

reward is px. On the other hand, m jobs will arrive in sequential order, i.e., first job 1, 
next job 2 and so on, but the number of observable jobs at one time is not only one. We 
consider a value of each job as iid random variable with known distribution function. 
Each period, the employer observes several of these jobs. The number of jobs on a given 

period is a random variable, and the employer knows the probability distribution of this 
number on any period. When the number of jobs on a given period is k, the employer 
observes the amounts of these k jobs. If a man is assigned to a job, he is unavailable for 
future decisions. The objective of this problem is to find an optimal policy which max
imizes the total expected reward. This policy is determined by threshold values which 

depend on the distribution function of the jobs and independent of the pi, p2 • , pn . 
   In this section, we will consider the above problem for the case that the decision

maker knows previously the total number of jobs. This is a version of the optimal 

selection problem treated in 2.2. 
    Concerning this problem, there exists a sequence of threshold values which is inde

pendent of Pi, P2, • • • 323/2 but depends on the distribution function of the random vari
ables. These values determine the optimal policy and the value obtainable under this 

policy. This result is similar to one that is obtained for sequential stochastic assignment 
problems treated before.
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   Since the objective of this problem is to maximize the total expected reward, if 
 m < n, then we only consider the m largest p's from  {pi,  • • ,p,1}, i.e., { pi , • • • , AO. . On 

the other hand, if m > n, then we add m — n persons with abilities p72+1 = • = pm = 0. 
We assume, therefore, m = n without loss of generality, and we omit the parameter n 
in this section. 

    Consider that N periods remain, and there are m jobs for m positions with abilities, 

pi, • • • , p„ ,, . We consider the (N; pi, • • • , pm) as a state variable of this problem, and refer 
this problem as PN(pi, • • • ,pm). For this problem, if the number of jobs on the initial 
period is k, we refer this subproblem as PN;pi,...,pm(k). When the ordered values of 
these k jobs are x(i), • • • , x(k), we refer this subproblem as PN;P1,...,Pm(k; x(i), • • • , x(k))• 
    Let vN;P1,...,P,n be the total expected reward obtainable under the optimal pol

icy for the problem PN;pi,...,pm. Let vN;P1,...,pm (k) be the one for PN;P1,...,Pm (k). Let 
V Pl, Pm (k x(1), • • • , x(k)) be the one for PN;pi,...,pm (k; x(1), • • • , x(k)). By the optimal
ity principle (see Ross [13]), we get the following recursive equations. 

m vN;p1,...,Pm = E vN;p1,...,pm (k)pN(k), (3.1) 
k-0 

VN;p1,...,Pm (k) = E[vN;p1,...,pm (k; X(1), • • • , X(k))], (3.2) 

VN;pi,...,Pm (k; X(1), • • • x(k)) = 

max max{E Pa(j)x(j) + vN-1;Pi...P_k}.(3.3) 
                          {pi,...,pk}C{P1i.••,Pm} aESk j-1 

    Let {pl,•••,p;~ _k}bea set of{pi,•••,Pri}—{j5i,•••,pk} where pi>•••>pm*_k 
and pi>...>pk• 

PROPOSITION 3.1. The optimal policy for the sequential stochastic assignment prob
lem PN;P1,...,Pm can be described as follows. 

    Let the state of this problem be (N; pi, • • • ,pm), and let the ordered values of 
k arriving jobs be x(i), • • • , x(k). For the union of two sets, {x(i)}i=1,...,k and 

{aN_1 m_k}i=1,•••,m-k, we rearrange the order from largest to least. Let this set be 
{bj }j=i,2,...,m. If bj = x(i) for j = 1, • • • , m and i = 1, • • • , k, then it is optimal to as
sign the job with a value x(i) to the j-th pi. If bj = aiN_1,m_k for j = 1, • • • ,m and 
i = 1, . • • , m — k, then it is optimal not to assign at this period to the j-th pi . 

     PROPOSITION 3.2. The total expected reward vN;P1,...,Pm and vN;P1,...,pm(k) obtain
able under the optimal policy are obtained as follows. 

       i() vNP1,...,PmpiaNm3.4 
i=1 

vN;p1,...,pm(k) = piaN,m(k). (3.5) 
i-1
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    In order to prove these two propositions, we employ the induction principle on N. 

We will prove Proposition 3.1 and Proposition 3.2 in the same time. First we prove 

these propositions for N = 1. By assuming these propositions for any values less than 

N — 1, we will prove Proposition 3.1 and Proposition 3.2 for N. 

    When N = 1, we have 

                     QEax{Epa(j)x(j)}. 
 j=1 

Lemma 1.1 yields Proposition 3.1. Since 

 VN;p1,...  pm = EpjE[X(2)] 
1=1 

                            = piaN
,m, 

i=1 

we get Proposition 3.2. We assume these propositions for any value less than N — 1, 

and then we prove these propositions for N. 

    PROOF OF PROPOSITION 3.1. Initially consider the following fact. 

                     maSx{E pa(j)x(j) +VN1;pi,...p~_k 
j-1 

By the induction assumption, 

m-k 

VN1;pi,•••,pm_k = EP aN1,m-k• 
a=1 

This yields, therefore, 

kkm-k 

max{E pa(j)x(j) +VN1;pl,...pk} =ax{E pa(j)x(j) + EpiaNi,m k} 
j=1j=1 i=1 

k m—k 

                            = maX{Epo(j)x(j)}+E piaN1,m—k. (3.6) aESk j
=14=1 

Lemma 1.1 and Equations (3.6) yield 

km-kkm-k 

max{Epo(j)x(j)} + p*aax+*aa aESkaN—1,m—k =~pj(j)pf N-1,m-k 
j=1a=1 j=1 a=1 

In other words, if the decision-maker decides to assign pl, • • • , jk where 

{pi,... , pk } C {pi, • • • ,pm} }
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and  pi > • • • > pk, it is optimal to assign the j-th pi to the j-th x(j). It is, therefore, 

VN;p1i...,Pm (k; X(1), • • • , x(k)) 

max max{E pa(j)x(j) + VN1;pi,...,pm_k 
                       {p1,...,13k}C{Pi,... pm} aESk j=1 

km—k 
               max {E pjx(i) + pi aN-1 m-k} (3.7) 

                     {pl ...,p-k}C{pl,... pm} j -1i-1 

    From the above argument, this problem becomes how to assign k of 
{x(i)}2=1,...,k and m  k of {aN_1,mk}i=1,•••,m-k to m of {pi, • • • ,pin}. In this case, 
{aN_1,r_k}i_1,..•,m_k means the value that will be obtained in future decisions under 
the optimal policy. 
    For the union of two sets, {x(i)}i=1,...,k and {aN_1 m_k}ii...,m_k, rearrange the 
order from largest to least as {bj}j_i ,2,...,m. Equation (3.6) is, therefore, equal to the 
following value. 

m 

                    ax{Epiba(i)}. 
i=1 

On the other hand, since 

bi>b2>•••>bm, 

Lemma 1.1 yields 
mm 

max{Epiba(i)} = Epibi• 
aESn i

=1i=1 

By these discussions we obtain the following facts. If bj = x(i) where j = 1, • • • ,m 
and i = 1, • • • , k, then it is optimal to assign x(i) to the j-th pi . On the other side, if 
bj = aN_i,m_k where j = 1, • • • ,m and i = 1, • • • , m  k, then it is optimal not to assign 
the j-th pj at this period.^ 

   PROOF OF PROPOSITION 3.2. We consider the value aN m defined by Equations 
(2.12), (2.13) and (2.14). We will prove that the following facts. Under the optimal 
policy, this value is the expected amount by assigning to the i-th pi in the problem 
PN;pi,...,pm for i(< m). This fact yields Equation (3.4) immediately. Similarly, aN,m(k) 
is the total expected amount by assigning to the i-th pi in the problem PN;pi,...,pm(k). 
We also employ the induction principle on N. It is obvious for N = 1, and we assume 
these properties for any values less than N  1. 

   Initially we note the following fact. 

      iii-1                     aN,m(k) = Uk(aN1,m-k,aN—l,m-k~.t,oo). 

Equation (2.7) yields 

a r ,m = Uk(aN—i,m—k, 0011, oo) 

                      fN-1'm-ka_l,mkhk,l(X(1))f(x(1))dx(1) 

                                      a
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 -~ J1x(1)hk,l(x(1))f(x(1))dx(1).(3.8) 
                          N Under the optimal policy, we get the following facts. If  X(1) > alN_i m_k, it is optimal 

to assign a person with the largest value p1. Otherwise, it is optimal not to assign p1 
to any job at this period. The second term of Equation (3.8) corresponds to the second 
case. Under the optimal policy, the induction assumption implies the following fact, i.e., 
during the rest of this problem aN_1,m_k is an expected amount by assigning to a man 
with the largest value. The first term of Equation (3.8), therefore, corresponds to the 
first case. By these discussions, this value is the total expected amount by assigning a 
person with the largest value p1. 

   For the general case, Equation (2.6) yields the following equation. 

        aN,m(k)= Uk(aN1,m-k,aN11,m-k11, 00) 
                                   aN -1,m-k 

_a2N -1,m-kk,lh(x(1))f (x(1))dx(1) 
                      0 i-1 

"'N-1
,m-k 

+ x(1)hk,l(x(1))f(x(l))dx(1) 
                                 aN _l,m_k 

             •L -1Uk(aNll,m-k,aN?lm-k12,x(1))f(x(1))dx(1). (3.9) 
                                           N-1,m-k 

We will consider three terms of this equation when the decision-maker employs the 
optimal policy. 

    If x(1) < a _1,m _ k , then the decision-maker does not assign only pi but also any 
of p1, • • • ,pi_1. At the next period, the pi is still the i-th largest one. By the induction 
assumption, the expected amount by assigning to the pi is, therefore, equal to aN_1,m-k• 
The first term of Equation (3.9) corresponds to this case. 

    If aN_1,m-k < x(l) < aN 11,m -k, then the decision-maker assigns none of p1i • • •, 
pi-1 and assigns the pi to a job with x(1). The second term of Equation (3.9) corresponds 
to this case. 
    Finally we consider the case that alv 11,r_k < X(1). In this case, the decision-maker 
doesn't assign pi to x(1) but assigns one of the p1, • • , pa_1 to this job, since a1 ,m-k C 
x(1). Now we consider the following three cases according to the second largest value 
X(2). These three cases are (1) x(2) <aNll ,m-k,(2) aN11,m-k < X(2) < aN?l,m-k 
and (3) aN?1,m-k < x(2). As we considered above, these three cases correspond to the 
three cases for x(1). The function Uk(a.11 ,m-k, aNi 21,m-k12, x(1)) represents the sum of 
the expected amount for these three cases. The third term of Equation (3.9), therefore, 
corresponds to this case. This completes the proof.^ 

    REMARK 3.1. In Proposition 3.2, if we put pi = • • • = pn = 1 and pn+1 = • • = 
pm, = 0, then it is the same to Proposition 2.2. From this fact, the problem treated in 
this section is a generalization of an optimal selection problem considered before.
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    REMARK 3.2. Consider the case where  pi = • • • = pn = 1 and pn+i = = pm = 0. 
As we showed in the proof of Proposition 3.2, aN m is an expected amount obtained by 
the n-th pn in the problem PN;pi,...,pm for n(< m). By this fact, if we add one more 
stop action to PN,m,n-1, we will get an expected amount aN m from this new action. 
For an optimal selection problem, Um is an increment of additional stop action to the 
problem PN,m,n-1 . It is, therefore, a value of the n-th action.

4. Sequential Stochastic Assignment Problem with Unknown Number of 
   Jobs 

    In this section, we consider a sequential stochastic assignment problem for the 
unknown number of arriving jobs as treated in Section 2.3. The other condition is 
the same to the problem considered in 3. When N period remain, the number of jobs 
observed at the initial period is a random variable with a known probability distribution 

PN(k) (E 1 kpN(k) < oc). 
    For this problem, there exists a sequence of threshgld values which only depends 

on the density function of observations, which is similar to the one in Section 3. By 
these values, we get the optimal policy and the value obtainable under this policy. 

    Consider that the decision-maker observes iid nonnegative random variables 
{Xi}Z_1,...,00 during N periods, and assign {pi, • • • ,pi,} to observations. We consider 
(N; pi, • • , pn) as a state variable for the problem in this section, and refer this prob
lem as QN;p1,...,pn. For the problem QN;p1,...,pn, if the decision-maker can observe k 
random variables, then let this subproblem be QN;p1i...,pn(k). Furthermore, when the 
k observations of the random variables are x(i), • • • , x(k), we state this subproblem as 
QN;p1,...,pn (k; x(1), • • • , x(k)). Suppose (x1, • • • , xk) be an observation from the k random 
variables Xi, • • • , Xk. For these observations, rearrange the order as x(i), • • , x(k) where 
x(i) > • • > x(k). This notation is similar to one used in the last section. 

    The objective of this problem is to maximize the total expected value by assigning 
the n p's to the n selected values during a given time period N. 

    Let the total expected value obtainable under the optimal policy in QN;pi,...,pn, 
QN;P1,...,pn(k) and QN;p1i...,Pn(k; x(1), . . . , x(k)) be vN;P1,...,pn, vN;p1,...,pn(k) and 
v*N;p1 ... pn (k; X(i), • • • , x(k)), respectively. By the optimality principle, we get the follow
ing recursive equation (see Ross [13]). 

00 

vN ;pi ,... pn = E v7v;P1,...,pn(k)pN(k), (4.1) 
k-0 

                          vN;P1
,"',Pn 

               *(k) = E[vN;p1i...,pn (k; X(1), ..., X(X(0)] (4.2) 
vN;p1,...,pn (k; x(i), . . . ,x(k)) = 

                 maxmax max{E pQ(j)x(j) vN_1;pi ... pn_i }. (4.3) 0<1<k {751i•••,pi}C{P1,••,Pn} aESi j -1 

    The set { pi , • • • , p*,~ _1}  consists of remaining elements of {pi, • • • , pn } after eliminat
ing the d assigned elements of {pi, • • • ,/3/} at this period (pi > • • • > pn_14i> • • • >_ pl)•
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When the problem is  QN;P,,...,Pn(k; x(1), • • • , x(k)) and the decision-maker decides to se
lect i observations, he chooses i largest values. We use this fact to obtain Equation 
(4.3). 

PROPOSITION 4.1. The optimal policy for sequential stochastic assignment 
problem QN;p1,...,Pn is represented as follows. 

    Consider the subproblem that QN;P1,...,Pn (k; x(1), • • • , x(k)). For the union two sets 
of {x(i)}i=1,...,k and {aiN_1}i_1,...,n, rearrange the order from largest to least as 
{bj }j=1,2,...,n+k. If bj = x(i) for j = 1, • • • , n and i = 1, • • • , k, then it is opti
mal to assign the j-th pi to the observation x(i). If bj = aN_1 for j = 1, • • • , n and 
i = 1, • • • , n, then it is optimal not to assign the j-th pj at this period. 

    PROPOSITION 4.2. The value v1v;p1,... pand vN;P1,...,Pn (k) satisfy the following 
equations. 

     "`(4 .4)                        vN;P1
,...,Pn=PiaN, 

i=1 

vN;p1i...,Pn(k) = piaiN(k)• (4.5) 
                                                i=1 

    In order to prove these properties, we employ the induction principle on N . We 
will prove Proposition 4.1 and Proposition 4.2 in the same time . First we prove these 

propositions for N = 1. Then by assuming these properties for any value less than N-1, 
we will prove Proposition 4.1 and Proposition 4 .2 for N. 

    When N = 1, we have 
kAn 

                   ax{E pQ(j)x(j)}. 
j=1 

As k < n, it is, therefore, optimal to assign the largest k of n p's. In other words , it 
is optimal to assign p', • • , pk to the k observations. Lemma 1.1 yields Proposition 4 .1. 
Since 

o0 

                    v1iP1,...,Pn = E pi E pi E[X (i)] 
i=1 k=0 

                        = pial, 

i=1 

we get Proposition 4.1. (See Remark 2.3) Next we assume these propositions for any 
value less than N — 1. We obtain the proof of Proposition 4.1 by a method similar to 
one used in Proposition 3.2, and omit the proof here. 

    PROOF OF PROPOSITION 4.2. First we consider the following equation where 
44, • • • , Pk} C {Pi, • " Pn}. 

                    max{EPo(;)x(i)+vN1;Pi,...,pn:}.                          oES, j
-1
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The induction assumption yields 

 n-1 
      ** i v

N—l;pl,... pn _1 = pi aN-1. 
                                                i=1 

This implies, therefore, 

                 1n-1 

    masxl{pQ(j)x(j)+vN-l;pl...pn_i} =EaSx{EpQ(j)x(j)+Ep7 aN-1} 
  j=1j=1 i=1 

n-1 

                            = max{EPa(j)x(j)} . (4.6) 
QES,                      j

=1i=1 

Lemma 1.1 and Equation (4.6) yield 

n-11n-1 

    a 

          x{V(j)x(j)}+~piaN-1= Epjx(j)+~pzaly-1• 
      j=1 i=1 j=1 i=1 

From this equation, if the decision-maker decides to assign 

.. ,pl} C {p1i...'PO 

at this period, it is optimal to assign j-th largest pi to the j-th x(j) where 1 < j <1. It 
becomes, therefore, the following equality. 

vN;p1,...,pn k; x(1), ... , x(k) 

          = max max max{E pQ(j)x(j) + vN—l;pl,...,pn_i } 1<1<k {51i•••,151}C{p1i•••,Pn} QESi 
                                           j=1 

n-1 
      = max max {Epjx(j)+EpaaN_1}.(4.7) 

1<l<k {151,•••,153}C{P1,...,pn} j
=1i=1 

    Next we consider the following equation. 

1n-1 

               max x(j) + E pZ aiN_1}.(4.8) 
                        {p-1... Pj}C{P1,... Pn} j=1i=1 

Consider the union of two sets {x(i)}i_1 ... 1 and {aN_1}i1 ,...,n_l, and denote this set 
as B1, i.e., 

                      B1 = {x(1), ... , x(1), aN-1, ... , aN i1} 

This problem is how to assign the element of B1 to { pl , • • • , pn } . For B1, rearrange 
the order from largest to least and let this rearranged set be {blj }j_1,2, n • By simple 
calculation, we get, therefore, 

1n-1n 

         {151,...451C{p1i...,Pn}1Epix(j) + E aN-1} =masx{Epibla(i)}.crn 
         j=1 i=1i=1
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Since 

 bi>b2>•••>bn, 

Lemma 1.1 yields 
       nn 

                    ax{Epib'1(i)} = pibi• 
                2=1 i=1 

We consider the policy to choose 1 largest observation from k. When = x(i) for 

j = 1, • • • , n and i = 1, . . • , k, then it is optimal to assign j-th pj to X(j). If bj = a~,_1 
for j = 1, • • • , n and i = 1, • • • , n  k, it is optimal not assign j-th pj at this period. 

   Next define the value of 1 for the optimal policy. Equation (4.7) yields 

v*r.p1i...,pn(k; x(1), ... , x(k)) = ma~xk{pibi} (4.9) 
  i-1 

Put 

                     = E 
i=1 

    On the other hand, consider theunion of two sets of {x(1), • • • , x(k)} and 

{aN_1, • • • , ark _11. For this set, rearrange the order from largest to least. From this 
rearranged set, select the n largest elements, and let the number of x(i)'s contained in 

this set be 1*. This set is {x(1), • • • , x(l.), a}_1, • • • , aN_1. }, and x(1.+1) < aN it . This 
fact yields x(1.) > aN '1 > x(I.+1) Then we get 

                                                        r' 
                               1•=pibi 

                                             i=1 

    If 1* < 1, we put bj = x(l.) for some j where 1 < j < n. Then we have the following 

equality. 

n 

   C.                S1•—= E                 ~1Pibi— E 
i=1i=1 

          nn 

                   = E.                         Pibi— Pi bi 
i=ii=i 

        nn 
                                                         i' = E—11                               piaN—  

                  i=ii=i 

                ={aN_ 1 —bi}. (4.10) 
i=j 

Note the fact that B1 is a union of two sets {x(i)}2=1,...,l and {aZN1}i=1, n_l. For B1, 
rearrange the order from greatest to least, and compare two sets B1 and B1.. Then the j 
largest elements of these two sets are the same. Eliminating these j values, we consider
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the remaining elements of these two sets. Denote the remainder of these two sets as B1 

and Bl.. Then we have 

                              j-1'j+i-1'n-1`                              Bl._ faN1,aN-1,...,aN-1}, 

where a1 > aN 1i 1' > • • • > aN ri • On the other hand, put 1 =1* +I+  1 where 1 > 0. 
Then we also obtain 

              _j-i'j+i-1'-'-i                B1faN —i,aN—i, . . .  ,a71                                             -1 ,x(1_), . . . , x(1_1), x(1)}, 

where ail; > aN 11 1' > • • • > aN-11-1 > x(1_1) > ... > x(1-1) > X(1). Since 1-1 = 1*+1, 
we note the following inequality. 

x(1) < ... < x(1.+1) = x(1_1 < aNti . 

By comparing two sets B1 and B15, Equation (4.10) yields 

              S1•  1;1 =anl'-(1-j)_ 0..          ~x~N-1(j)}> 0411() 
j-1—T 

We get, therefore,
1* >— ,1• 

This completes the proof.El 

    REMARK 4.1. In Proposition 4.2, put pi = • • = pn, = 1 and pn+1 = • • = p,n = 0. 
Then this proposition is the aforementioned to Proposition 3.2. The sequential stochastic 
assignment problem treated here is a generalization of an optimal selection problem with 
unknown number of jobs in 2.3. 

    REMARK 4.2. As in the last remark, when pi = • • • = pn = 1 and pn+i = • • • = 
pm = 0, we have that QN,i = P1,...,1,0,...,0. We showed the following fact in the proof of 
Proposition 4.2. The value aN is a total expected amount obtained by the i-th pi in the 
problem PN;pl,...,pn for i(< m). By these facts, if we add one more stop action to the 
problem QN,i_1, we will get an expected value aN from this new action. For an optimal 
selection problem, aN is an increment of additional stop action to the problem QN,i-1. 
It is, therefore, a value of the i-th action.

                                 References 

[ 1 ] S. C. Albright, Optimal Sequential Assignments with Random Arriving Time, Man
    agement Science, vol. 21, pp. 60-67, 1974. 

[ 2 ] M. H. DeGroot, Optimal Statistical Decisions, McGraw-Hill, New York, New York, 
   1970. 

[ 3 ] C. Derman, G. J. Lieberman and S. M. Ross, A Sequential Stochastic Assignment 
   Problem, Management Science, vol. 18, pp. 349-355, 1972.



54T. NAKAI and Y. TERAOKA

 

[  4  ] G. H. Hardy, J. E. Littlewood and G. Polya, Inequality, Cambridge University Press, 
   1934. 

[ 5 ] T. Nakai, Optimal Assignment for a Random Sequence with an Unknown Parame
   ter, Journal of Information 6 Optimization Sciences, vol. 1, pp. 129-138 1980. 

[ 6 ] T. Nakai, Sequential Stochastic Assignment Problem with Rejection, Journal of 
   Information & Optimization Sciences, vol. 2, 169-181, 1981. 

[ 7 ] T. Nakai, A Time Sequential Game Related to the Sequential Assignment Problem, 
   Journal of the Operations Research Society of Japan, vol. 25, pp. 129-138, 1982. 

[ 8 ] T. Nakai, Game of the Sequential Assignment for the Randomly Arriving Jobs, 
   Reports of Statistical Applications Research, Union of Japanese Scientists and En

   gineers, vol. 29, 1-6, 1986. 

[ 9 ] T. Nakai, Optimal Assignment for a Random Sequence with an Unknown Number 
   of Jobs, Journal of the Operations Research Society of Japan, vol. 28, pp. 179-194, 
   1985. 

[10] T. Nakai, An Optimal Selection Problem with a Random Number of Applicants 
   per Period, Operations Research, vol. 34, pp. 478-485, 1986. 

[11] T. Nakai, A Sequential Stochastic Assignment Problem in a Partially Observable 
   Markov Chain, Mathematics of Operations Research, vol. 11, pp. 230-240, 1986. 

[12] T. Nakai, A Sequential Stochastic Assignment Problem in a Stationary Markov 
   Chain, Mathematica Japonica, vol. 31, 741-757, 1986. 

[13] S. M. Ross, Applied Probability with Optimization Applications, Holden-Day, San 
   Francisco, California, 1970.

Received May 28, 1993 

Revised September 16, 1993 

Communicated by S. Iwamoto


