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  UNIFORMLY MINIMUM VARIANCE 

UNBIASED ESTIMATORS OF VARIANCES 

AND COVARIANCES OF MULTIVARIATE 

NORMAL DISTRIBUTIONS WITH CYCLIC 

     COVARIANCE MATRICES

               By 

Hajime YAMATO* and Masao KONDO**

                     Abstract 

   For a multivariate normal distribution having a cyclic covariance matrix 

and equal means, we give uniformly minimum variance unbiased estimators of 

a common variance and covariances.

1. Introduction and Summary 

   A signal is transmitted from a point source located at the geocenter of a regular 
polygon of d sides. Let V1, ... , V(, be vertices of the polygon and taken sequentially. 
The signal received at the vertex V, is denoted by X, (i = 1, ... , d). Then it may be 
reasonable to assume that Var(X1) = ... = Var(Xd) and Cov(X1, Xj+1) does not 
depend on j(j = 1, ... , d), where Xd+ 1 = X1 ; Cov(X1, XX+2) does not depend on j(j = 
1, ... , d), where Xd+2 = X, and so on. In other words, for a covariance matrix 

_ (oa,j) of (X1, ... X1), its elements can be written as Q„ = a2 (>0) (i = 1, ... , d) 
and a, = Ok (i j, i, j = 1, ... , d and k = min (li — jI, d — I i — jj)). A covariance 
matrix having this structure is said to be cyclic. 

   Equivalently, a d x d covariance matrix . is cyclic if g. 'g' = 2' for all g E Go = 

{Id, C, C2, ... , C-1 } where Id is the d x d identity matrix, and C = (c11) is a d x d 
matrix with cdi = cf,j+1 = 1 (j = 1, ... , d — 1) and the remaining elements equal to 
zero. For a vector x' _ (x1, ... , xd), (Cx)' = (x2, ... , xd, x1). (See for example Eaton 

[1] and O1kin and Press [3]).) 
   For a multivariate normal distribution with a cyclic covariance matrix it is generally 

difficult to express the density function explicitly with o' and 0k. 
   By transforming a sample, O1kin and Press [3] gives maximum likelihood estimators 

and likelihood tests for the above multivariate normal distribution. 
   The multivariate normal distribution with cyclic covariance matrix and equal 

means is equivalent to multivariate normal distribution invariant under the group of 
transformations Go = {Id, C, C2, ... , C1-1 } . Noting this invariance of distributions,
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we present uniformly minimum variance unbiased (UMVU) estimators of means, 
variance and covariances by the method stated in Yamato  [4] and Yamato and 
Maesono [5]. 

   Let (X1p, ... , Xip), p = 1, ... , n be a sample from a nonsingular dvariate 
normal distribution with cyclic covariance matrix . _ (aij) and equal means ,u, where 
Qii=o2(>0)(i=1,...,d) and aij=°k(i j,i,]=1,...,d and k= min (~i—j~, 
d — Ji  jl))• 

   The UMVU estimators of a common mean µ, variance o2 and covariances pk are 

presented by 

         =X(X=EXipl(nd)), 
                                      i,p 

_ E E (Xip — Xjp)2l [2n(n — 1)d2] 
i,j=1 pq 

0k = E E (Xip — Xjq) (Xi+k,p — Xj+k,q)l [2n(n 1)d2] 
                        i,j pq 

(for k = 1, ... , r with d = 2r + 1 or k = 1, ... , r with d = 2r), where Xd±i,p = 
Xip for i = 1, ... , d and p = 1, ... , n. These are shown in Section 2. 

   In Section 3, by the method different from Section 2 we make sure that the 
estimators obtained in Section 2 are UMVU estimators of mean, variance and 
covariances.

2. UMVU Estimators 

   Since the multivariate normal distribution with cyclic covariance matrix and equal 
means is invariant under the group of transformations G = {Id, C, C2.... , C`i—i}, we 
derive the UMVU estimators by the method stated in Yamato [4] and Yamato and 
Maesono [5] which is quoted below. 

   LEMMA 2.1. P = {P„, r) E Q} denotes a family of some distributions on the 

ddimensional Euclidean space. P* = {P71, 17 = Q*} denotes its subfamily whose 
distribution is invariant under a finite group of measurable transformations G = {gi, 

gk}. Let XI, ... , X„ be a sample of size n from P E P and T(XI, ... , X„) be a 
UMVU estimator of its expectation E(T) for P. Then the Ginvariant version of T, 

                        1 T*.,X„) =k,~E T(gj,X~,... , gj,X„) 
li>  •J =1 

is a UMVU estimator of E(T*) (= E(T)) for P*. 

PROPOSITION 2.1. For a multivariate normal distribution with unknown cyclic 

covariance matrix and unknown but equal means, UMVU estimators of mean i, 
variance o2 and covariances 01, ... , 0, are presented by
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         = X (X = X,pl (nd) = E X, • Id),(2.1) 
,.pi= 

cl 

02 = E E (X,p  Xjp)2/[2n(n  1)d2](2.2) 
i,j=1 pq 

           Bk = E E (X,p  Xjq) (Xi+k,p  Xj+k,q)l [211(11 — 1)d21 (2.3) 
,.j pq 

              (for k = 1, ... , r with d = 2r + 1 or k = 1, ... , r with d = 2r) 

where X11+,,p = X,p for i = 1, ... , d and p = 1, ... , n. 
    PROOF. Let Xp = (X1p, ... , Xdp), p = 1, ... , n be a sample from a nonsingular 

dvariate normal distribution with E(X,p) = pi and Cov(X,1„ Xjp) = Q,j (i, j = 1, ... , d, 
p = 1, ... , n). Then UMVU estimators of µ, and Q, are given by 

              = X,. (i = 1, ... , d)(2.4) 
                    = S,jl (n  1) (i , j = 1, ... , d) (2.5) 

where Xi. _ E X,pin and S,1 = E (X,1,  Xi.) (Xjp  Xj.) for i, j = 1, ... , d (see 
p=1p=1 

for example Lehmann [2]). 
   We make an UMVU estimator it invariant under the group of transformations 

GO = {Id, C, C2, ... , Cd-1} from the UMVU estimator µ1 given by (2.4) with i = 1, 
using Lemm 2.1. 

   Since we can write µ1 = E u(X p)l n with u(X p) = X1p,  we have 
p=1 

" d-1 

µ = du(C`Xp) = X, 

n 

                                 p=1i=t) 

where X = EJ,pXjpl (nd). 
   We make an UMVU estimator o2 invariant under G0 from the UMVU estimator 

au given by (2.5) with i = j = 1, using Lemma 2.1. 

   Since we can write o11 = . v(Xp, Xq)/[2n(n  1)] with v(Xp, Xq) = (X1p — 
                               p#q 

Xiq)2, we have 

             11 d-1               U~_---------~~L'(C!Xp, CI X q) 2
n(n  1)1_,(1d` i,j=0 

1  
                  2n(n _ 1)d2p E (xip Xj)`. 

q 

   We make an UMVU estimator 8k invariant under the group of transformations Go 
from the UMVU estimator -61,1+k given by (2.5) with i = 1 and j = 1 + k for k = 1, 

   r with d = 2r + 1 or d = 2r. 

   Since we can write Q1,1+k = . w(Xp, Xq)I[2n(n  1)] with w(Xp, Xq) = 
                                    p*q 

(X1p — X1q) (X1+k,p — X1+k,q) (k = 1, ... , r with d = 2r + 1 or d = 2r) we have



192H.  YAMATO and M. KONDO

1  1 d-1         Bk = 2n(n_1)EdEw(                             ?~C`Xp, C'Xq) 
       1  = E E (X  X19~~) (X1+k,X"-+-k     2n(n  1)d2 

                                E, (1 1,J 

where Xd+;,/, = Xjp (j = 1, ... , d, p = 1, ... , n). Thus we get (2.1), (2.2) and (2.3).

3. Normal Distribution with Cyclic Covariance Matrix 

   In Section 1 we gave the definition that a covariance matrix is cyclic. Its inverse is 
also cyclic as follows. 

   LEMMA 3.1. If a covariance matrix I is cyclic, then its inverse 2-1 is also a 
cyclic covariance matrix. 

   PROOF. Since I is positive definite, 2-1 is also positive definite. Because of C = 
Id and C'C = Id, we have (C-')-1 = C and (C)-1 = (C)' (j = 1, ... , d  1). 

   From the assumption we have C'XC-' = X (j = 1, ... , d  1) and therefore 

(Cdj)'1(C') 1 =' for j = 1, ... , d  1. 

This is equivalent to 

C'2-' (C')' = 2-1 for j = 1, ... , d  1, 

which shows that 2-1 is cyclic. 
   We put ukj = d"2{cos ki + sin k;} with ~k~ = 2.7r(j  1)(k  1)/d for k, j = 1, ... , d 

and uk = (ukl, ... , ukci) for k = 1, ... , d. Let F' be the matrix (u1, 

   LEMMA 3.2. (Eaton [1]). T is a d x d symmetric orthogonal matrix. For any cyclic 
covariance matrix I we have 

T~T = A, 

where A is a diagonal matrix. For d = 2r + 1, the diagonal elements of A are 

~k = ak for k = 1, . . . , r + 1; )Ld_k+, = ak for k = 2, ..., r+ 1, 

and for d = 2r, the diagonal elements of A are 

~k = ak for k = 1, ... , r + 1; Ad_k+2 = ak for k = 2, ... , r, 

where al, ... , ar+1 denotes the eigenvalues of and are positive. 

   LEMMA 3.3. For any cyclic covariance matrix X, we denote the elements of its 
inverse Z-1 = (d') by di = 1) (i = 1, ... , d) and d' = rk(i j, i, j = 1, ... , d and k = 
min (I i  j, d  jl). Then the range of (rp, ... , rr) contains a (r + 1)dimensional 
rectangle. 
   PROOF. Since 2-1 is cyclic by Lemma 3.1, its elements (a`1) can be described as a" 

=ro(i=1 ,...,d) and a`'=rk(i j,i,j=1,...,d and k= min (Iiji,d -j1).
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From Lemma 3.2 we have  TX-1  T = A-1 and 2-1 = TA-1 F. Therefore there exists the 
one to one and linear correspondence between T = (To, ... , Tr)' and /3 = (/31, ... , 

/3r+1)', where /3j = 1/a1 (j = 1, . . . , r+ 1). We denote this correspondence by r = Af3 
with the nonsingular matrix A. Since /31, ... > 0, the range of (i11, ... , Tr) is the 
image of /31, ... , /3r+ i > 0 by the nonsingular transformation A and contains a (r + 1)
dimensional rectangle. 

PROPOSITION 3.1. For a multivariate normal distribution with cyclic covariance 
matrix and equal means, a sufficient and complete statistic is given by 

{ Xip~ xi,                                      XXJ~(k = 1, ..,r) (3.1) 
i= 1 p=1 i=1 p=1  p=1 

for d = 2r + l or d = 2r. 
    PROOF. Let X1, = (X1p, ... , Xdp), p = 1, ... , n be a sample from a nonsingular 

dvariate normal distribution with E(Xip) = µ (i = 1, ... , d) and a cyclic covariance 
matrix X. Since its inverse is also cyclic as stated in Lemma 2.1, the elements of the 
inverse matrix E-1 can be written as di = io (i = 1, ... , d) and ail = Tk [i j, i, j = 1, 

d and k = jl,d— Ii—Il)). We put y=y[o+2(r1+ ... + Tr)]for 
d=2r+1 and v= p[r11+2(T1+ ... + rr_1)+ rr] for d=2r. 

    The joint density function of X1, ... , X„ forms a (r + 2)parameter exponential 
family given by f(x1, ..., x„) = cexp(ri0So + ... + rb.Sr — 2vXi pxip), where c is a 
constant depending upon parameters, 

                               d n 
        = — Ti/2 (i = 0, ... , r) and So = E E 

i=1 p=1 

      Sk =E xipxjp (k = 1, ... , r with d = 2r + 1 or d = 2r). 
p=1 

    The range of (To, ... , Tr) contains a (r + 1)dimensional rectangle by Lemma 3.3 
and therefore (rio, ... , rir) contains a (r + 1)dimensional rectangle. Thus a sufficient 
and complete statistic is (.i,pxip, So, ... , Sr) (see for example Lehmann [2]). 

PROPOSITION 3.2. For a multivariate normal distribution with a cyclic covariance 
matrix and equal means, the UMVU estimators of mean µ, variance a2 and covariances 
01, ... , Or given by (2.1), (2.2) and (2.3), respectively, are unbiased functions of the 
sufficient and complete statistic presented by (3.1). 

   PROOF. It is easy to see that the estimators given by (2.1), (2.2) and (2.3) are 
unbiased. The estimator given by (2.1) is obviously a function of the sufficient and 
complete statistic given by (3.1). 

    Using the relation: 

E E Xipxjp EE Xipxip + Xi, 
p m=1 pi,p 

we have
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2n(n —  1)d2v2 = E E (Xip — Xj9)2  E E (Xip — Xj~)2 
1•9 i.jp i j 

               _r 
          = 2(nd — d + 1) EX1,— 2(ndX)2 + 2 E E X4,X jp, 

i,pm= 1 ji—jj=m,d—rn p 

where the summation E is taken as E for d = 2r. 
Ii-j1=r,d-rli-iI=r 

Thus Q2 can be written as a function of the sufficient and complete statistic given by 

(3.1): 

            _ r Q2 = {[(n — 1)d + 1] E — (ndX)2 + E E E XipXjp [n(n — 1)42]. 
              i,pm=1 ~i j~=m,d—m p 

   Since 2 E XlPXI+k,P =X4,Xi+k,p for k = 1, ... , r with d= 2r + 1 or 
i=1~i—j~=k,d—k 

k = 1, ... , r — 1 with d = 2r, by the similar computation to the above we have for 

k=1,...,r with d=2r+lork=1,...,r—l with d=2r 

     9k = (2nd)-1 E E XiPXjP 
k41—k p 

_r 

        — [n(n — 1)d2]-1 (ndX)2 —E E XiPXjP — E X m=1 li—j1=m,d—m pr,p 

which is a function of the statistic given by (3.1). 

   Since E XipXj+r,p = E XipXi+r,p (d = 2r), we have for d = 2r 
i=1H ./1=r 

9r = (nd)-1 , . XipXiP 
HjI=r p 

_ r         — [n(n — 1)d2]-1 (ndX)2 — E E E XiPXjP — ~X~p                                 m=1 Ii—jI=m,d—m p i,p 

which is a function of the statistic given by (3.1).
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