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  A LOCATION SHIFT PROBLEM IN 

NONPARAMETRIC DENSITY ESTIMATION

       By 

Hiroyuki TAKEUCHI*

                     Abstract 

   Let X1, X2.X„ be i.i.d. random variables having a probability 
density function f(x) and f,,(x) be a nonparametric density estimator of f(x). 
We investigate the property of a location shift random variable a„ which 
minimizes integrated squared error ISE„(a): 

ISE„(a) = f,,(x) — f(x — a)12 dx. 

The asymptotic normality and the order of strong convergence of the r.v. a,, 
and those of ISE„(a„) are studied. We also give some numerical examples and 
some simulations which show the effectiveness of using the a„ when one 
estimates f(x) by f„(x).

1. Introduction 

   Let 

Xi, X2, ...,X„(1.1) 

be independently and identically distributed random variables with a common dis
tribution function F(x) whose density is f(x). We define fi(x): 

1 „ 
f„(x) = — E K„(x – X1), 

                                     n i=i 

as a nonparametric density estimator for f(x). The estimator f„(x) has been so widely 
studied by many authors, see, for example Izenman [11] or Prakasa Rao [14]. In this 

paper we shall investigate the asymptotic property of the location shift r.v. a„ which 
minimizes the integrated squared error ISE„(a): 

                                      x 

               ISE„(a) =JL .f„(x) – f(x – a)12dx(1.2) 
                                      x Blackman [2] considered this problem for the empirical distribution function and he got 

the asymptotic distribution of V n a,,. In Hardie [9], some estimators for the shift 

parameter are cited for the robust estimation of nonparametric regression function.
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Scott [16] defined averaged shifted histograms but it seems that there is little connection 
with our work. 

   In Section 2, we shall show the weak convergence of the a„ using Heathcote's idea 

[10]. Since our situation is nonparametric, so the proof is slightly more complicated 
than his. We show that the asymptotic variance of V n a„ is inherent in the underlying 
distribution. The asymptotic normality of ISE„(a) – ISE„(0) is also proved to show the 
range of the interval {a:ISE„(a) – ISE„(0) < 01. In Section 3, the order of strong 
convergence of the a„ is considered for the kernel-type density estimator. In that 
section, the empirical characteristic function based on (1.1) reveals us a powerful tool 
to evaluate the order. Especially it is proved that if a„ is any estimator of the location 
shift r.v. a„ and h„ is the window width, then ISE„(d„) – ISE„(0) can not converge to 0 

            loglog n)1('„—,I1~, 
slower than   0`_                           or 0(h,112), for some ,u > 2, according to certain con

ditions. A simulation was conducted in Section 4 to estimate the relative efficiency of 

the estimation with respect to the location shift r.v. a„.

2. Weak Convergence of the Location Shift Random Variable a„ and ISE„(a) 

   In this section we shall consider a class of the density estimator { f„(x), n E N} that 
can be written in the next form 

1 ” 
f„(x) = nE K„ (x  X1),(2.1) 

where {K„, n E N} is a sequence of "kernel” functions. Many types of density 
estimators are contained in this class, for example, kernel estimators, trigonometric 
series estimators, orthogonal polynomial estimators, Fourier transform estimators and 
histogram estimators (Hall [7]). We can write the Fourier transform of (2.1) as, 

cffn(t) ctx„ (t)  c,,(t) 

where c„(t) is called the empirical characteristic function (e.c.f.), based on (1.1), defined 
by 

                (1E                                ,z\t) = —eix,t 
   C n i=1 

It is obvious that c„(t) converges to cpf(t), the characteristic function of the f(x), with 
probability one for each t E R (Lukacs [12]). The property of the e.c.f. has been 
investigated by many authors, for example Csorgo [5], Marcus [13] and Feuerverger & 
Mureika [6]. 

   We assume that the true probability density function (p.d.f.) f(x) satisfies (2.2). 

                    t2 I cpf(t)I dt < X. (2.2) 

x And we suppose following conditions for the kernel. 

K„(y) = K„(–y), for all n E N,(2.3)
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                                         x                 sup f IK„(y)I dy < x, (2.4) 
,,EN x 

K„(y) E L2 (R). (2.5) 

lim cpK„(t) = 1, for each t E R. (2.6) 
                                                               ll- x 

    We use the symbol Re[z] and Im[z] as the real and the imaginary part of z E C, 
respectively. The complex number z denotes the conjugate of z. And the symbols E 
and Var denote the expectation and the variance, respectively, with corresponding 

probability measure P or the measure generated by F(•). Furthermore a.s., and 
    denotes the convergence with probability one, in probability and in distribution, 

respectively. 
    To state Theorem 2.2 and 2.3, the main results of this section, we need the 
following lemmas. 

     LEMMA 2.1. 
   If 

                            x 

                    Itcpf(t)1 1cpK,(t) — 11 dt = o(n-112) (2.7) 

                              x for large n, then we have 

                 (x             V n'~ImJ_te`Xjt•cpK„(t) • cp f(t) dt          =j 

f                N(0, E Im[fte`X't• cpf(t)dt2), as n —> x. (2.8) 

   PROOF. From theorem 4.1 in Billingsley [1], we may prove (2.9) and (2.10) to 
show (2.8). 

       vlim1(X j) N0, E Imf te'x't • cpf(t) dt) , (2.9)             n j=1 ,„ 

       V nL(11,1(X1)—~/---n----ElimWn(X1)—~0.(2.10) j=1j=1 ,z~x 

as n where „(X) is defined by 

                                       x  

 W„(X) = ImJ toIXtTK„(t) • pf(t)dt .(2.11) 
                                             x By (2.2), (2.4) and (2.6), we can use dominated convergence theorem such as 

1im 1„(X1) = Im 1 te`XJt • cpf(t)dt .(2.12) 
      n~ xx 

The sequence of the right hand side of (2.12), suffixed by j, is i.i.d. random variables 
which have finite second moment by (2.2). The expectation of (2.12) is 0 for all j from
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(2.3), so by virtue of the central limit theorem, we have 

            /1------- E lim P„(Xj)=j--->N(0,Varlim,t(X1)), 
       Vn ,=11t-x11-x 

as n -> x. Thus we have (2.9) immediately. Then by (2.7), (2.10) is proved in the 
following way. 

1 ” 
               V nE ty1,(Xj) lim IF11(X1)             1= 1„~x 

1  

       I'  te'x't (cpk(t)  1) . cpf(t)dt 
                         V n j=1-x 

                               x V n J Itcpf(t)1 IcpK„(t)  lidt 
                                x — 0, a. s. 

Hence we get (2.8). 
   The condition (2.7) may seem to be technical, but it is not so strong. In fact next 

proposition can be stated in the kernel-type density estimation case. 

PROPOSITION 2.1. 
   Suppose that the density estimator is a kernel-type; 

                                1 11                                    x               ft1(x) = nh„EK -------h„').(2.13) 
1 where h„ is called the window width satisfying lim h„ = 0. And assume that the kernel 

                                                          11-x 

is standard normal and that the characteristic function of true p. d. f. satisfies 

Icpf(t)1 <_ A e-PIt1(2.14) 

for some A, p > 0 that are independent of t. If the order of the window width is 

              h„=o(n-`),(2.15) 
then (2.7) is satisfied for any r > 0. 

   PROOF. Since by assumption, for any fixed c > 0 we can choose m > E. such that 

Itcp1(t)Jdt5A?(1+pnE)e-P11`. 

= o(n .mE) 

                             = o(1) . 

And then we have
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 V--- n  I tcpf(t) I cpx(hnt) — 1 I dt 

                                                        x V n sup exp(—Zh t') — 1 J Itcpt(t)I dt 
        rl~72t,x 

            + 2V n---(.1 I tcpf(t)I dt + f_x I tcpf(t)I dt) 

                                          „ 

           = O(h +`t) + o~n; mr) 
             = o(1), 

by (2.15). 
   The class of the characteristic function satisfying (2.14) contains wide variety of 

p.d.f. The form of (2.14), which was used in Watson and Leadbetter [18], will also 
appear in Section 3. 

   We shall evaluate the order of convergence of a„ to 0 in Section 3 under some 
conditions, but we can prove following theorem without any technical conditions. 

   THEOREM 2.1. The location shift random variable a„ converges to 0 with probability 

one. 
   PROOF. By dominated convergence theorem, we have 

,rr{ISE„(a) — ISE„(0)} 

             = Re J (1 — e'') (JO • c„(t) cpf(t)dt] 
— Jx                      {1 — cos(at)} Icpf(t)I2 dt, a.s.(2.16) 

                               x as n —* x, for each a E R. This means for any a E R, 

ISE„(a) — ISE„(0) ? 0, a.s. 

for sufficiently large n. ISE„(a) is differentiable about a E R, so there exists a solution 
a„ of the equation 

daISE,1(a) = 0 

that converges to 0 with probability one. To show that the limit of the a„ is 0 only, we 
shall give a necessary and sufficient conditions for an identifiability condition with 
respect to f(x) when we consider a location shift parameter for f(x). The following (i), 
(ii) and (iii) are equivalent 

   (i) a = 0 

   (ii) ( (1 — eiar) I cpf(t)I2 dt = 0, J x 

   (iii) f(x) = f(x — a), almost everywhere in x E R. 
(i) to (iii) is obvious. (iii) to (ii) is as follows.
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 (1 _ e~at) 40 12 dt = 2.7r (I x If (x)12 dx — J .f (x — a)f(x)dx) J xxr 

by Parseval's relation. Finally we shall show (ii) to (i). If a 0 there exists a b > 0 such 
that if t E (0, 6] then both of 1 — cos(at) and 401 f(t) ( are positive by their continuity. So 
we have 

Re 1 (1 — e` t) 1cpf(t)I2 dt >_ J {1 — cos(at)} Icpf(t)I2 dt 
tE(0,6] 

>0 

This contradicts (ii), and hence we have (ii) to (i). By the assertion above, the right 
hand side of (2.16) is 0 if and only if a = 0. This completes the proof of the theorem. 

   We need following lemma to prove Lemma 2.3. 

   LEMMA 2.2 Let (Q, , P) be a probability space and {X„ Xm,,, :1, m, n E N} be a 
sequence of random variables defined on the (Q, , P). Suppose that 

   (i) X1, X2, ... are independently and identically distributed random variables, 

  (ii) < x, 

   (iii) lim max1 Xm,n — Xml = 0, a.s. 
,t--*x 1 <—m~,i 

Then we have 

1 " lim — E Xm,„ = EX1, a.s. 
n—~x n m=1 

PROOF. Write 

1E X
,n ,, — EX] 

n m=1 

            1E Xm,n-1E,Xm+1~,Xm—EX1 
         n m=1nm=1n m=1 

= h + '2,n, 

say. From (i) and (ii), we have 
                                lim '2,„ = 0,a.s. 

by Kolmogorov's strong law of large numbers. From (iii), there exists an Q0 E such 
that P(S20) = 1 and that 

dcv E Q0, V > 0, 3N( (0) : n >_ N(w) max 1Xm,n(w) — Xm(w)1 < E. 
1— to—n 

Hence, then we have 

n h,,a < E 1 Xm,n(0)) — Xm(0))1 
n m=1 

                              < C. 

This completes the proof.
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    LEMMA 2.3. 

       1,I 2 Re t2e`(x,-Han)t • cpK (t)  cpf(t)dt 
n j=1 —x 

         —>t2Icpf(t)12 dt, a.s.(2.17)              ~-x 
as n  x, uniformly for 0 E (0, 1), where 0 is depending on f, K„ and a,,. 

   PROOF. We define r.v. Yj as 

Yj = Re Jx t2erx't • cpf(t)dt , 
and Yj ,,, as 

Y1,,, = Re  t2ei(x1—ean)t . cPx (t) cpf(t)dt]. 
Note that Yj,,, is equivalent to 

                             duW,,(X1 u)u=Ha 

where P„(X) is defined by (2.11). We shall show the sequence {Y1, Yj,,, :j, n E N} 
satisfies the condition (i), (ii) and (iii) of Lemma 2.2. (i) is obvious. (ii) is also clear 
from (2.2). Next we show (iii). 

                      max l Y1,,,  Y,I 
1<f~)L 

                                                                                            /'~                     J-xt2icpf{t)i l e—LHant •cpK„(t)  1I dt 
- 0 , a.s. 

as n  x by (2.4). (2.6) and Theorem 2.1 with applying dominated convergence 
theorem. Finally we get 

                   EY1 =  t210)l2dt 

x by Fubini's theorem. 
    Now we can state next theorem. 

    THEOREM 2.2. Under the condition of Lemma 2.1, we have 

lx 2`                          E Im te`x``• cpf(t)dt] 
V---n a„ —* N 0, -----------------------------  

 v~~t2cpf(t)I2dt)2(2.18) I 
                                               x as n — x. 

   PROOF. From (2.2) and (2.5) we have f„, f E L2(R), so (1.2) is equivalent to
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 ISE,(a) = —1 2
.7f-xI(PK„(t) • c„(t)  eiat f (t) 12dt 

by Parseval's relation. (2.2) affords us interchange of differentiation and integration 
such that 

            daISE„(a) 
                                                     -iat

,               = 1 ImfxtocpK„(t) • e,,(t) • cpt(t)dt. 
So, with P„ defined in (2.11), the problem becomes to find an a„ which satisfies the 
equation: 

E W„(X-a)=0. 
j=1 

Characteristic of a„ which satisfies E p(X  a) = 0 has been discussed by Huber [11], 
j=1 

where p(•) is a continuous function not depending on n. Let a„ be a consistant solution 
of this equation. Then 

0=EW„(Xj—a,) 
1=1 

               = EW ,t(X1) + a„ Ed W„(X u) 
j=1j=1dua=Hu„ 

for some 0 E (0, 1) by Taylor's expansion. So we get 

1   ” 
U n jE w„(Xj) V 

n a„ =(2 .19)                           1 't d 
                     — — „(Xj—u) n 

j=1 duu=Oa„ 
Hence from Lemma 2.1 and Lemma 2.3, we obtain the conclusion by Slutsky's theorem 

(Serfiing [17]). 
   We remark that the asymptotic variance of V n a„ does not depend on the kernel 

and it only depends on the true p.d.f., in other words, the asymptotic variance is 
inherent in the underlying distribution F. 

   EXAMPLE 1. We exhibit the asymptotic variance in Theorem 2.2 for Cauchy and 
normal distributions; 

cpf(t) = e-~tI, s > 0, 

cpf(t) = e(12t2/2, o > 0. 

The asymptotic variances areZs2 and3U3-------- a2, respectively. 
   Hereafter we define DISE„(a) as
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DISE„(a) = ISE„(a) — ISE„(0) 

for simplification. 

   THEOREM 2.3. Under the condition of Lemma 2.1, we have 

               limP [V n Jr • DISE„(a) < x] = 0µ ,,0 (x)(2.20) 
                           n~ x 

for each a 0, where (P„a,Q2 (x) denotes a normal distribution function with mean µ„ and 
variance a(2,; 

                   =  {1 — cos(at)} Icpf(t)l2dt(2.21) 

x 

             = E Re [IT(1 — e1a)e`Xht•cpf(t)dt 2                               — µ(2 .22) 

respectively. 
   PROOF. The proof is almost the same as that of Lemma 2.1, so we shall only show 

the outline here. We define„(Xj, a) as 

tlf„(Xj, a) = Re 1 (1 — e "r) e`x'` • cpk(t) • cpf(t)dt , 
then from (2.2) and (2.6), we have 

lim„(Xj, a) = Re J7 (1 — e-,a`) e`x;` cpf(t)dti, 
by dominated convergence theorem. We can show (2.23) and (2.24),                

/---E lim w„(X1,a)—N(µ„, a~),(2.23)                        Vn j=1 n~x 

1 „1 „ 
------ E w,(Xj, a) — ------- E lim W„(X1, a) 0,(2.24) 

n j=1v n j=1 

as n —> x. By the definition of ISE„(a), we have thus proved 

          1  ” ~r 
       V n~~DISE„(a) = --- E W„(X•,a)N(µa, (:yn), as n                  V 

j=1 

for each a 0. 
   By the Theorem 2.3 we can find the range of the interval of which the parameter a 

satisfies DISE„(a) < 0. ISE„(0) is thought of as the loss when we do not take the 
parameter into consideration. Following example illustrates the contents above. 

   EXAMPLE 2. If cpf(t) = exp(—kt2) then (2.2) is satisfied. In this case we have the 
asymptotic mean µ„ and the asymptotic variance oU as follows.
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                   lua = V Tc (1  e-a i4), 
= J1.(1  e-a2i4) (e-a2/4 + 4/V 3  1), 

Obviously the probability p(a) = lim P{DISE„(a) < 0} satisfies p(a) = p(-a). Further
more we remark that p(a) is a continuous function about the parameter a, except for 
the point a = 0, and lim

np(a) = 0.5. Table 1 shows an example of the values of p(a).

                           Table 1. Values of p(a) 

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

p(a) 0 0.49 0.47 0.46 0.45 0.43 0.42 0.41 0.40

3. Strong Consistency of the Location Shift Random Variable a„ and ISE„(a„) 

   In this section we shall evaluate the order of strong convergence of the a,,, and 
confine ourselves to consider the kernel-type density estimator which is given by (2.13), 
where the kernel K(y) satisfies following three conditions, 

VyER,K(y)>_Oand J K(y)dy=1,(3.1) 
K(y) E L2(R), (3.2) 

                                   x 

IYK(Y) I dy < x. (3.3) 

                                      x Hereafter we define the sequence {T„, n E N} as 

loglog n                                 T
„ = 

   To evaluate the convergence order of the a„ to 0, we need following lemma that 
shows the uniform strong convergence of the e.c.f. process. Note that the lemma is 
slightly different from Csorgo [5] who proved this first. 

   LEMMA 3.1. For any p. d. f. f(x), we have 

                 sup Ic„(t)  cpf{t)1 = O(U„ • T12), a.s. (3.4) 
It)~Un 

for sufficiently large n, where { U„, n E N} is a positive monotone increasing sequence 
diverging to infinity. 

   PROOF. Using integration by parts, we have for any fixed K > 0,
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        sup I c„(t) wf(t)I 
ItHUr, 

                        r 

       = sup J e`tx d(F„(x) — F(x)) 
Iti;Ur, 

                                            K          sup [e'tx(F„(x) — F(x))]KK — it f e'tz(F„(x) — F(x))dx 
Itl�-u„-K 

          + sup f e`ttd(F„(x) — F(x)) 
                     ItICUr+ xE[—K,K]c 

       (4 + 2KU„) sup I F„(x) — F(x)I,(3.5) 
                                xG.Y<x 

where Fn(x) denotes the empirical distribution function which based on (1.1). By 
Chung [4], we have 

            limsup 112 sup I F„(x) — F(x) I = ------2-- , a.s. 
          n~x—z<X<x 

so then 

                 sup I F„(x) — F(x)I = 0(1,112), a.s. 
-x<x<x 

From above and (3.5), we have (3.4) for sufficiently large n. 

   LEMMA 3.2. Suppose that the true p. d. f. f(x) satisfies the following. 

                               x 

  (i)1 —  tIm~h(t)( dt < 

                                  x 

        for some nonnegative integer m. 
   (ii) There exists a t > m such that 

                                                                            a-m 

                  fjcpf(t)1 dt = o~T„2(Nm+I)), 
tE SR 

       where the set S„ is given by 

                        {t:r11lt E[—T„2u-m+1), T„2(!+011
Then we have 

                  supd,,ISE„(a)—lim 5SE,7(a) 
                                       _x<a<xda „—>xda 

     rnm                     = O(T„2(u-i,,n+0), a.s. for h„ = o(T„2(f,m+ 1)) 
                  = O(h,1),a.s. for T„ = o(h„ f.-----------m 

                                                     (3.6) 

as n for v = 0, 1, ... , M. 

   PROOF.It is easy to check that
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 J  x I tl "'~ I cpf(t)I dt < x implies f x Itl,n2 I 99f(t) I dt < x,  xx 

for any positive integer such that m2 < m 1. This with the dominated convergence 
theorem for the interchange of differentiation and integration, we have from (3.1), 

(3.2) and (3.3) 

         nda~ISE„(a)—lim,---ISE„(a) 
(—ite—iat. TK(h„t) (c„(t) — cpf(t)) cpf(t)dt 

           + J (—itreiat(cpK(hnt) — 1) I cpf(t)I2dt 

                        r suplc„(t) — wf(t)I  Jx ItIV I cpf(t)I dt + 2 J ItIv Icpf(t)I dt 
x rEtES' 

         + h„  Itiv+1 I cpf(t)I2dt • JIYK(Y)Idv. 
rx 

From Lemma 3.1 

sup c t t= 0(T„ 2( m+)) a.s. (3.7) 
tES„ 

By the condition (ii), we have 

ItIv I wf(t)I dt < T„ 2(n,„----------+1) f Itlm I cpf(t)I dt 
tES;tES, 

          = o(T„ 2(};-m------------+1)), a.s.(3.8) 
Together with (3.7), (3.8) and the order relation of h„ and T we get (3.6). 

    Note that the right hand side of (3.6) may be written as 0(T„2711`1"+1)-1h„). We can 
                                                      remark about the condition (i) and (ii) of Lemma 3.2 as follows. 

PROPosmoN 3.1. If cpf(t) satisfies (2.14) then the condition (i) of Lemma 3.2 holds 

for any nonnegative integer m. And there exists a it > m such that (ii) of Lemma 3.2 also 
holds. 

   PROOF. It is easy to check that 

            fitim+i Icpf(t)I dt <  2A2~xx,n+ie-xdx     xp-x 

                    =~A2(m+1)! 
< x. 

Then we shall show the second assertion of this proposition. Let Jul be a real positive
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number such that  ,ul > m. We define the set V„ as 

                       V E—l-2-i+1T2+1),t= {t:t1. 
Then we have 

fIti,„ if(t)kit 
tEV; 

               2A1 ,„                                              —tn.-) k 

                  pm+texp(—p• T„2c,,,_+1)).—~p.T„~,,,,n+1~                                                k=0 k• 
—in  l 

for any µ > m by the following fact. 

xV` li
m Y = 0, for any µ E R. 

so if we set µ = pi, we get the conclusion. 

   LEMMA 3.3. Under the conditions of Lemma 3.2, we have 

               du`' ISE„(u)~~—„— limdu----ISE„(u) u=b 

                                                        O/T„2("--------n+n),a. s. 
IaI 1131(x

yItly+i low  dt + O(h
„), a.s. 

                     

IIm201-M+1)' 

as n—>x,according as h„ = o(T„:1~,-'n~or T„ = o(h„~n), for v = 0, 1, ... , m. 

   PROOF. We may use similar approach to the proof of Lemma 3.2. 

dyd`, 

— 

              du~,ISE„(u)„_~,limdu~ISE„(u) „=b 

                                    x 

         sup Ic„(t) — cpf{t)I • L Itly I cpf{t)I dt + 2 J Iti” I cpf{t)I dt 
                                         x tEs„tEs;, 

          + h„ ix Iti.+t I cpf(t)I2 dt •  IyK0)1 dv 
   rx 

          + (x Itiv I cpAt)I' dt              J 
x 

J 

x 

        (IalIi)IV+1I~Pf{)I2,i2„,n),            a+bttdt + O(T~,.—in+1,a.s. 
Y_ 

M 
and otherwise is clear. Hence we get the conclusion. 

    Now we can state our main theorems. 

   THEOREM 3.1. If the conditions of Lemma 3.2 are satisfied for m = 2, then we have
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           1(I_1u2                   a„ = 0(i„•~~ia.s. for h„ = o(T„z(F,-I)) 
                                                                                                                'u-1                 = 0(h,112), a.s. for T„ = o(h„”-2) (3.9) 

for sufficiently large n. 

   PROOF. We shall only show for the case h„ = o(T„2<«~)) as the otherwise can be 
d shown in the same way. By expanding du ISE„(u) and ,lim du ISE„(u) about u = 0, 

we have 

—d  limdISE „(u) ISE„(u)  limdISE„(u) 

:a.  „->xud.,ISE„(u) d (lim  ISE„(u)` ~xdu u=H'a 
where 6, 0' E (0, 1). It is obvious that 

            dv11(limdISE„(u)) = limdvISE„(u)              dun--).xdu„->x du 

for any positive integer v < m. And so by Lemma 3.3, we have 

                  2            d2ISE„(u) d (limdISE„(u)          duu=O „an du_duu=e' a 

1 (16„1 + 10;,I) la„I J x ItI3 10)12 dt + 0(T„20-1)) 
„-z             = O(a„ + T~<<~ ~)), a.s. 

since 0,,, 0'„ E (0, 1). Therefore we can rewrite (3.10) as 

                                                                                                     „ 

                     O(T„z(:,-n«z) = a„ • O(a„ + T„z(,,-z,)), Q.S. 
by Lemma 3.2. Hence we have (3.9). 

   It is well known that the asymptotically optimal convergence order of the window 
width h„ is n-115, i.e. 11115h„—> const. as n  x, see Prakasa Rao [14]. In this case it is 

„-z easy to check if 2 < µ <_ s then h„ = o(T <« >), and if su > 8 + 0.1 then we have 
                    z„-I 

                      „-z T„=o(h72. ). 

    THEOREM 3.2. Under the conditions of Lemma 3.2 for m = 2, we have 

             DISE„(a„) =O(7'„7' ,,'=1), a.s. for h„ = o(T„z~;, 20) 
                                                                                                   z „ I                      = 0(h,1112), a.s. for T„ = o(h„ ~) (3.11) 

for sufficiently large n.
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   PROOF. We shall also show for  h„ = o(T„20-0) case. Since from the proof of 
Lemma 3.2 

             z • DISE„(a)  J x { 1  cos(at)} I cpf(t) I2dt 
          2sup Ic„(t)  cpf(t)I • Jx 10)I dt + 4 J Icpf(t)Idt 

                                           x 

   rE 
rES;; 

           + 2h„ J x Id *cPt{t)F2 di-  JyK(y)I dv. 
    xx 

                                    ^2 

therefore we have (3.12) which is more accurate than (2.16) 

x
u-2 DISE„(a) =n~-x{1  cos(at)} Icpf(t)I2 dt + O(T„va-4) a.s. (3.12) 

uniformly for a E R. By Theorem 3.1 

          L{1cos(a„t)} lf(t)12 dt la„~JxIt! icpf{t)~2dt 
 = O T ~~1 «111) a.s.                                 ( 11 ) 

Thus we get the conclusion. 
   Let a„ be any estimator of the a„ then by the definition of the a„, we have 

DISE„(a„) DISE„(a„), a.s. 

for all n E N. And also we have 

DISE„(a„) < 0, a.s. 

for all n E N. We define the estimator a„ is asymptotically efficient if n > N then 
DISE„(a„) 0 for some N > 0, with probability one. The asymptotic property of 
ISE„(0) has been studied by Hall [8], it is obvious that the order of convergence of 
ISE„(a„) is the same as ISE„(0). So we can say DISE„(a„) is desired that it converges to 
0 as slower as could. Theorem 3.2 gives the lower bound of the convergence discussed 
above. Namely, if the estimator a„ is asymptotically efficient then DISE„(a„) can not 

converge to 0 slower than the order O(T„7('-«~))) or 0(h,1,12) with probability one.

4. Simulation Study 

   In this section we shall show the examples for the following case. 

                1( -42) 
1 1 ~~ 

K(y) _ V2
.7eXp 2y We have,
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              1  r 2 71 1 
                                    (Xi  XI         ISE„(a, h„) =1 +Eexpl4l                  2U it nh11nJ<r h,1/ 

         12n _(X,  a)'1              n~,rc(n) j=11+h')CXp2(1+hn)2V ~+2• 
We define DISE„(a, h,) as 

DISE„(a, NO = ISE„(a, h,)  ISE„(0, 14), 

where h, is given by 

ISE„(0, NO = min ISE„(0, he). 
0<h„<x 

    Secondly, we conduct a simulation to estimate 

                        mISE„(a,NO 
              E r_<a<inr  
                ISE„(0, NO _ ,(4.1) 

by calculating 

                     1N min ISE„(a,14)                                          x<a<x 

            N s=1 ISE„(0, h)(4.2) 

for sample size n = 50 (N = 100) and n = 100 (N = 50). (4.1) may be defined as a 
relative efficiency of the estimation with respect to the location shift r.v. a11. As a result 
we have 58% for n = 50, and 62% for n = 100 respectively. These percentages 
motivate us to construct an estimator of the a,1. 

   The author has been considering the estimator of a„ . For example, it may be worth 
while to study the following two types of the estimators . 

I. From (2.19) we may construct a natural estimator , 

n —E wn(X) 
                                           J=1                   a

,,= d 
                            —

du—u) J=1duU=0 

   where W„(X) is given by 

                      x

1                   W„(X) = ImoXt.cpK(h„t) • cpf(t)dt , 

z 

   and 43f(t) is an estimator of the characteristic function cpf(t). 
II. The corssvalidation method. Define the equation as 

        x2 n              CV(h, a) = 1 f2~(x)dx  — E fn-1,-J (X1  a),              xn J=1 

   where 

          fn-L--i(x)_---------l               1.-J(x) =in_111hn2Kxh11X`). 

                                             1
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   And find the  (h,,, a„) such that 

CV(h„, a„) = min minCV(h, a).                                     —y<a<h>0 

The crossvalidation method to find the asymptotically optimal window width h„ has 
been studied by many authors, see, for example Bowman [3] and Rudemo [15].

Acknowledgement 

   The author would like to express his thanks to Prof. Y. Washio of Keio University 

for his encouragement and many helpful advices. He also appreciates the members of 

his seminar, and Prof. M. Sibuya and Prof. R. Shibata of Keio University for their 

critical comments and suggestions. In addition, he appreciates the reviewer's comments.

                                 References 

[ 1 ] BILLINGSLEY, P.: Convergence of Probability Measures, Wiley, New York, (1968). 
[ 2 ] BLACKMAN, J.: On the approximation of a distribution function by an empiric distribution, Ann. Math. 

    Statist. 26, (1955), 256-267. 

[ 3 ] BOWMAN, A.: An alternative method of crossvalidation for the smoothing of density estimates, 
    Biometrika 71, (1984), 353-360. 

[ 4 ] CHUNG, K. L.: An estimate concerning the kolmogoroff limit distribution, Trans. Amer. Math. Soc. 
    67, (1949), 36-56. 

[ 5 ] CsORGO, S.: Limit behaviour of the empirical characteristic function, Ann. Prob. 9, (1981), 130-140. 
[ 6 ] FEUERVERGER, A. and MUREIKA, R. A.: The empirical characteristic function and its applications, Ann. 

    Statist. 5. (1977), 88-97. 

[ 7 ] HALL, P.: Laws of iterated logarithm for nonparametric density estimators, Zeit. Wahrscheinl.theorie 
    56, (1981), 47-61. 

[ 8 ] HALL, P.: Limit theorems for stochastic measures of the accuracy of density estimators, Stoch. Processes 
    Appl. 13, (1982), 11-25. 

[ 9 ] HAROLE, W.: Applied Nonparametric Regression, Cambridge Univ. Press, (1990). 
[10] HEATHCOTE, C. R.: The integrated squared error estimation of paratneters, Biometrika 64, (1977), 255

    264. 

[11] HUBER, P. J.: Robust estimation of a location shift parameter, Ann. Math. Statist. 35, (1964), 73-101. 
[12] IZENMAN, A. J.: Recent developments in nonparametric density estimation, J. Amer. Statist. Ass. 86, 

    (1991), 205-224. 
[13] LuxAcs, E.: Characteristic Functions, 2nd. ed. Griffin, London, (1970). 
[14] MARCUS, M. B.: Weak convergence of the empirical characteristic function, Ann. Prob. 9, (1981), 194

    201. 

[15] PRAKASA RAO, B. L. S.: Nonparametric Fuctional Estimation, Academic Press. (1983). 
[16] RUDEMO, M.: Empirical choice of histograms and kernel density estimators, Scand. J. Statist. 9, (1982), 

65-78. 

[17] Scoff, D. W.: Averaged shifted histograms: effective nonparametric density estimators in several 
    dimensions, Ann. Statist. 13, (1985), 1024-1040. 

[18] SERFLING, R. J.: Approximation Theorems of Mathematical Statistics, Wiley, New York, (1980) 
[19] WATSON, G. R. and LEADBETTER, M. R.: On the estimation of the probability density, I, Ann. Math. 

    Statist. 34, (1963), 480-491.



212H.  TAKEUCHI

Received May 13, 1992 

Revised September 24, 1992 

Communicated by T. Yanagawa


