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OPTIMAL CONTROL OF AN IMPERFECTLY 
    OBSERVED QUEUEING SYSTEM

       By 

Kazuyoshi WAKUTA*

                     Abstract 

   A control problem of an M/G/1 queue with imperfectly observed queue 

length is considered. It is shown that our control problem can be formulated as 

an imperfect state information semi-Markov decision process with the countable 

state space and unbounded costs and that there exists an optimal stationary 

I-policy when the set of control parameters is finite.

1. Introduction and the control model 

   Recently, a control problem of queues with imperfectly observed queue length has 
been investigated by Wakuta [7]. The system treated there has the finite input source. 
In this paper, a control problem of queues with imperfectly observed queue length 
having an infinite input source is considered: the system concerned with is based on an 
M/G/1 queue. The infinite input source leads to the infinite state space of the system 
and hence to unbounded costs. The control problem is described precisely in this 
section at first. Next, in section 2, it is shown to be formulated as an imperfect state 
information semi-Markov decision process with the countable state space and unbounded 
costs. Finally, in Section 3, it is transformed to a perfect state information semiMarkov 
decision process, and the existence of an optimal stationary I-policy is demonstrated if 
the set of control parameters is finite. 

   Consider a service facility with a single server, where customers arrive to be served 
in accordance with a Poisson process. The service facility separates into two parts: a 
waiting room and a service room. When one customer is in service, the others have to 
wait in the waiting room. If no one is waiting in the service room and no one is in 
service when a customer arrive there, then he can enter the service room at once and is 
served according to a general distribution. Simultaneously with the accomplishment of 
the service, a customer in the waiting room enters the service room in turn, and the 
server chooses a control parameter which determines a way to serve among many ways. 
The server, however, cannot know the number of customers in the waiting room 

precisely. But he can get some information on it, for example, (i) many customers are 
waiting; (ii) few customers are waiting; (iii) no customer is waiting. If no customer 
enters the service room at the time of a departure, then the server can assume that no 
one is waiting. So he can know whether there is no customer or there is at least one
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customer at the time of a departure. The costs are incurred on the server: a holding 
cost and a service cost. Thus, the server has to find a rule to choose control parameters 
which minimize the expected cost. 

   The system we consider here is based on an M/G/1 queue, i.e., a singleserver 

queueing system subject to a Poisson process of arrivals and independent service times 
with general distributions. The arrival rate A is constant, and each service time has a 

probability distribution F„(t). a E A, t E R+, where A is a Borel set, the set of control 
parameters and R+ = [0, c). We assume that F1(t) has a density function fa(t) which is 
Borel measurable on A x R. The state of the system is the queue length , i.e., the 
number of customers in the service facility and is assumed to be only imperfectly 
observed through the observations generated by an observation system. The observations 
are generated at the initial time and the times of successive departures, and then, 
control parameters are chosen, based on the observable histories. We refer to these 
times as decision epochs. The observation system is characterized by a stochastic kernel 

g on M given S, where S = {0, 1, 2, ... }, the set of states, and M = {0, 1, 2, ... }, the 
set of observations (For the definition of a stochastic kernel, see, for example, Bertsekas 
and Shreve [1]). We assume that we are given an initial distribution p E P(S) for the 
initial state of the system, where P(S) is the set of all probability measures on S. 
Moreover, since it is known whether there is no customer or there is at least one 
customer in the service facility at the decision epochs, we assume that g satisfies the 

following condition: g(m l i) = 1, i = 0, m = [to and g(m l i) = 0, i 0, m = ,uo, where 
U) means that there is no customer in the service facility. If there is no customer in the 
service facility at a decision epoch, then there is no sense in choosing control paramters . 
Nevertheless, we shall choose a control parameter, but decision yields nothing . Then, 
the arrival time of a new customer is the next decision epoch, and the time until then is 
regarded as the service time for convenience. An observation is generated also at that 
time, and then, a control parameter is chosen. But we can then assume that there is 
only one customer in the service facility regardless of the observation. Denote by i,,, 
m,,, a,,, and t„ the state of the system at the n-th decision epoch, the n-th observation, 
the n-th control parameter, and the n-th service time, respectively. Let To = 0 and 
T„= t1 + ... + t„. Then, T„ denotes the n-th decision epoch. Two kinds of costs are 
incurred: a service cost at rate ca, a E A and a holding cost at rate h (h > 0) per 

person. We assume that ca is bounded and Borel measurable on A (We do not assume 
here the nonnegativity of ca). 

   Now, suppose that the system is in state i (i > 1) at a decision epoch and that 
control parameter a E A is chosen. If the current service is accomplished after t unit 

time, and until then, (j  i + 1) new customers arrive at the service facility, then the 
expected discounted cost incurred is given by 

rfi-r+1 t             cae"ds+ijhe-asds+ EJh ds,i>_1, (1.1) 
    00 k=1 rk 

where a is a positive number, the discount factor, and rk is the k-th arrival time during 

t unit time. Conditional on the event that (j  i + 1) customers arrive at the service 
facility until t unit time, each arrival time has the uniform distribution independent of
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the others (cf. Cinlar [2, p. 78]). Then, given that (j  i + 1) new customers arrive at 
the service facility during t unit time, the conditional expected discounted cost is as 
follows: 

    rr fr f(i, a, t, j) =Jc„ds + iJhe'ds .+ (j  i + 1)he-` sds dG(r), i>_1, 
  ~0r 

                                                      (1.2) 

where G is the uniform distribution over the interval [0, t]. If i = 0, the cost incurred is 

given by f(i, a, j, t) = 0. Then, our problem is to find a rule to choose control 
parameters which minimize the expected total discounted cost: 

                                   r 

                                                  -n7„ 
              Ecf(i,,, ar,, tn+ in+1)(1.3) 

n=0

2. Formulation as an imperfect state information semiMarkov decision process 

   In this section we show that the control problem introduced in Section 1 can be 
formulated as an imperfect state information semiMarkov decision process (ISISMDP) 
with the countable state space and unbounded costs. 

   From the definition of the control problem, it can be formulated as ISISMDP(S, 

M, A, q, g, f, v), where S is the state space; M is the observation space; A is the action 
space; q is the transition law (which is defined afterwards); g is the observation system; 
f is the cost function; a is the discount factor. An initial distribution p E P(S) is given 
at the initial time. Then, an observation is generated by g, and an action is chosen. If 
the process is in state i E S, and action a E A is chosen, then: 

  (i) the current state changes to state j E S until t unit time according to a 
     stochastic kernel q on S x R+ given S x A, provided that q has a density 

     function k such that k(j, tli, a) = fa(t)eA2LtY-1+11(j  i + 1)!, i ? 1, 
j>_i1, and k(j,tli,a)=0,i>1,j<i1;k(j,tb0,a)=Ae'r,j=1, 

     and k(j, 110, a) = 0, j > 1; 
  (ii) the cost given by k(i, a, t, j) is incurred; 

  (iii) the state j E S can be only imperfectly observed through the observation 
     m E M generated by a stochastic kernel g on M given S, provided that g 

     satisfies the condition that g(m j i) = 1, i = 0, m = po and g(m l i) = 0, i 0, 
      m = po, where po means that no customer is waiting. 

A policy a) is a rule to choose control parameters and is a sequence {0o0, wt, ... }, 
where w„ is a Borel measurable stochastic kernel on A given H„ = P(S) x M x (A x 
R+ x M)". H„ means the set of all observable histories when the n-th action must be 
chosen. For a policy co, the expected total discounted cost J,„ is defined as: 

          J(p) = EEe a1'" f(iati)pE P(S),(2.1)         cvco,pn~rt~n+(~n+1>> 
                                  n=0 

where E,,,,p denotes the expectation by the unique probability measure induced by 
policy co (cf. Bertsekas and Shreve [1, Proposition 7.28]). A policy co* is called the
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optimal policy if  J(0,(p) J,0(p) for all policies co and all initial distributions p. 
   The following lemma is straightforward from the definition of and k and the 

boundedness of ca. 

   LEMMA 2.1. There exist positive numbers /3 and y such that 

        E f xktli,i+                ~(i,a,t,I) ~(1,~a)dt~y,i E S, a E A(2.2) 
jES 0 

   The following assumptions are imposed throughout the paper. 

   Assumption (I). There exist E > 0 and b > 0 such that 

Fa(6) < 1  E, a E A.(2.3) 

   Assumption (II). Any initial distribution has a finite expectation. 

   LEMMA 2.2. There exists a number p(0 < p < 1) such that 

E f  e"r w(j)k(j, tli, a)dt pw(i), i E S, a E A, (2.4) 
jES J0 

where 

                 w(i) = f3i + y, i E S.(2.5) 

PROOF. From Assumption (I), we have 

                             x 

                      e"`fa(t)dtµ< 1, a E A,    J
0(2.6) 

where µ = 1  r + re"' (cf. Ross [5, Theorem 7.3]). Then, from the definition of k, 
we have 

E w(j)k(j, tli, a)dt 
             jES 0 

             e«r fa(t) E (/3i + y)e-At (At)-1r+1/0  i + 1)! dt 
                                  j�i-1 

         = e ar fa(t) [NAt + /3i  N + y] dt 

+ /3Al (ce) + µ(y  f), i > 1 

(Note that te' < 1/(cre), t >_ 0). For i = 0, we have 

E f e' w(j)k(j, tI0, a)dt 
                          jES 0 

                        w(1)k(1, tb0, a)dt 

= [A/(a + A)1 (/3 + y). 

If we choose an appropriately large y in Lemma 2.1, then



Optimal control of an imperfectly observed  queueing system185

                 + /3A/ (cre) + i(Y — /3) < /3 + Y 

and 

[A/(a+A)](/3+A)<y, 

which imply that (2.4) holds for i = 0 and 1. Since 0 < u < 1, there exists a number p 

(0 < p < 1) such that 

µ/3i+/3Al(cve)+µ(Y13) 19(/3i+Y),i>1 

and 

[AO +A)](/3+ PY 

from which the result follows. 

   REMARK 2.1. The condition (2.4) is equivalent to the condition given by van 
Nunen and Wessels [3] except that the weighting function w is linear in this paper. 

   Let 

P = {p E P(S): E ip(i) < x(2.7) 
iES 

and 

v'(P) = > w(i)P(i), p E P.(2.8) 
                                    iES 

Then, for any p E P, 0 < y <_ w(p) < x. For any Borel measurable function v on P, set 

11 v 11 w = sup I v(P) I i'(P) 1(2.9) 
                                      pEP 

and define BW as the Banach space of all such v for which 1 v k, < x. Then, we have the 
following proposition. 

   PROPOSITION 2.1. For any policy w 

                 1/(1 — P)•(2.10) 

   PROOF. By virtue of Lemma 2.2, we can easily show by induction that for any 
policy w and any initial distribution p; 

Ew,p [e-"T" w(s„)] Pnh'(P), n > 0,(2.11) 

Then, the result follows directly from Lemma 2.1 and the property of the conditional 
expectation. 

   REMARK 2.2. From (2.11), we have Ew,p [ye"T"] p'Zw(p) Letting n ---> 00, we 
have E p[e "~] = 0, where L = sup

)T,,. Hence, L is infinite almost surely for any 
policy w and any initial distribution p'.
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   REMARK 2.3. By the property of the conditional expectation, the expected total 

discounted cost can be also written as: 

.14P) = E e'T„ c(i„, a„) ,(2.12) 
„=0 

where 

                                          x 

                c(i, a) = E Jt(i, a, t, j)k(j, tli, a)dt. (2.13) 
jES0

3. Transformation to a Perfect state Information SemiMarkov Decision Process and 
   the Existence of an Optimal Stationary Ipolicy 

   In this section we construct a perfect state information semiMarkov decision 

process (SMDP), which is sufficient for ISISMDP defined in Section 2. Then, we show 
that there exists an optimal stationary Ipolicy when A is finite. 

    Let p„ denote the conditional distribution of i„ given h„ = (p, m0, a0, t1,  . . . ,ml, 
a„_1, t„, m„). Then, p„, n ,>_ 0, can be obtained recursively from the Bayes' theorem 

(see Wakuta [7, p. 214]). 

    LEMMA 3.1. Any conditional distribution p„, n >_ 0, has a finite expectation, i.e., 

p„EP,n>_0. 
   PROOF. The claim is established by induction. By Assumption (II), po has a finite 

expectation. Assume as an induction hypothesis that p„ has a finite expectation. Then, 
we have 

E jP„+i(j) 
jES 

        = j E g(m lj)k(j, di, a)P„(i) } z 
jES iES 

        = j g(m ij)k(j , tl i, a)P„(i) z 
iES jES 

iES jES 
               j k(j,di, a)P„(i)z 

        = ke-At p„(0) + E L(t) {xt + (i — 1)}p,,(0 1/z < x, 
                                    i�1 

where z = E g(m i j)k(j, di, a)p„(i). Hence, the induction argument is completed. 
           ,ES jES 

   We introduce the discrete topology on S. Then, P(S) endowed with the weak 
topology is a complete separable metric space, and p(i), i E S, is a continuous function 
of p (cf. Parthasarathy [4, Theorem 6.1, p. 40]). Then, P defined by (2.7) is a Borel 
subset of P(S). 

   Now, we construct a SMDP (P, A, q, c, ca), where P is the state space; A is the 
action space; q is the law of motion of the system; e is the cost function; cr is the
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discount factor (see Wakuta [7, p. 215] for the definition of q and c). A policy for the 

SMDP is a sequence {.r0, ... 1, where each .Tr„ is a Borel measurable stochastic 
kernel on A given I„ = P x (A x R+ x P)", provided that 10 = P. Such a policy is 
called the information policy (Ipolicy) according to Sawaragi and Yoshikawa [6]. 
Then, the expected total discounted cost for the SMDP is defined as: 

In(Po) = E,Ee-a1c(P,,, a,:) IP4Po E P,(3.1) 
n=00 

where ET[• (po] denotes the expectation by the unique probability measure induced by 
Ipolicy .rr. 

   LEMMA 3.2. For any p E P and any a E A, 

      (i) lc(p, a)I w(p);(3.2) 

(ii) IJpxR±w09')d9((P', t) I P, a) < pw(p). (3.3) 
   PROOF. (i) The proof is straightforward from Lemma 2.1 and (2.13). (ii) By the 
definition of q, we have 

          Ife'jv(p')d9((P', t)Ip, a)                       PxR+ 

                          f7           = EJe"ri (u(p, a, t, m))z(p, a, t, m)dt 
               mEM0 

          = E e "r E w(j)u(p, a, t, m)(j) z(p, a, t, m)dt 
mEM 0 jES 

        = Ee-at E w(j) { E g(m1j)k(l, tli, a)P(i) dt 
mEM 0 jESiES 

        = E E (f e«, w(j)k(j, tli, a)dt] p(i) 
LES jES 0 

E P w(i)P(i) = P i(P) 
                 iES 

(see Wakuta [7, p. 214] for the definition of u). Thus, the proof is completed. 

   By this lemma, the following proposition can be proved in a similar way to the 

proof of Proposition 2.1. 

PROPOSITION 3.1. For any Ipolicy 7r, 

14(1 — P).(3.4) 

   Using the same method as in Wakuta [7, Proposition 3.5]), we have the following 
fundamental result. Note that the set of all Ipolicies can be regarded as a subset of 

policies in the original problem.
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   PROPOSITION 3.2. If Ipolicy 7r* is optimal for SMDP(P, A, q , c, a), then it is also 
optimal for ISISMDP(S, M, A, q, g, 4, a). 

   Now, we shall discuss the existence of an optimal stationary Ipolicy. The optimality 
equation for our control problem is as follows: 

      v(p)inf{(p. a) + fJYXRe—«t v(P')d9((P',t)~P,a)}, p E P. (3.5) aEA

From the definition of q, this can be written also as: 

                                   x v(p) = inf c(p, a) + E J e-~` v(u(p, a, t, m))z(p, a, t, m)dt}, p E P. (3.6) 
    aEAmEM 0 

   By Lemma 3.2, the operator T defined by the right-hand side of (3.5), or equival
ently, (3.6) is a contraction mapping on B"' with contraction coefficient p and has a 
unique fixed point v*. Then, from Proposition 3.2, we can prove the following theorem 
by the standard method (cf. Wakuta [7, Theorem 4.2]). 

   THEOREM 3.1. Suppose that A is finite. Then, there exists an optimal stationary 
Ipolicy (f*)', where f* selects the action minimizing the right-hand side of (3.5), or 
equivalently, (3.6) with v = v*.
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