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        By 
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                     Abstract 

   An order relation, which satisfies the axioms of a partial ordering, is 

defined on the set of general fuzzy numbers. An L fuzzy number is defined as 

a fuzzy numbcr specialized to a certain extent, and fundamental linear operations 

are introduced on the set of the L fuzzy numbers. After that, characterization 

theorems of the order among the L fuzzy numbers is given in terms of the 

parameters of the fuzzy numbers, and it is investigated, on the basis of the 
theorems, that how the order relation is adapted for the fundamental operations. 

   Finally, some of these results are applied to two types of fuzzy linear 

programming problems, in which the coefficients of constraint functions are 
L fuzzy numbers, to show that both types of the problems can be reduced to 

nonfuzzy problems. One type of them is reduced to a usual linear programming 

problem, and another type generates a nonfuzzy new programming problem.

1. Introduction 

   Linear programming problems with fuzzy constraints and fuzzy goals have been 
studied by many authors on the basis of the Bellman-Zadeh principle since the publish 
of the paper [1]. This principle is used dominatively, especially when the coefficients of 
the constraint and objective functions are all crisp numbers. 

   In the case where the linear program involves fuzzy data, for instance, the case 
where the coefficients of the functions in the program are fuzzy numbers, one has two 

problems to be solved in advance. The first is to define fundamental operations on 
fuzzy numbers, and the second is to clarify what an inequality sign between two fuzzy 
numbers does mean. Dubois and Prade [3] has given the definitions of operations on 
fuzzy numbers by the use of an extension principle (a fuzzification principle). For the 
second problem, Dubois and Prade [5] has proposed four indices to describe the 
relative locations of two fuzzy numbers, and Prade [7] discussed the indices for the 

general fuzzy sets. 
   As to the studies of linear programming with fuzzy data, we can refer to the paper 

[2] by Dubois which is based on the operations and indices in the above literatures.
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Inuiguchi and Ichihashi [6] discussed the fuzzy linear program by using the concepts of 
relative modalities improved from the indices in [7]. Tanaka and Asai [8] defined a 
fuzzy inequality between two fuzzy numbers in another way and discussed the fuzzy 
linear program related to the inequalities of their meaning. In Dubois and Prade [4], 

the indices of [5] and [7] are not used and an inclusion sign between fuzzy numbers are 
adopted in place of the inequality sign. 

   The fundamental operations on fuzzy numbers defined by Dubois and Prade in [3] 
are those induced from a nonlinear operation called "an extension principle". Con
sequently their operations, in general, are not linear operations. There may be little 
obstacle in applying their operations to various types of fuzzy linear programming as 
seen in [2], [6], [7] and [8]. However, for the sake of application to nonlinear fuzzy 

programming, their operations are not suitable on account of the fact that the space of 
fuzzy numbers does not form a linear space under the operations. 

   In this paper we first give a new concept of an order relation among fuzzy 
numbers. The order relation of our definition is a natural extension of the order over 
real numbers to the set of fuzzy numbers, and satifies the axioms of partial ordering. 

Next we give a definition of an L fuzzy number, and introduce a new fundamental 
operations on the set of L fuzzy numbers. Our operations satisfy the linearity unlike 
the operations of Dubois and Prade. 

   The final object of this paper is to apply our order relations and our operations to 
fuzzy linear programming, which has L fuzzy numbers as the coefficients of the 
constraint and objective functions. In this programming we adopt the order relation 
defined in this paper in place of the inequality sign. Under these settings we show that 
our fuzzy linear programming problems can be reduced to nonfuzzy programming 

problems. In a certain case the problem is reduced to a usual linear programming 
problem, and in another case it generates a new type of optimization problem. The 
authors in [2], [6] and [8] have already shown similar results, but their results depend 

on the level value (or the cut value) chosen to the fuzzy numbers. In contrast with 
them, in our case, the reduced nonfuzzy programming problem does not depend on any 
cause such as the level or cut valules.

2. An Order Relation of Fuzzy Numbers 

DEFINITION 2.1. A real fuzzy number A is defined as any fuzzy set on the space of 
real numbers R, whose membership function µA satisfies the following conditions: 

   (i) µA is a mapping from R to the closed interval [0, 1], 
   (ii) there exists a unique real number m such that 

      (a) /A(m) = 1, 
       (b) µA is monotone nondecreasing on (—x, m], 

       (c) µA is monotone nonincreesing on [m, +x). 
   We call the number m in (ii) the center of A, and denote the center of A by mA, 

similarly the center of B by mB, etc. We should notice that no continuity of the 
membership function of the fuzzy number is assumed, but the uniqueness of the center 

is required unlike the definition of Dubois and Prade [3].
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   We denote the set of all fuzzy numbers defined as above by. Since the member
ship function of the real number, i.e. the characteristic function, satisfies the conditions 
of Definition 2.1, it holds that R C  . The center of a real number m is trivially m 
itself. 
   An order relation among the fuzzy numbers is defined by the following. 

DEFINITION 2.2. For any fuzzy numbers A, B E , A B iff 

   (i) mB < mA, 
   (ii) there exists a real number c such that 

       (a) mB c<mA, 
       (b) RA(x) <_ I B(x) Vx < c, 

       (c) ,1A(x) > yB(X) Vx > c. 
B < A is, of course, defined by A B. 

   From the above definition we get the following elementary results. 

PROPOSITION 2.1. The order relation < restricted on R coincides with the usual 
order among the real numbers. That is, for any real numbers a and /3, a › /3 if a � P. 

   PROOF. It is trivial that if a › 0 then a >— 0, since the centers of a and /3 are equal 
to a and 03, respectively. Conversly, if a > [3 then the condition (ii) of Definition 2.2 
holds by taking any c E [/3, at 

PROPOSITION 2.2. For any a E R and any A E , 

(i) a'<A iff,uA(x) = 0 Vx < a, 

   (ii) A <a'iffuA(.x)=0 `dx> a. 
   PROOF. (i) Let a A, then a mA and there exists a real number c E [a, mA] 

such that 

µn (x) ? iA(x) Vx < c,(2.1) 

µn(x) µA(x) Vx > c,(2.2) 

Since a c, it follows from (2.1) that 

0=µ,(x)>_/A(x) Vx<a. 

Consequently tA(x) = 0 for Vx < a. 
   Conversely, let 1A(x) = 0 for Vx < a. then a mA and 

pa(x) = iA(x) Vx < a.(2.3) 

On the other hand it is trivial that 

0 = ya,(x) µA(x) Vx > a.(2.4) 

(2.3) and (2.4), together with the relation a mA, imply a A. 
   The statement (ii) can be proved similarly. 

   Putting a = 0 in Proposition 2.2 we get the following. 

   COROLLARY 2.1. For any A E we have
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               (i) 0<A iff uA(x)=0 Vx < 0,(2.5) 

                 (ii) A -< 0 iff ,uA(x) = 0 Vx > 0. (2.6) 

   REMARK 2.1. The right-hand statement in (2.5) coincides with the usual definition 
of a positive fuzzy number. Similarly the right-hand statement in (2.6) coincides with 
the usual definition of a negative fuzzy number. Therefore 0 < A (resp . A < 0) 
expresses that A is a positive (resp. negative) fuzzy number referring to the usual 
definition. 
   Now we shall show a fundamental property of our order relation which is 
indispensable for all optimization problems related to the order relation . 

   THEOREM 2.1. The set Y, of fuzzy numbers is a partial ordered set with respect to 
the order relation introduced in Definition 2.2. 

   PROOF. (Reflexivity) It is trivially true that A < A for any A E , since ,uA(x) = 
,uA(x)VxER. 

   (Asymmetricity) Let A and B be two fuzzy numbers satisfying both A < B and B 
< A. Then mA < mB < mA, which implies mA = mB. Consequently , a number c in (ii) of 
Definition 2.2 is uniquely determined as c = mA = mB for either of A < B and B < A. 

   Thus, from A < B we have 

uA(x) _> pB(x) Vx < c,(2.7) 

,iA(x) < µn(x) Vx > c,(2.8) 

and from B < A we have 

,uA(x) uB(x) Vx < c,(2.9) 

RA(x) > IB(x) Vx > c.(2.10) 

From (2.7)-(2.10) it follows that 

,uA(x) = [1B(X) Vx c. 

Since c = mA = mB, it holds that lA(c) = /B(c) = 1. Hence /A(x) = /B(x) Vx E R, 
which means A = B. 

   (Transitivity) Let A, B and C be fuzzy numbers, and let A < B and B < C. Then 
mA mB me and there exist a number c1 E [mA, mB] and a number c, E [mB, mc] 
such that 

I A(x) > in(x) Vx < c1,(2.11) 

uA(x) < ,un(x) Vx > cl,(2.12) 

RB(x) > pc (x) Vx < c2,(2.13) 

uB (x) < µc (x) Vx > c2.(2.14) 

Since c1 c2, it follows from (2.11)—(2.14) that 

RA(x) >_ pc(x) Vx < c1,(2.15)
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 !A(x) ,uc(x) Vx > c2.(2.16) 

In the case that c1 = c,, two relations (2.15) and (2.16) imply A < C. 
   We consider the case that et < c2. From the definition of a fuzzy number, µA is 

nonincreasing on [c1, +Dc) because mA < cI. Similarly, pc is nondecreasing on (—x, c,] 
because c, m8. Hence µA is nonincreasing and is is nondecreasing on the common 
interval [ci, c,]. From these monotonicities and (2.15), (2.16), we can choose a number 
C. E [c 1, c2] satisfying 

,uA(x) >_ ,uc(x) on [c1, e),(2.17) 

pA(x) ,uc(x) on (c, C2].(2.18) 

Combining four relations (2.15), (2.16), (2.17) and (2.18) we get 

11A(x) ttc(x) Vx < e, 

/A(x) < ,uc(x) `dx > c. 

Thus the relation A < C is proved. 
   At the end of this section, we like to emphasize that our order relation introduced 

here can be considered as a natural extension of the usual order among real numbers to 
the class of fuzzy numbers, owing to Proposition 2.1, Remark 2.1 and Theorem 2.1.

3. Fundamental Operations on L Fuzzy Numbers 

   DEFINITION 3.1. Let L be a function from R to R satisfying the following 
conditions: 

               (i) L(x) = L(—x) Vx E R, 

              (ii) L(0) = 1, 

                (iii) L(•) is strictly decreasing on [0, +x), 

                (iv) 3x0 > 0 such that L(x0) = 0. 

   Then the function L is called a shape function, and the point x0 in (iv) is called the 

zero point of L. 

   DEFINITION 3.2. Let m and a be any real numbers where a' 0. And let L be any 
shape function. A fuzzy number A whose membership function µA is expressed by the 
formula: 

,uA(x) = L(x------—am)  V 0, x E R(3.1) 
is called an L fuzzy number, where a V b = max(a, b). 

   By the definition in Section 2, m is equal to the center of A . We call a, the 
deviation parameter of A. 

   REMARK 3.1. According to the definition of Dubois and Prade [3], the deviation
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parameter of L—R fuzzy number is restricted to have only the positive value. In 
contrast with their's, the deviation parameter is enlarged to the extent of negative 
values in our definition. This is for the purpose of introducing, later on, linear 
operations on the family of L fuzzy numbers. 

    The graph of the membership function (3.1) concentrates around the vertical line x 
= m as al tends to zero. For a = 0, hence, we interpret the formula (3.1) as 

1 if x = m 
µa(x) = 0 if x:m ,(3.2) 

by considering the limit as tending J al to zero. The formula (3.2) is no other than the 
characteristic function of the real number m. Then we define anew the L fuzzy number 
as a fuzzy number whose membership function is given by either (3.1) or (3.2). For the 
sake of simplicity, we write the L fuzzy number A as 

             A = (m, a)L.(3.3) 

By the interpretation stated above, when a = 0 the L fuzzy number (m, 0)L is equal to 
the real number m. 

   Given a shape function L, let us denote the set of all L fuzzy numbers by 

FfL = {A = (m, a'L)I m, a E R}. 

Then we have R C -`L for every shape function L. 
    Now we shall introduce fundamental operations on L as follows. 

    DEFINITION 3.3. Let A = (m, a)L and B = (n, N)L be any L fuzzy numbers . Then 
the sum A ® B and the difference A O B are defined by (i) and (ii) respectively . 

   (i) A ® B = (m + n, a + /3)L, 

   (ii) A®B=(m—n,a-13)L. 
The product of A and a scalar A E R is defined by 

   (iii) A • A = (Am, Aa)L. 
   Next define an element 0 of L by 

              0 = (0, 0)L.(3.4) 

Then we have 

PxoPOSirioN 3.1. Let L be an arbitrary shape function . Then L forms a linear 
space under the operations introduced in Definition 3.3, and the element 0 given by (3.4) 
is the zero element of the linear space. 

   The proof of this proposition is very easy , and so is omitted. 

PROPOSITION 3.2. The fundamental operations restricted on R coincide with the 
usual operations among real numbers. Namely we have 

               (i) (m, 0)L ® (n, 0)L = (m + n, 0)L, 

               (ii) (m, 0)L O (n, 0)L = (m  n, 0)L,
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                (iii)  A  • (m, 0)L = (Am, 0)L. 

   The statements of this proposition are all direct from the definitions. 
   Our definitions of operations onL are considerably different from those of 

Dubois and Prade [31, which have been induced from a certain nonlinear binary 
relation. One will find later that the operations introduced in this paper are very 
convenient to develop subsequent various arguments. 

   Aside from the convenience of our operations, we have to give below some 
additional comments on the meanings of the operations. 

   Let A = (m, cr)L be any L fuzzy number where a 0. Let xO be the zero point of 
L. Define a new variable u by 

u =                                     x  m  

We consider first the case where a > 0. When we let the value of x vary continuously 
from m  axt) to m + ax°, the point (u, L(u)) of R2 moves from (-xe, 0) to (x0, 0) in 
the clockwise direction along the curve of the shape function L. Then we say that the 
fuzzy number A has the clockwise direction. In the case where a < 0, if we let the 
value of x vary continuously from mxo to m+ IIx0, then the point (u, L(w)) 
moves from (x0, 0) to (-x0, 0) in the counterclockwide direction along the curve L. 
Hence, in this case, we say that A has the counterclockwise direction. 

   Now, the graph of the membership function µA restricted on its support is expressed 
by the set 

           (x, L(x m)) m  I Crl x0 < x < m + IaI x0 .(3.5) 
We shall identify all sets obtained by translating the set (3.5) in the direction of x-axis. 
By cbA we shall denote the equivalent class obtained by translation of the set (3.5) in 
the direction of x-axis. 

   Let A = (m, a)L be an arbitrary L fuzzy number. By our operation, -A = (-m, 
 a)L. By virtue of the symmetricity of L, the graph of the membership function of -A 

restricted on its support is related to the graph of 1A as follows: 

(x, L (x +al-mxo < x <-m+al x01 
= (x, L (x a m)) m  I (VI x0 < x < m + I al x0}  (2m, 0). (3.6) 

Since, by our definition (fiA is invariant under the translation in the x-axis direction, 

(3.6) implies that 
(6

(-A) _ (6A•(3.7) 

We shall denote anew the equivalent class generated by the fuzzy number A by `601. 
then we have from (3.7) that 

`6IAI = (bA = (fi(-A)•(3.8)
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   When we like to show explicitly the direction of the fuzzy number in the formula 

(3.3), we write 

                                                     (3.9)                            A = (m, `bI,aI)c 

if A has the clockwise direction, and 

               A = (m, (61,44(3.10) 

if A has the counterclockwise direction. 

   PROPOSITION 3.3. Let A = (m, cr)L. Then it holds that 

             (i) if A = (m, (601)L, then -A = (-m, (601)L, 

             (ii) if A = (m, cbIA )L, then -A = (-m, (A1)L. 

   PROOF. Easy from our definitions. 
   Now consider an arbitrary L fuzzy number A = (m, a)L. Since L forms a linear 

space as stated in Proposition 3.1, it holds that 

A®(OA)=A®(A)=AOA=0.(3.11) 

One may perhaps feel strange in the formula (3.11) which shows that, although the 

graphs of µA and R(-A) are completely same except their locations, the sum of A and 
-A is equal to the zero element of -°L neverthless . This fact may be considered as 
reasonable, if one find in Proposition 3.3 that A and -A are in the oposite sides of the 
direction and so their directed graphs are cancelled out each other. That is, symbolically 
writing, when A has the clockwise direction we have from Proposition 3.3 (i) the 
following result of an addition: 

                         A = (m, AA4 
                                                           r-. 

                              -A = (-m , `~A1)L 

A O A = (0, 0)L 

   We get a similar result too in the case where A has the counterclockwise direction.

4. An Order Relation of L Fuzzy Numbers 

   In this section we shall apply the order relation defined in Section 2 to the family 
,TiLof L fuzzy numbers, and give a characterization of the order in terms of the 

parameters of L fuzzy numbers. Let L be an arbitrary shape function, and let x0 the 
zero point of L. 

   THEOREM 4.1. Let A = (m, a)L and B = (n, 13)L be L fuzzy numbers such that 
cq3 >_ 0. Then we have 

Im ? n,()             AB~I
a(31(mn)/x0.4.1 

   PROOF. It is direct from Definition 2.2 that if A ? B, then m >_ n. Therefore, in
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order to prove (4.1), it suffices to show the relation: 

                A                ›<=><— (m — n)/x0(4.2) 

under the assumption that m  >_ n. 
   Step 1: Find a necessary and sufficient condition for the inequality 

L (x m)LCxn)(4.3) 
        l/l 

to hold everywhere on (—x, n]. 
   Case 1: a > /3 > O. 

   Two variables (x — m)/a and (x — n)//3 are both nonpositive for Vx < n, and L is 
strictly increasing on (—x, 0]. Therefore, the inequality (4.3) restricted on (—x, n] is 
equivalent to 

(x—m)/a (x—n)1/3.(4.4) 

Let 

to = (an — /3m)/(a — /3).(4.5) 

Then we have to < n and the range of x satisfying (4.4) on (—x, n] is given by the 
interval [to, n]. 

   On the other hand, the unique solution of the equation 

               L(x a m) = 0 on (—x, m],(4.6) 
is given by xT = m — axo. In order that (4.3) holds everywhere on (—x, n], it is 
necessary and sufficient that the relation 

tocXT(4.7) 

holds. Finally, from (4.7) we get the relation 

               — /3 (m — n)lxo ,(4.8) 

as a necessary and sufficient condition to be required. 
Case 2: /3 > a > 0. 

   Solving (4.3) on the interval (—x, n], we get x to, where to is defined by (4.5). 
Since the relation to >— n holds in this case, we see that the inequality (4.3) holds 
everywhere on (— x, n] without any other condition to be added. 

   Case 3: a = /3 > 0. 
   It holds that 

             (x — m)/a-< (x — n)1 0 Vx n.(4.9) 

Since L is strictly increasing on (—x, 0], it follows from (4.9) that the inequality (4.3) 
holds for all x < n. 

   Step 2: Find a necessary and sufficient condition for the inequality
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              L(x—am)>L(x—n) (4.10)  /3 

to holds everywhere on [m + x). 

   Case 1: a > f3 > O. 
   Two functions (x — m)l a and (x — n)/f3 are both nonnegative for Vx >— m, and L is 

strictly decreasing on [0, + c). Hence, by solving the inequality (4.10) on [m, +x), we 
have that x >— to. Since to < m in the case, we see that the inequality (4.10) holds 
everywhere on [m, +X) without any other condition. 

   Case 2: /3 > cr > 0. 
   In this case, we have to m and the range of x satisfying (4.10) on [m, +x) is 

given by [m, to]. The unique solution of the equation 

L (x n) = 0 on [n, +x)(4.11) 
is xs = n + f3xo. In order that (4.10) holds everywhere on [m, +x), it is necessary and 
sufficient that the relation 

x, 5_(4.12) 

holds. Hence, from (4.12) we get the relation 

a — / ? —(m — n)Ixo(4.13) 

as a required condition. 
Case 3: a = /3 > 0. 

   It holds that 

0 (x — m)l a (x — n)l a Vx >_ m. (4.14) 

Since L is strictly decreasing on [0, +x), we get from (4.14) that the inequality (4.10) 
holds for all x > m. 

   Summing up all results above, we get the relation (4.1) when a and /3 are both 

positive. Especially when a = /3 > 0 it holds that 

A>B<=>m>n, 

which follows from Case 3. 
   Now, if a = 0 then the membership function of A is the characteristic function 

cm(-) of the real number m. 
Case 4: a = 0 and /3 O. 

   It is trivially true that 

                0=cm(x)<_L(xn)Vxn, 
                          /l 

because m >_ n. Hence we have only to find a necessary and sufficient condition for the 

inequality 

qx n) cm(x) Vx >_ m(4.15)
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to hold. 
   In the case where  03  > 0, the unique solution of (4.11) is x, = n + /3x0. Since (4.15) 

is equivalent to that x, m, we obtain the condition 

03 < (m — n)lxo.(4.16) 

Similary, in the case where 0 < 0, we get the condition 
—/3 < (m — n)Ixo.(4.17) 

Combining (4.16) with (4.17) we have that 

                     A}B~jm>n' 
                             l IP3I <_ (m — n)lx0. 

This relation is surely equal to (4.1) in which a = 0 is substituted. 
Case 5: a 0 and 0 = O. 

   In the same way as Case 4 we get 

                     A>B~jm>n' 
                             l lal (m — n)lx0. 

   Finally, in the case where a < 0 and 0 < 0, we can show the relation (4.1) in the 
same way as the case where a > 0 and 0 > 0. Thus we have completed the proof. 

   In order to derive a relation similar to (4.1) in the case where af3 < 0, we need to 
prepare the following. 

PROPOSITION 4.1. Let m, n, a and 0 be arbitrary real numbers. Then it holds that 

                 (m, cr)L > (n, /3)L(m, a)L > (n, —/3)L 
                                   (m, —a)L > (n, /3)L 

(m, — a)L > (n, —13)L. 

   PROOF. By the definition of the order, 

          (m, a)L > (n, 13)L 

m>nand 

                     n < 3c < m such that 

L(x a m)L (x n) Vx < c,(4.18) 
L (x—am)L (xn)Hx > c.(4.19) 

By the symmetricity of L, (4.18) and (4.19) are equivalent to 

              L\~x—am)<L (x------n)`dx < c,                                     —13 

and
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               L (x —am) >_ L (x------—13n)`dx > c, 
respectively. From these relations we have 

                (m, a)L % (m, l3)L (m, a)L ! (n, 

   The other statements can be proved similary. 

   THEOREM 4.2. Let A = (m, az)L and B = (n, f3)L be L fuzzy numbers such that 
c f3 < 0. Then we have 

fm n, A B I 
c +~~<_(m — n)lx0.(4.20) 

   PROOF. By Proposition 4.1 we have 

              (m, a)L (n, N)L (m, a')L (n, —13)L. (4.21) 

By the assumption we have cc(— f3) > 0. Applying Theorem 4.1 to the right-hand side of 
(4.21), hence, we get 

         (m,~)L(n, — fi)L<=>m~n'(4.22) la + PI < (m — m)lxo. 

Combining (4.21) with (4.22) implies (4.20), which completes the proof. 
   In the rest of this section, we shall give several rules of fundamental operations 

among L fuzzy numbers in the case where the order relation is participating. 

PROPOSITION 4.2. Let A = (m, cr)L be an L fuzzy number, and let 0 be the zero 
element of defined by (3.4). Then 

         (i) A 0<=>1m>>-0 crI <_ mix°. 

        (ii) A Om<_0 Ial (—m)/x0. 

         (iii) A ' 0 —A ' 0. 
          (iv) A ' 0 dA >_ 0, AA ' 0. 

          (v) A'0 VA<0, AA<0. 

   PROOF. (i) is direct from putting B = 0 in Theorem 4.1, and (ii) is derived from 

putting A = 0 first and then putting A in place of B in the same theorem. 
   (iii) Substitute —A for A in (ii), then 

                       —m 0 —`4 < 0
al mix°.                                                     (4.23) 

The statement of (ii) is obvious from (i) and (4.23). 
   (iv) From the right-hand side of (i), for any A  0 it holds that
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                 Am >_ 0 and AI a I = I Aal <_ Am/x0, 

which implies (Am, ).a)L 0 by (i) again. Namely 7A › 0. 
   (v) Let A › 0. By (ii), then, for any A < 0 it holds that 

—Am � 0 and A I aI >— Am/x0, 

hence 

                      Am 0 and 'Act,' �_ —Amlx°. 

This implies (Am, Aa)L < 0. Namely AA < 0. 

PROPOSITION 4.3 For two L fuzzy numbers A = (m, a)L and B = (n, N)L such 
that A } B, it holds that 

                    (i) AA AB, VA > 0, 

                    (ii) µA < ,B, V p < 0. 

   Proof. We prove only (ii), since (i) is proved similarly. 
   Let (.0 >_ 0. By the assumption we have 

m>nandla— PI <_(m—n)lxo. 

For µ < 0, then, it holds that 

µm <_ pn and I ,ua — µ/3I = —µI a — 131 >_ (µn — ,um)lxo. (4.24) 

Since 

(µa) (µ/) = µ2a0 � 0, 

(4.24) implies that µA pB by virtue of Theorem 4.1. 
   In the case where a(3 < 0, we have 

                  m > n and la' + /3I < (m  n) l xo. 

For p < 0, then, we have 

,um <pn and Ilia +µ/3I =µIa+13I >_(tin —µm)lx0.(4.25) 

Since (µa) (µf3) = p2af3 < 0, (4.25) implies ,uA s pB by Theorem 4.2. This completes 
the proof. 

   Define XL by the following: 

XL={AE LIA>0}. (4.26) 

   PROPOSITION 4.4. XL is a convex cone in the linear space ?L. Namely it holds that 

            (i) AE EJCL VA 0, 

                 (ii) A,BEJCL~A®BECL. 

   PROOF. (i) is no other than Proposition 4.2(iv) . 

    (ii) Let A = (m, a)L E XL and let B = (n, N)L E XL. By Proposition 4.2(i), then
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 we have 

                           m > 0, al < mixo, 

 and 

n 0, if l nixo, 

which yield that 

f m+n—>0,(4 .27) l a + /3I <_ l al + (m + n)lxo. 

Since A ® B = (m + n, a + /3)L, (4.27) implies by Proposition 4.2 (i) again that 
A ® B E JCL. This completes the proof. 

    PROPOSITION 4.5. Let A = (m, a)L and B = (n, /3)L. Suppose that 43 � 0. Then 

A›-B<=>AOB>-O,<=>BOA 0.(4 .28) 

   PROOF. By virtue of Theorem 4.1 it holds that 

ABl a —~~:5(m— n)/xo.(4.29) 

Recalling that A e B = (m — n, a — 13)L, by Proposition 4.2(i) we have 

             A O B> d~j
a—ncOm nlx.(4.30)                        ll/3J(n)Ix. 

The left half of (4.28) is obvious from (4.29) and (4.30). 
   Next, from Proposition 4.2 (iii) it follows that 

AOB> O.(4 .31) 

Since —A O B = B O A, (4.31) is equivalent of the relation 

AOB> 0<=>BOA 0, 

which is the right half of (4.28). 

PROPOSITIoN 4.6. Let A = (m, a)L and B = (m, /3)L. Suppose that a/3 < 0. Then 

AeB~0~A~B.(4 .32) 

   PROOF. By Proposition 4.2 (i) we have 

               A O B > O <=>I 
a _ f3(m  n)lx.(4.33) 

                                                             0 In the case where /3 < 0 < a, we have 

a + /31 + 1131 = a — /3 = cr  /31. (4.34) 

Frome (4.33) and (4.34) it follows that
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          m —n04
.35            AOB,}9~l a+/3I(m — n)lxo() 

The right hand side of (4.35) is equivalent to the relation that A  > B by virtue of 
Theorem 4.2. This proves (4.32) in this case. 

   The case where a < 0 < /3 is proved similarly. 
   The following three propositions can be proved easily by using Theorem 4.1 or 

Theorem 4.2, ans so their proofs are omitted. 

   PROPOSITION 4.7. Let A = (m, ce)L, B = (n, /3)L and C = (t, y)L, where a > 0, 
> 0 and y > 0. Then we have the following: 

   (i) If /3 >_ y, then 

A®C>B<=>A>BOC.(4.36) 

   (ii) If a >_ y, then 

A>B®C,#>AOC>B.(4.37) 

   PROPOSITION 4.8. Let A = (m, a)L, B = (n, /3)L and C = (C, y)L, where a > 0, 
/3 > 0 and y > 0. Then we have the following: 

   (i) If y <_ min{a, /3) or max{a, /3) <_ y, then 

A> B<> A e C> B e C. (4.38) 

   (ii) If/3< y< aora<,r</3,then 

A> B A e C> B e C. (4.39) 

   PROPOSITION 4.9. Let A = (m, a)L, B = (n, (3)L and C = (C, y)L, where y > 0. If 
any one of the following conditions (i)—(v) is satisfied, it holds that 

A>BA®C>B®C.(4.40) 

             (i) cr > O and /3 > O. 

             (ii) /3 < 0 < a and /3+ y < 0. 
             (iii) a < 0 < /3 and a + y < 0. 

             (iv) a<0, /3<0, a+ y<O and /3+ y<0. 

             (v) a<0, /3<0, a+ y> 0and/3+ y> O.

5. Applications to Fuzzy Linear Programming 

   For every shape function L, we define the subset G by 

,GIPt = {A = (m, a)L lm E R, a >_ 0}. 

Namely, each member of 51 is an L fuzzy number having a nonnegative deviation 
parameter.
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   We shall introduce several real constants and fuzzy numbers needed for the fuzzy 
linear programming model to be described. 

    Let c1, c2, ... , c„ be real constants. Let L1,  . . , L„, be m shape functions, and 
for each i (1 i <_ m) let xi0 denote the zero point of the shape function Li. For each 
i(1 < i m), let Ail, Ai2, ... , Ai„ be n Li-fuzzy numbers such that 

= (mij, aij)L, E j = 1, 2, ... , n. (5.1) 

In addition, another set of fuzzy numbers are given: 

Bi = (ni, f3)L,, E i = 1, 2, ... , m. (5.2) 

In what follows, real constants {ci} and shape functions {Li} are arbitrarily given, and 
fuzzy numbers {Aij}, {Bi} are arbitrary so far as their deviation parameters satisfy the 
nonnegativity. 
   Now we consider the first problem of the fuzzy linear programming given by the 
following: 

,1 

          minimize E cixi(5.3) 
i=1 

        (FLP1) subject to x1Ai1 ® x2Ai2 ®. ® x,,Ain Bi, (5.4) 
i= 1, 2, ... ,m 

xj>>-0, j = 1, 2, ...,n.(5.5) 

By the definition of the operations, we have 

x1Ai1 ® x2Ai2 ® ... ® x„Ai,, 

= E x1(m 1, aij)L, 
j=1 
              ,1n 

= E, mijxj, E CYijxj L,. 
                      j=1j=1 

For {x1} satisfying (5.5), it holds that 

E aix1 > 0, i = 1, 2, ... , m, 
j=1 

by virtue of (5.1). We have also that f3i >_ 0 Vi by (5.2). Then the constraint (5.4) is 
transformed by Theorem 4.1 as follows. 

     (5.4)CEmijxj, Ea'ijxj) L, < (ni,Ni)L, 
     11 

                         ~` n1 —L .~ mijxj ~ 0,(5.6) 
 j= 1 

 //~~,1 Eaijxj1I < ni E mijxj /xio. (5.7) 
   =1~    IJ=l 

Rewriting (5.7), we obtain the following theorem. 

   THEOREM 5.1. The problem (FLP1) is equivalent to the problem:
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      minimize  E  cjx1 
i= 1 

        subject to 

E mijxj < ni, i = 1, 2, ... , m 
j=1 

(LP1) 11 (mi1 + xioaij)xj c ni + xi0 1, 
j=1 

n 

E (mij — xioaij)xj . ni — xiol3i, 
j=1 

i= 1, 2, ...,m 

       xj � 0, j = 1, 2, ... , n.

   The problem (LP1) is no longer a fuzzy problem, but is a linear programming 

problem in the usual sense. Therefore, the above theorem shows us that the fuzzy 
problem (FLP1) can be solved by applying the usual method of the linear programming 
to (LP1). 

   Even if, in the constraint (5.4), we adopt the order relation introduced by Dubois 
and Prade [5] or Prade [7] in place of our order relation, the fuzzy problem (FLP1) can 
be transformed to a nonfuzzy linear programming problem as shown in [2, 6, 8]. 
However, the nonfuzzy linear program transformed by adopting their concept does 
depend on the choice of the level for the fuzzy coefficients in the constraint of the 
original problem. On the other hand, the problem (LP1) is obviously not concerned 
with any level value. Namely, in our case, the transformation from the problem to the 
nonfuzzy one can be accomplished without help of the level value. 

   The second problem we treat is the case where the coefficients of the objective 
function in (FLP1) are also fuzzy numbers. Let L0 be an arbitrary shape function 
having the zero point x0, and let C1, ... , C„ be n L0-fuzzy numbers such that 

Ci = (li, Yi)c.,, E 97L,,, i = 1, 2, ... , n. (5.8) 

Let {A11} and {Bi} be the same as in the problem (FLP1). 
   Define the second problem of the fuzzy linear programming as follows: 

T1 

          minimize E xiCi(5.9) 
i=1 

                       subject to     (F
LP2)() x1Ai1E.. x2Ai2 ED• ED x11Ai11< Bi,(5.4) 

 ...,m 

xj>_0,j= 1, 2, ...,n.(5.5) 

In the above problem, the minimizing (5.9) is interpreted to minimize with respect to 
the order relation defined in Section 2. Of course, the smallest solution does not 
necessarily exist, because the order relation is a partial order. 

   We define the set of feasible solutions of (FLP2) by
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                                      x1,411®x2Ai2 ®• .. ® XnAin < B,, 
       S =x = (xi,x2,... ,x„)Ti = 1, 2, ... , m . 

x., �0,j=1,2, . . . , n 

As shown in the case of (FLP1), x = (xi, x2, ... , x„)T belongs to the set S if the 
following inequalities hold: 

„ E (mij + xiocrif)x1 < ni + xiofii, 
        1=1i = 1, 2, ... , m. 

„ E (m1 — xioai1)x1 ni — xio0i, 
i=i 

xi �0,j=1,2, ...,n. 

Hence it is trivial that S is a convex polyhedron in R'1. 
   Let 

C = (CI, C2, ... , C,)T, 

where {Ci} is given in (5.8). 

   DEFINITION 5.1. A feasible solution x* E S is said to be an efficient solution of 

(FLP2) iff x* satisfies the following relation: 

xES,C'x<Cx*~Cx=CTx* . (5.10) 

Finally we get: 

   THEOREM 5.2. To find an efficient solution to (FLP2) is equivalent to solve the 

following problem: 

              Find a point x* = (xi , xz , ..., x *)T E S satisfying that 

                   x = (x1, x2, ...,x„)T E 5, 

n 

    (LP2) E li(x* — xi) � 0,(5.11) 
i=1 

     11II 

Eyi(xi*                          — xi) < E li(xt — xi)/xo, 
i—ini=1 

E li(x * — xi) = 0. 
   i=1 

   PROOF. By Theorem 4.1 it is easily shown that (5.10) is equivalent to (5.11). 
   Owing to Theorem 5.2, the fuzzy problem (FLP2) as well as (FLP1) can be 

reduced to a nonfuzzy problem, which is described by only a set of linear inegualities . 
However, in contrast with the case of (FLP1), the reduced problem (LP2) is not a 
linear programming problem in the usual sense. The problem seems to have a similarity 

with the multiobjective linear program. How to solve the problem (LP2) remains open 
in the present paper.
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6. Concluding Remarks 

   In this paper we have restricted the fuzzy number to the one which is symmetrical 

about its center, that is, the L fuzzy number given by Definition 3.2. That is only for 

the sake of the symplicity of arguments. Similar results can be obtained by following 

the manner of this paper, even when we admit unsymmetrical ones into the class of 

fuzzy numbers. 

   Among the various kinds of results obtained from Section 2 through Section 4, 

only some of them have been used for the fuzzy linear programming problems presented 

in the last section. For instance, Theorem 4.2 has not been needed for the application 

to the problems. Many of the results, including Theorem 4.2, which have not been 

utilized in Section 5 are to be substantially utilized to develop a theory of nonlinear 

fuzzy programming in the author's paper in preparation.
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