SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

A LOCATION SHIFT PROBLEM IN NONPARAMETRIC
DENSITY ESTIMATION

Takeuchi, Hiroyuki

Department of Administration Engineering, Keio University

https://doi.org/10.5109/13432

HiRIEZR : Bulletin of informatics and cybernetics. 25 (3/4), pp.195-212, 1993-03. Research
Association of Statistical Sciences
N—=2 3

HEFIBAMR



Bulletin of Informatics and Cybernetics. Vol. 25. No. 3~4, 1993
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NONPARAMETRIC DENSITY ESTIMATION
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Hiroyuki TAKEUCHI*

Abstract

Let X,. X3, .... X, be i.i.d. random variables having a probability
density function f(x) and f,(x) be a nonparametric density estimator of f(x).
Woe investigate the property of a location shift random variable a, which
minimizes integrated squared error ISE, (a):

ISE.() = f " A - flx — @) dx.

The asymptotic normality and the order of strong convergence of the r.v. a,
and those of ISE, (a,) are studied. We also give some numerical examples and
some simulations which show the effectiveness of using the a, when one
estimates f(x) by f,(x).

1. Introduction
Let
X, X3, o, X, (1.1)

be independently and identically distributed random variables with a common dis-
tribution function F(x) whose density is f(x). We define f,(x):

£ = 5 2 K = X)),

as a nonparametric density estimator for f(x). The estimator f,(x) has been so widely
studied by many authors, see, for example Izenman [11] or Prakasa Rao [14]. In this
paper we shall investigate the asymptotic property of the location shift r.v. a, which
minimizes the integrated squared error ISE, (a):

SE@) = [ 1) - flx = a)Pdx 12

Blackman [2] considered this problem for the empirical distribution function and he got
the asymptotic distribution of V' n a,. In Hirdle [9], some estimators for the shift
parameter are cited for the robust estimation of nonparametric regression function.

* Department of Administration Engineering, Keio University, 3—14—1 Hiyoshi, Kohoku-ku,
Yokohama 223. Japan.
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Scott [16] defined averaged shifted histograms but it seems that there is little connection
with our work.

In Section 2, we shall show the weak convergence of the a, using Heathcote’s idea
[10]. Since our situation is nonparametric, so the proof is slightly more complicated
than his. We show that the asymptotic variance of V'n a, is inherent in the underlying
distribution. The asymptotic normality of ISE,(a) — ISE,(0) is also proved to show the
range of the interval {a:ISE,(a) — ISE,(0) < 0}. In Section 3, the order of strong
convergence of the a, is considered for the kernel-type density estimator. In that
section, the empirical characteristic function based on (1.1) reveals us a powerful tool
to evaluate the order. Especially it is proved that if 4, is any estimator of the location
shift r.v. a,, and k,, is the window width, then ISE, (d,) — ISE,(0) can not converge to 0
loglogn)%(ljﬁi

. ) or O(h*), for some u > 2, according to certain con-

slower than O <

ditions. A simulation was conducted in Section 4 to estimate the relative efficiency of
the estimation with respect to the location shift r.v. a,,.

2. Weak Convergence of the Location Shift Random Variable a,, and ISE,(a)

In this section we shall consider a class of the density estimator {f,(x), n € N} that
can be written in the next form

] n
fx) = - 21 K. (x = X)), 2.1
=
where {K,, n € N} is a sequence of “kernel” functions. Many types of density
estimators are contained in this class, for example, kernel estimators, trigonometric
series estimators, orthogonal polynomial estimators, Fourier transform estimators and
histogram estimators (Hall [7]). We can write the Fourier transform of (2.1) as,

Pr() = @ (1) - cult)
where ¢, (1) is called the empirical characteristic function (e.c.f.), based on (1.1), defined
by
1 n R
calt) = - > e,

j=1

It is obvious that c¢,(¢) converges to @A), the characteristic function of the f(x), with
probability one for each 1 € R (Lukacs [12]). The property of the e.c.f. has been
investigated by many authors, for example Csorgo [5], Marcus [13] and Feuerverger &
Mureika [6].

We assume that the true probability density function (p.d.f.) f(x) satisfies (2.2).

f; £ |pt)| dt < . (2.2)

And we suppose following conditions for the kernel.

K, (v) = K, (-y), for all n € N, 2.3)
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x<

sup [Ku()| dy < =, (2.4)
neN 4 —x

K.(y) € L* (R). (2.5)

lim @k (/) = 1, for each r € R. (2.6)

1—>c

We use the symbol Re[z] and Im|z] as the real and the imaginary part of z € C,
respectively. The complex number 7 denotes the conjugate of z. And the symbols E
and Var denote the expectation and the variance, respectively, with corresponding
probablhty measure P or the measure generated by F(-). Furthermore a.s., —£ and
— denotes the convergence with probability one, in probability and in distribution,
respectively.

To state Theorem 2.2 and 2.3, the main results of this section, we need the

following lemmas.

Lemma 2.1.

if
[ gl 1w = 11 de = on~) @)

for large n, then we have

\/17 i Im[f:c te' i . (pK”(t)~ZﬁXt—)dt]

j=1

Gy * . —_— 2
AN N(O, Eilm[fo te' X1 (pf(t)dt:I ), as n — x, (2.8)

Proor. From theorem 4.1 in Billingsley [1], we may prove (2.9) and (2.10) to
show (2.8).

szl ’1511 v.(X) LN N<O EIIm[J' 3 e X (t)dt} ), (2.9)
—\/721 v(X) - Vo 24 lim (2.10)

as n — x, where ¥,(X) is defined by
(X)) = Im[Jy te' Xt @k (1) - (pf(z)dz]. (2.11)

By (2.2), (2.4) and (2.6), we can use dominated convergence theorem such as
lim ¥,(X;) = Im[[ te X (pf(t)dt} (2.12)

The sequence of the right hand side of (2.12), suffixed by j, is i.i.d. random variables
which have finite second moment by (2.2). The expectation of (2.12) is 0 for all j from
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(2.3), so by virtue of the central limit theorem, we have

\/— E lim ¥,(X)) - N(O Var[ lim ‘I/,,(XI)D

j=1 n—x n—x

as n — <. Thus we have (2.9) immediately. Then by (2.7), (2.10) is proved in the
following way.

n

n n

T 2 [ e (or ) = 1) G
=V J’, lto(1)] |(PK,,(f) — 1|dt
— 0, a.s.

Hence we get (2.8).
The condition (2.7) may seem to be technical, but it is not so strong. In fact next
proposition can be stated in the kernel-type density estimation case.

PROPOSITION 2.1.
Suppose that the density estimator is a kernel-type;

L K< h,,X>' (2.13)

Iljl

fax) =

where h,, is called the window width satisfying limh, = 0. And assume that the kernel
. . 'lﬁx. .
is standard normal and that the characteristic function of true p.d.f. satisfies

lpn)| = A e M (2.14)

for some A, p > 0 that are independent of t. If the order of the window width is

hy = o(n+ '), (2.15)
then (2.7) is satisfied for any € > 0.

Proor. Since by assumption, for any fixed £ > 0 we can choose m > 5 such that

j: ltpdD)| dr < % (A + pn¥)e P

= o(n™")

o(1).

And then we have
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V[ gl I = td
V'n ‘STJP exp(—%h,z,F) - 1) f ltpAD)| dt
fl=n¢ -

+ 2\/7(r g 0)| dr + f:x ()| a’t>

IA

O(h,z, . rﬁ”’) + o(n%""')
o(1),

I

by (2.15).

The class of the characteristic function satisfying (2.14) contains wide variety of
p.d.f. The form of (2.14), which was used in Watson and Leadbetter [18], will also
appear in Section 3.

We shall evaluate the order of convergence of a, to 0 in Section 3 under some
conditions, but we can prove following theorem without any technical conditions.

THEOREM 2.1.  The location shift random variable a,, converges to 0 with probability
one.
Proor. By dominated convergence theorem, we have

’T{ISEn(a) - ISE)I(O)}
= ReUix(l - e“"")<p,<n(z) ‘c,l(t)-_cpf(_t)dt]

- j i (1 — cos(ar)) |gf0)P dr. as. (2.16)

as n — =, for each ¢ € R. This means for any a € R,

ISE,(a) — ISE,(0) = 0, a.s.
for sufficiently large n. ISE,(a) is differentiable about ¢ € R, so there exists a solution
a, of the equation

d _
- ISE,(a) = 0

that converges to 0 with probability one. To show that the limit of the a,, is 0 only, we
shall give a necessary and sufficient conditions for an identifiability condition with
respect to f(x) when we consider a location shift parameter for f(x). The following (i),
(ii) and (iii) are equivalent

i) a=0

Gy [ = e lgof at = o.

(iii) f(x) = f(x — a), almost everywhere in x € R.
(i) to (iii) is obvious. (iii) to (ii) is as follows.
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[ a=enlgora=2x ([ 1wk a - [ s - apa)

by Parseval’s relation. Finally we shall show (ii) to (i). If a # 0 there exists a o > 0 such
that if 1 € (0, 8] then both of 1 — cos(at) and |@A(1)| are positive by their continuity. So
we have

RCU; (1 = &) |gr(OF df} = j {1 — cos(an)} |gs(1))? dt
1€(0,9]
>0

This contradicts (ii), and hence we have (ii) to (i). By the assertion above, the right
hand side of (2.16) is 0 if and only if @ = 0. This completes the proof of the theorem.
We need following lemma to prove Lemma 2.3.

LEMMA 2.2 Let (82, F, P) be a probability space and {X,, X, ,:1, m, n EN} be a
sequence of random variables defined on the (2, %, P). Suppose that

(1) Xi, X, ... are independently and identically distributed random variables,
(i)  E|X;| < =, ]
(i) lim max |X,,— X.l =0, a.s.

n—x l=m=n
Then we have

im ~ 3 X,.=EX, as

n—x N m=1

ProOF. Write

1 n
_ E Xm.n - EX]
n m=1
1 n 1 n 1 n
= - m§:’,1 KXo = -~ 2 Xo| + |7 mZZI X, — EX,
= Il,u + I?.,nv
say. From (i) and (ii), we have
lim L, =0, a.s.

n—x

by Kolmogorov’s strong law of large numbers. From (iii), there exists an £, € ¥ such
that P(€2;) = 1 and that

Yo € Qy, Ve >0, IN(w):n = N(w) > max |X,, (o) — X (0)] < &

t=m=n

Hence, then we have

3 K@) = Xn(o)

m=1

1
Il,n = ;—
< &

This completes the proof.
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LEmMMA 2.3.
_1_ i R * 2 i(Xj—Oau)t . d
P} e te @k (1) - pA)dt
]: —C

_>f Aledn)* dr,  as. (2.17)

as n — =, uniformly for 8 € (0, 1), where 0 is depending on f, K, and a,,.
Proor. We define r.v. Y; as

Y; = Re“ tze’X"-<p,(t)dt],
and Y;, as
Yin = Re[j_ 12! (Xi= anr. @k (1) - q)f(t)dt}.

Note that Y, , is equivalent to

d
- E q’n(Xj - u)

u=>a,
where W,(X) is defined by (2.11). We shall show the sequence {Y}, Y;,:j, n € N}

satisfies the condition (i), (ii) and (iii) of Lemma 2.2. (i) is obvious. (ii) is also clear
from (2.2). Next we show (iii).

max |Y;, — Y}

1=j=n
= J  Ple0] e i (1) — 1dt
— 0 a.s.

as n — = by (2.4). (2.6) and Theorem 2.1 with applying dominated convergence
theorem. Finally we get

EY, = ﬁ 2l oAt)|dt

by Fubini’s theorem.
Now we can state next theorem.

THEOREM 2.2. Under the condition of Lemma 2.1, we have

2

EllmU: zefxl'-E,(T)dzJ

Vi = N0, (j; t2|¢f(t)|2dt)2 (2.18)

as n — <,
Proor. From (2.2) and (2.5) we have f,, f € L*(R), so (1.2) is equivalent to
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1 * iar
SEA@) = 5= [ low (- cud) = e g0

by Parseval’s relation. (2.2) affords us interchange of differentiation and integration
such that

=Ll [ e -0 o |

7T
So, with ¥, defined in (2.11), the problem becomes to find an a, which satisfies the

equation:

2 qln(Xj - a) = 0.
=1

Characteristic of a, which satisfies >, p(X 7 — a) = 0 has been discussed by Huber [11],
j=1

where p(-) is a continuous function not depending on n. Let a, be a consistant solution
of this equation. Then

0= q’r(Xj_an)
1

J
liUn(Xj) + a, Z i lpn(Xj - u)
j=1 =1 du

u=60a,
for some 6 € (0, 1) by Taylor’s expansion. So we get
1 1]
_— (X))
Vi 2
Vn oa, = =1

n

d
jz:] a qln(Xj - u)

(2.19)

1
n

u=~6a

n

Hence from Lemma 2.1 and Lemma 2.3, we obtain the conclusion by Slutsky’s theorem
(Serfling [17]).

We remark that the asymptotic variance of V'n a, does not depend on the kernel
and it only depends on the true p.d.f., in other words, the asymptotic variance is
inherent in the underlying distribution F.

ExampLE 1. We exhibit the asymptotic variance in Theorem 2.2 for Cauchy and
normal distributions;
@ty = e, 5 >0,
@t) = e g > ().

. . 5
The asymptotic variances are >s* and 8

2 3V3
Hereafter we define DISE,(a) as

o°, respectively.
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DISE, (a) = ISE,(a) — ISE,(0)

for simplification.

THEOREM 2.3.  Under the condition of Lemma 2.1, we have

limP [V - DISE,(a) < x] = ®, %) (2.20)

n—x

for each a # 0, where @, (x) denotes a normal distribution function with mean , and
variance o2;

po= [ 11 = cost@)) lgdola (2.21)

- Ma (2.22)

o, =E ‘Re[f (1 — e “ryetX. (pf(t)dt:}

respectively.
ProofF. The proof is almost the same as that of Lemma 2.1, so we shall only show
the outline here. We define ¥,(X;, a) as

Y, (X, a) = Re[[ix (1 — e ™y X, (pK”(t)wp—f(tjdt],

then from (2.2) and (2.6), we have

lim ¥,(X;, a) = Re[j;x (1 — e~fary ¢iXir. ¢f(z)dt:|,

by dominated convergence theorem. We can show (2.23) and (2.24),

1 n o 5
= 2 lim W,(X;, @) —> N 03). (2.23)

j:[ n—oc

1 1L 1 noo
Vs gl WX, a) — o > lim ¥,(X;, a)

j=1 n—x

-0, (2.24)

as n — «. By the definition of ISE,(a), we have thus proved
VI DISE@) = e $ (X, 0) 5 N ), a5

for each a + 0.

By the Theorem 2.3 we can find the range of the interval of which the parameter a
satisfies DISE, (a) < 0. ISE,(0) is thought of as the loss when we do not take the
parameter into consideration. Following example illustrates the contents above.

ExaMmpLE 2. If @) = exp(—3f°) then (2.2) is satisfied. In this case we have the
asymptotic mean y, and the asymptotic variance o2 as follows.
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= Va1 — e,
(1 — e (e + 4/V3 - 1),

Il

Ha
%

Obviously the probability p(a) = lim P{DISE, (a) < 0} satisfies p(¢) = p(—a). Further-
more we remark that p(a) is a continuous function about the parameter a, except for
the point ¢ = 0, and liII(l) p(a) = 0.5. Table 1 shows an example of the values of p(a).

Table 1. Values of p(a)

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pla) 0 0.49 0.47 0.46 0.45 0.43 0.42 0.41 0.40

3. Strong Consistency of the Location Shift Random Variable a, and ISE,(a,)

In this section we shall evaluate the order of strong convergence of the a,, and
confine ourselves to consider the kernel-type density estimator which is given by (2.13),
where the kernel K(y) satisfies following three conditions,

Yy € R, K(y) = 0 and j; K() dy = 1, (3.1)
K(y) € L*(R), (3.2)
[ kol ay < = (3.3)
Hereafter we define the sequence {7,, n € N} as
T, = loglogn
n

To evaluate the convergence order of the a, to 0, we need following lemma that
shows the uniform strong convergence of the e.c.f. process. Note that the lemma is
slightly different from Cso6rgé [S] who proved this first.

LemMma 3.1.  For any p.d.f. f(x), we have
sup |ea(r) — @0l = O(U,- T, a.s. (3.4)

=0,

for sufficiently large n, where {U,, n € N} is a positive monotone increasing sequence
diverging to infinity.

Proor. Using integration by parts, we have for any fixed K > 0,
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sup ‘Cu(t) - (pf(t)|

=0,
= sup j I d(Fo(x) — F(x))
=, —x
. . K .
= sup ‘[e‘”(F,l(x) - F(x))]’i,( - itj e"(F,(x) — F(x))dx
lf=U, —-K
+ sup e d(F,(x) — F(x))
1=U1 ve("k K]
= (4 + 2KU,) sup |F,(x) — F(x)|, (3.5)
—xy<x

where F,(x) denotes the empirical distribution function which based on (1.1). By
Chung [4], we have

limsup 7,2 sup |F,(x) — F(x)| = 71—-2—, a.s.

so then
sup |Fu(x) — F(x)| = O(T}?), as.

—x < x<L%

From above and (3.5), we have (3.4) for sufficiently large n.

LEMMA 3.2. Suppose that the true p.d.f. f(x) satisfies the following.

() [ gl ar < =,

for some nonnegative integer m.
(ii) There exists a u > m such that

f [t [@A2)| dt = o(Tn Tﬁ)

1eSg

where the set S, is given by
_ -1
Sn = {t e {— TnZ(“»m + 1, Tnz"“vm * ”] }

Then we have

v v

. d
da” ISE,(a) ,}l_r}l da”

sup

—oLg<lx

ISE, (a)

u—m . u—m
= O(Tnl‘u*m+ 1>), a.s. for h, = 0<T,,2<wm+ ”)

2(u—m + l))

O(hn)v a.s. fOr T” = O(h” u=m
(3.6)

asn— >, forv=0,1, ..., m.

Proor. It is easy to check that
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x

[ lo) dr < = implies [ | lgdn)] dr < =,

for any positive integer such that m, = m,. This with the dominated convergence
theorem for the interchange of differentiation and integration, we have from (3.1),
(3.2) and (3.3)

(1 v v

. d
ISE,(a) — 1
a¥ 5 (a) uE»I:lc da”

T ISE, (a)

[ iy g ) - 40) 50

&g

+ j (—it)'e™ “(g(hat) — 1) |@r)|’dt

—x

= suplea() = g1 [ " Lol de + 2 [ 1 | a
IES, —x

€S,
e [ W goPde | K]y,

From Lemma 3.1

sup ler) = @A1)] = O(T, m57), as. (3.7)
€S,

By the condition (ii), we have
| W gl di= 1,555 [ g0l
ress es;
= O(T,, T—AV—“)), a.s. (3.8)
Together with (3.7), (3.8) and the order relation of h, and 7,,, we get (3.6).
Note that the right hand side of (3.6) may be written as O(T,, T T h,,). We can

remark about the condition (i) and (ii) of Lemma 3.2 as follows.

ProposITION 3.1.  If @A(1) satisfies (2.14) then the condition (i) of Lemma 3.2 holds
for any nonnegative integer m. And there exists a u > m such that (ii) of Lemma 3.2 also
holds.

Proor. It is easy to check that

f " p0)| dr < ;)% el gy
= it (m + 1)
< 0,

Then we shall show the second assertion of this proposition. Let y; be a real positive
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number such that y; > m. We define the set V,, as

V, = {[ = It——T”:‘N,——lvnii- n, T”:m_jnl+ n} }
Then we have
|1 lapolar
revy

m m/

= P?"A+1 -exp(—p' Tn:—(ﬁm) ’ E_:() k! (P T, m+1))/\

= 0<T m)

for any u > m by the following fact.
lim = = 0, for any u € R.
so if we set u = u;, we get the conclusion.

LemMA 3.3.  Under the conditions of Lemma 3.2, we have

i |
u=b

du’
O(T,,ﬂ!r '"+1‘), a.s.

— lim
u=a n—x d v

- ISE,,(u) " ISE, (1)

= Ial j; |bl J’iy |t|v+1 |(pf(t)|2 dt +

O(h,), a.s.
) , w—m o Aummtl)
as n — =, according as h,, = o(T,IZ(wHH) or T, = o(h,, = ) forv=20,1, ..., m.

Proor. We may use similar approzich to the proof of Lemma 3.2.

‘;i ISE,,(L{) ma - ,I,LI;H/ du® ISEH(“) _
= sup lea) — 0l [ I g0l de + 2 J 1" g0 d
€S, [{SA Y

+ J7 |t|v |efial _efibl| ’(pf(t)P dt

[ g OF de [ K| dy

= (la| + |b]) j " (g0 di + O(T,75m), as.

if h, = 0( T,,2<u-m+“), and otherwise is clear. Hence we get the conclusion.
Now we can state our main theorems.

THEOREM 3.1. If the conditions of Lemma 3.2 are satisfied for m = 2, then we have
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1

a, = O(Tni(l_ﬁ):), a.s. for hn = O(T”T(l:‘:_ln)

2u71>

= O(hP), as. for T, = o{h, = (3.9)

for sufficiently large n.

ProoF. We shall only show for the case A, = o< T,,Z‘f.fizl'*) as the otherwise can be

shown in the same way. By expandin a ISE, (1) and lim —— ISE,(u) about u = 0,
p & du du

we have o
du ISE”(“) u=a B IEEIL du ISE”(u) u=a - I:E ISE"(u) u=0 B ’IIEEC E ISE”(u) “:0]

d2
=a-|—ISE
a [ 2 ISE, (1)

d{, d
o E(hm - ISE,,(u)) u(-)’ail’ (3.10)

n—oc du

where 0, 8 € (0, 1). It is obvious that

v—1 v
d <lim iISE,,(u)) — lim % ISE,(u)

du¥' \,—x du na du”
for any positive integer v < m. And so by Lemma 3.3, we have

2
A ISE, (1) — %(ﬁm d ISE,,(u)>

du2 u=60,a, d n—ox du

1 ! * u=2
~ (6] + 16D lad [ 1P lgdol de + O(T,575)

—g
u= H Plall

A

= O(a,l + T,,ﬂ%ﬂ), a.s.
since 6,, &, € (0, 1). Therefore we can rewrite (3.10) as

—2

u u=2
O(T,ﬂu-l)) = a,l-O(a,, + T,lz(uﬂ)), a.s.

by Lemma 3.2. Hence we have (3.9).
It is well known that the asymptotically optimal convergence order of the window
width h,, is n='°, i.e. n'h,, — const. as n — =, see Prakasa Rao [14]. In this case it is

easy to check if 2 < p = § then h, = o(T,,ﬂ%'), and if u = % + 0.1 then we have

T, = o(h, ).
THEOREM 3.2. Under the conditions of Lemma 3.2 for m = 2, we have

DISE, () = O<T”%(li'“%)‘), a.s. for h, = O(T,ﬁﬁ:—'z“)

= O(hY?), as. for T, = o(h, %) (3.11)

for sufficiently large n.
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Proor. We shall also show for h, = o(T,,ﬁutT_-lT?) case. Since from the proof of
Lemma 3.2

Lﬂ)leSE,,(a) — jix {1 — cos(at)} |@r)|*dt

= 2sup lea(®) = 90 [ ool di + 4 | laolas
1€, w res;

x

+ 2, [ W lgF @[ vK) a.

= 0(7""2(_u—'n>7 a.s.

therefore we have (3.12) which is more accurate than (2.16)
DISE, (a) = — | : {1 - cos@)} @0 dt + O(T,#5), as.  (3.12)
uniformly for a € R. By Theorem 3.1
[* = cost@n) lgdol de = laul [ I lgsFas

= O(T,l%‘("ﬁ)), a.s.
Thus we get the conclusion.
Let 4, be any estimator of the a, then by the definition of the a,, we have

DISE, (a,) = DISE,(4,), a.s.
for all n € N. And also we have
DISE, (a,) = 0, a.s.

for all n € N. We define the estimator d, is asymptotically efficient if n = N then
DISE,(d,) = 0 for some N > 0, with probability one. The asymptotic property of
ISE,,(0) has been studied by Hall [8], it is obvious that the order of convergence of
ISE,(a,,) is the same as ISE,(0). So we can say DISE, (d,) is desired that it converges to
0 as slower as could. Theorem 3.2 gives the lower bound of the convergence discussed
above. Namely, if the estimator &, is asymptotically efficient then DISE,(4,) can not

converge to 0 slower than the order O(T",,%("TLT)) or O(hY*) with probability one.

4. Simulation Study

In this section we shall show the examples for the following case.
R S 2)
£ = <= exp(~e

1 15
K(y) = 7= GXP<~—y“)
We have, 2r 2
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_ 1 2% 1% ‘_X1>2”
ISEn(aa hn) - zﬁnhnl:l + n 121 exp{—4( hn

ISV P T
n\z1 + ny)) AP 20+ ) T ave
We define DISE, (a, h¥) as

DISE, (a, h};) = ISE,(a, h}) — ISE,(0, h¥),
where A} is given by

ISE,(0, A¥) = min ISE,(0, h,).
O0<h, <<

Secondly, we conduct a simulation to estimate

[ min ISE,(a, h }
E —xlg<x

ISE,(0, h3) “1)
by calculating
L& min ISE,(a, h})
= —rogsx (4.2)

N 5 ISE, (0, A}

for sample size n = 50 (N = 100) and n = 100 (N = 50). (4.1) may be defined as a
relative efficiency of the estimation with respect to the location shift r.v. a,,. As a result
we have 58% for n = 50, and 62% for n = 100 respectively. These percentages
motivate us to construct an estimator of the a,,.

The author has been considering the estimator of a,. For example, it may be worth
while to study the following two types of the estimators.

L. From (2.19) we may construct a natural estimator,

_21 lI’n(X/)
~ J=
a =
n n d —
2 du W(x; — u) o

where ‘ff,l(X ) is given by

P (X) = Im[ f ; 1% @r(hnd) -Wdt:],

and @g(?) is an estimator of the characteristic function @y(r).
II.  The corss-validation method. Define' the equation as

Vo) = [ s =3 3 foy (- o),

where

fom1,-(x) = (nh—ll)T i K<x—_X')

ni#+j hn
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And find the (h,, @,) such that
CV(h,, 4,) = min min CV(h, a).

—x<ag<% h>()

The cross-validation method to find the asymptotically optimal window width £, has.
been studied by many authors, see, for example Bowman [3] and Rudemo [15].
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