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STRONG CONVERGENCE OF AN UNBOUNDED 

STOCHASTIC APPROXIMATION ALGORITHM 

     UNDER GENERAL CONDITIONS

        By 

Masafumi WATANABE*

                    Abstract 

   Under general conditions on the observation processes the almost sure 
convergence properties of an unbounded and nonlinear Robbins—Monro 
type stochastic approximation algorithm are investigated.

1. Introduction 

   In the classical studies of stochastic approximation, essentially it was assumed that 
the observations are independent. But many practical applications involve the use of 
correlated data. Consequently classical stochastic approximation convergence results 
are often not applicable. Recently, several efforts have been made to get rid of it, for 
example it can be replaced by mixing conditions or ergodic conditions. Borodin [1], 
Fritz [3], Gyorfi [3], Kushner and Clark [4], Ljung [5, 6] investigated the case when the 
observations may not be independent. For linear regression Fritz [2] and Gyorfi [3] 
formulate a completely deterministic problem, by which the strong consistency can be 
deduced if for the observations the strong law of large numbers is applied, therefore 
the conditions of strong consistency of linear stochastic approximation are as general as 
the conditions of the strong law of large numbers. Thus the effects of the randomness 
and the iteration were separated. By the similar motivation and for nonlinear regression 
Ljung [6] and Kushner and Clark [4] have obtained interesting results under the 
assumption that the algorithms are bounded. 

   Generally the bounded condition is not easily established for the family of stochastic 
approximation algorithms. In this paper we shall investigate the strong convergence of 
an umbounded and nonlinear Robbins-Monro type stochastic approximation algorithm 
under general conditions on the observations.

2. The Robins—Monro Stochastic Approximation Algorithm 

   Throughout the paper H denotes a real separable Hilbert space with an inner 

product (• , •) and a norm I I , and 0 denotes the null element of H. Let (f', . , P) be a 
probability space. 
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   Let M(x) be a Borel measurable transformation from H into itself. For each 
n >_ 1, let a function Y„(x, w) which takes value in H and is defined for (x, w) E H x ,f2 
be measurable with respect to 33 x , where .31 is the Borel field of H. Then we 
consider the following Robbins-Monro stochastic approximation algorithm for finding 
the solution of the equation 

            M(x) = O.(2.1) 

Algorithm: 

X„+i=X a0' n=1,2,...(2.2) 

where X1 is a constant element in H, Y„ = Y„(X„(w), co), w E S2 and {a„} is a 
sequence of positive numbers. Throughout the paper let us put 

Z„(x,w) = Y„(x, co) — M(x), n = 1, 2, ... , (x, co) E H x D. (2.3) 

Then (2.2) can be rewritten the following 

X„+1 = X„ — a„{M(X„) + Z„}, n = 1, 2, ... ,(2.4) 

whereZ„ = Z„(X„(w),(w), w E S~. 

   Fritz [2] and Gyorfi [3] have investigated the above problem under the conditions 
that M(x) = Ax + b and Y„(x, co) = A„(w)x + b„(w), where A, A„ are bounded linear 
operators and b, b„ are elements in H. And the a.s. convergence of process (2.2) has 
been discussed under the assumptions that A,',s and b;,s arithmetic means converge to A 
and b respectively. Kushner and Clark [4] and Ljung [6] have investigated more general 
case and have given a.s. convergence results. In [4] and [6], they assumed that 

supllX„II < x a.s..(2.5) 

Condition (2.5) appears to be a reasonable condition but is not easily established for 
the family of algorithms represented by (2.2). In this paper we note that condition (2.5) 
will not be assumed.

3. Preliminaries 

   In this section we shall give two lemmas which will be needed the proof of the 
theorem in the section 5 (Theorem B). 

   LEMMA 1. Let {a„} and {v„} be sequences of real numbers such that 

    (i) a„>0,n= 1, 2, ... , lima„=0, 

             a„ =x,sup I a,71—a„+1I < x 
   n=1n 

   (ii) v„>_0,n= 1, 2, ... , Ev„<~.
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And let  {x„} be a sequence of nonnegative numbers and {w„} be a sequence of real 
numbers which satisfy the following enequality 

    (iii) x„+i < (1a„ + t'„)x„ + w,,, n = 1, 2, .... 

Suppose that let T be any positive number then there exists a positive number WT such 
that 

k 
           sup max E w; WT, (3.1) 

n „=k<,n(rt,T) ,=„ 

where 

k 

               m(n, T) = max{k E a; T}. (3.2) 

Then it follows that there exist two positive numbers To and W11 such that 

sup x„ < (WT + 1) W0. (3.3) 

   PROOF. It follows from (i) that there exists a positive integer N such that 

             (1 — a; + v1) = (1 — a1) {1 + (1 — a1) tv1} 
                         (1 — 0(1 + 2v1) for all i > N.(3.4) 

Let us put 

                                                  I! 

                     Fl(1—a;)(1+2v1) ifnm                 A(m, n) _;_,,, 
             1if n = m — 1.(3.5) 

Condition (ii) yields that there exists a positive number v such that 

1< [1(1+2v1)<_-1., for all m>_1.(3.6) 

Hence, by (3.5) and (3.6) we have 

            A(m, n)vexp (_ai)for N m<n.(3.7) 
Let us define To > 0 by 

a„ <_ T014 n = 1, 2, ...(3.8) 

vlexp (T012) � 2.(3.9) 
Then, by (3.2) we have 

,n(,,,7,)-1 

E a, TO ,n> —N(3.10)
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and 

 m(n  .T))+ 

E ai> To , n N. (3.11) 
i=n 

Further, (3.8) and (3.11) imply 

ln(n,TT)— 1 

E a, > To  a,n(n, To)  am(n,Tn) i>211 , n >_ N. (3.12) 
i=n 

Hence by (3.10) and (3.12) we obtain 

                               T(1In(n,711)— 1 
ai T0, , n >_ N.(3.13) 2 

i=n 

And we also have from (3.9) and (3.13) that 

A(n, m(n, To)  1)<_2-1, n>N.(3.14) 

If (3.1) holds then we can easily shown from (i) and (ii) that 

k _ 

          sup max E 1viA(i + 1, k) < (1 + 2-AN)W7,(3 .15) 
n�lv n,k<rn(n,To) i=n 

where 

A N = sup {E ai 11 (1  aj)+ 2 E v„• 
              n?rN j=i+1n=1 

We note that (i) yields A N < x. 
Next we shall define a subsequence {x,,,} C {x„} by the following way. 
Let no = N and nr = m(n,-1,T0), r = 1, 2, .... 
Then we have from (iii), (3.14) and (3.15) that 

n1-1 

xi1 < A(no, n1  1)x„ + E w1A(i + 1, n1  1) 
(=n11 

<xN+2(1+VAN)W7 , 

X„<-11x„1+ (1 + vAN)W7n 

X + 2(1 + v A N) W7 . 

Hence we have 

sup x„, <_ xN + 2(1 + v A N)WT1,(3.16) 

Let n be any integer such that n >_ N. Then there exists positive integer r such that 

nr~n<n,+1. 

Hence we have from (iii), (3.7) and (3.16) that
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k 

X„ A(nr., n — 1)x,,, + max E wiA(i + 1, k) 
n.~k<n,.+ i=n,. 

                vx„ +(1+vAN)W, 

3v(1 + vAN)(XN + WT„), nr <_ n < nr+t• 

Hence we have 

sup x„ (1 + WT) WO, 

where W0 = max{317(1 + vAN), 3v(1 + vAN)XN} and xN =max{x1, x~, ..., xN}. 

                                                                                    Q.E.D. 

   LEMMA 2. Suppose that the conditions of Lemma I hold but with the following 
condition replacing (3.1), 

for any positive number T it follows that 

k lim max E wi = 0.(3.17) 
                                        n->7 jj<k<,n(n,T) i=n 

Then it holds that 

lim x„ = 0.(3.18) 

   PROOF.It follows from Lemma 1 that there exists positive numbers W1 such that 

supx„ < W1, 

where W1 = (1 + WT()W4. 
Let N be a positive integer which is given in the proof of Lemma 1. Let s be any real 
number such that 

                             0<E<2. 

And let us define a positive number T1 by the following 

         2 T1(3.19) 

v/exp(T1/2) < s,(3.20) 

where v is also given in the proof of Lemma 1. 
By the same arguments of (3.14) and from (3.20) we have 

           A(n, m(n, Tt) — 1) 17exp(—T1/2) < E < 1/2, n > N. (3.21) 

And (3.17) implies that there exists a positive integer N1 = N1 (E, T1) >_ N such that 

k 

                  sup max E wi < E. 
n?N, n�.k<m(n,T1) i=n
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Hence, by the same arguments of the proof of (3.15) we have 

   k_ 

            sup max E wiA(i + 1, k) 5_ E(1 + v A O. (3.22) 
n?N1 nk<nt(n,T1) i=n 

Next we shall define a subsequence {x„,} C {x„} by the following way. Let us take no = 
N1 and 11,. = m(nr_, , T1), r = 1, 2, .... Since N < N1 and sup x„ < W1 we have from 

(3.21) and (3.22) 

              x„~<E(Wl+1+VANi)<2E(W1+1+vANi). 

X„1x„ Z +E(W1+1+vANi) <2E(W1+1+VAN). 

Hence we obtain 

sup x„ < 2E(1 + W1 + vANI).(3.23) 

r For any n > nl = m(N1, T1) there exists a positive integer r such that nr < n < nr+.1 
Then it follows from (iii), (3.22) and (3.23) that 

k X„ A(nr, n)x,, + max > wiA(i + 1, k) 
i=n 

<vx„ +2E(1+W1+vANi) 

<3E1)(1+W1+vXN,). 

Hence we obtain 

lim x„ < 36)-(1 + W1 + v A Ni). 
„-> x 

                                                                                    Q.E.D. 

   Let {a„} and { w„} be sequences of real numbers which are given in Lemma 1. 
And we suppose that 

a,t>an+1 ,n= 1, 2, ... 

and 

a'„ = a,ty,t , n = 1, 2, .... 

Then we shall consider the following four conditions. 

     I. E. a„y„ converges, 
n=1 

,t 

II. lim a,t > yi = 0, 
           n—~x i= 1 

,t ,t 

III. lim E ai fl (1  ai)yi = 0, 
n~x i= 1 1=i+ i
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   IV.  lim max E a1y; = 0, 
11-->1 1=,, 

where m(n, T) is defined by (3.2). 
   Since a„ 0 as n —* x and by using Kronecker's Lemma we have 

I II. 

Noting sup j a,r t — a ;,+11 < we have 

                             II III. 

And we can also show that 

                             III IV. 

Hence it follows that 

I II III IV. 

   Next we suppose that 

a„ = n-t, n = 1, 2, .... 

Then we can show that 

(n — 2)eT m(n,T)5_ne', n 2 

Hence we can prove that 

IV II. 

And we can also prove that 

                            II 0 III. 

In this case it follows that 

II III 0IV. 

   Let us suppose that 

a„ = n y„ = n-fi, n = 1, 2, ... , 

where 0 < cv, /3 and a + /3 = 1. In this case it is easily seen that I and II do not hold. 
And we have 

                  m(n, T) {nt-" + (1 — cr)T}(1") 

Hence it follows that 

m(n,T) m(n,T) 

E aiy; = E i-1 (1 — cr)-' log {1 + (1 — cr)Tn't}. 
      i=n i=„ 

Hence IV holds.



116M.  W r:\N:»E

   Thus condition IV can be considered more general than the other conditions I to 

III.

4. Assumptions 

   Let 0 E H be the solution of the equation (2.1) and let M(x), {a,l}, {X„}, {Y„} 
and {Z„} be given in the section 1. 
Moreover let S/0 be a subset of SZ such that 

f1O E s4 and P(520) = 1. 

   We make the following assumptions. 
   AO: There exists a sequence of positive random variables {811(w)} such that 

   (i) "„(w) > 5„+I(w), n = 1, 2, ... and litn b„(w) = 0, w E S20, 

   (ii) sup (511(w)o „+I (w) < x, co E f10, 
11 

   (iii) sup 5„(w)IIX„(w)II < x, Co E 52o. 

   Al: {a„} is a decreasing sequence of positive numbers. 
   X7_ 

   (i) Ea;7,<pc, Ea11 =x, 
      11=111=1 

   (ii) sup Ia,7 1 — a7,1_,11 < x• 
/1 

   A2: There exists a positive constant C such that 

IIM(x)II C(IIx4I + 1), x E H. 

   A3: inf (M(x), x — 0) > 0 for any 0 < E < 1. 
E<1Iz-O <f E 

   A4: There exists a sequence of nonnegative random variables { a„(w) } such that 

   (i) IIZ,1(x,w)II < a11(w)(1IxII + 1), n = 1, 2, ..., (x, co) E H X Q0, 

   (ii) E a a,`',(w) < x, w E ffl. 
„=I 

   A5: Let {b„(w)} be given in A0. And there exists a nonnegative random variables 
/311(w) such that 

   (i) sup a,l0,r 3(w) E Zi(x, co) fi (w)(IIxII + 1), (x, co) E H x C/0, 
„i= I 

11 

   (ii) sup a„45,7 3(w) E {Z1(x, w) — Zi(.Y, co)} 130(w) IIx — YII 

(x, co), (v, co) E H x fl),
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  A6: 

(i) E a„b„(w) < x, w E f211, 
n=1 

(1i) E a„6„(w) ai,(w) < x, (0 E no. 
„=1 

   Assumptions AO to A6 will be used in Theorem A which will be given in the next 
section. And the following assumptions BO to B6 will be also used in Theorem B. 
Let m(n, T) be defied by (3.2). 

   BO: Assumption AO holds. 

B 1: Assumption Al holds. 

   B2: Assumption A2 holds. 

   B3: There exists a positive number A such that 

(M(x), x — 0) ?AIlx— 0112,xEH. 

   B4: Assumption A4 holds. 

   B5: For any positive number Tthere exists a positive random variable fj'(w) such that 

  (i) sup max E ai(5 (w)Zi(x, (0) f3r(w)(II xll + 1), (x, w) E H x no, 
n „k<ni(,,.T) i=n 

   (ii) sup max E aiO 2(w){Zi(x, w) — Zi(y, w)} 
„ „~k<nt(„,T) i=n 

f3,{ (w) II x — y, (x, w), (y, w) E H x [1, 
,n(n,T ) 

B6: sup >, aiai(w)< Do, (x,w)EHx[la. 
„ i=„ 

   REMARK. Let us assume that 
A'O: there exist a sequence of nonnegative random variables {y„(w)} and a 

sequence of positive random variables {b„(w)} such that 

  (i) A0(i), (ii) hold 

   (ii) (0 — x, l'„(x, w)) • y„(w) (II xll + 1), 
n=1,2, ... ,(x,(0)EHXno, 

   (iii) E a„6„(w)y„(w) < x, w E S/11. 
11-1 

Then it follows from Lemma 1([9]) that A0(iii) holds.
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5. Results 

   In this section we give two theorems (Theorems A and B) which are the main 
results of this paper. 

   THEOREM A. Assume AO to A6. Then it holds that 

lim 1X„ — BI = 0 a.s. .(5.1) 
11->I 

   PROOF. Without loss of generality we can assume 6 = O. Here and latter, we take 
f3 = O. and K denotes positive random variables which are not necessarily the same. 

   By virture of the algorithm (2.2) we obtain 

II X„+ II2 = II X,, I'  2a11 (X M(X„) + Z„) + a' I M(X„) + Z„ (5.2) 

Substituting A2 and A4(i) into (5.2) gives 

II X,1+i II2 5_ (1 + Ka,,, + Ka ,2,a,2,) I X,I II2  2a„ (X„,M(X„) + Z„) + Ka (a + 1). 
                                                      (5.3) 

First we shall show that 

E a„ (X,,, Z„) converges a. s.. (5.4) 
11= 

/1 

Define S„(x) = a„ Z;(x), S0(x) = 0 and 

,1 

                   W(m, n) = E a; (X1, Z;), n _< m. 
=,,1 

Since Z;(x) = a; 'S;(x) — a ; ± 1 S;_ 1(x), W(m, n) can be rewritten the following formula 

11 

W(m, a) = > (X1, Si(Xi) — a;a;-~i S; i (X;) ) 
=11T 

                  = W1(m, n) + W2(m, n) + W3(m, n), m < n, 

where 

11 

W I (m, n) = E (X1, Si(Xi) — S1_ 1(X;)) , 

                                                  11 

               W2(m, n) = E(Xi, (1 — a;a; i)S; i (X; I) ) 
_ ,11 

and 

11 

W3(m, a) = E (Xi, — S;_ 1(X;)}) • 
=111 

Then we have
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J7 

I W1(m, n)IE (X;  X,+1, S;(X;)) + I (X, , SnJI(Xm-I))1 + (X,,, Sn(X,))I 
;=Jn 

E I I S;(X) I I.11 X1 — X1±1 I I+ II X))t IIlsi)~1(XJ)1I)I I+ I I X)) I I I I S))(X,,) I I• 
=n7 

Since X1+1 = X,  a,Y,, it follows from A5 that 

J) 

IWI(m, n)I < E [30aa1O (IX ill + 1) IY111 + + 1) IIX,,J I 

+f31 1(IX,,I + 1) IX))II• 

A2 and A4(i) imply 

I Y;II Ka,( IX;II + 1), i = 1, 2 ....(5.5) 

Hence it follows from (5.5) and AO that 

I W1(m, n)I < Ka,b,Ck, + o,n-1 + (5n 
=m 

Hence by A0(i) and A6(ii) we obtain 

lim IW1(m, n)I = 0 on Do. 

Since {a„} is decreasing and 1  a;a;_'1 = a,(a; '  a;_'1), it follows from AO and A1(ii) 
that 

J) 

                      W2(m, n)( K E a1_ 1 c5;-1 
= ))) 

Hence A6(i) implies 

lim I W2(m, n) I = 0 on no. 
                                                       nl ,J)-~x 

It follows from A5(ii) that 

)) 

I W3(m, n)I < E I >ajoI IIX;II II Y;-III 
;=in 

Hence by AO and (5.5) we obtain 

I W3(m, n)I < K E a;-1 ~;-1 ~; 

Hence A6 (ii) implies 

                   lim 114/3(m, n)I = 0 on Do. 
in,i)-~~ 

Thus (5.4) has been proved.
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   Next we shall show (5.1). Define U„ = 2a„ (X,,, M(X„)), V„ = Ka;(cr + 1) and 
W„ = 2a„ (X„, Z„) . Then (5.3) yields 

IX„--E II' (1+KV„)IIX17I' U„+KV„—W„. 
   Jr 

Noting U„ >_ 0, V„ < x a.s., W„ converges a .s. and using the following 
It= I11= 1 

inequality 

111111 

0~ 11X11,112 IIX1112fl(1+KV;)— EU1 1Z (1+KV;) 
i=11=1j=i+I 

1111 

                  + E (KV; — W1) II(1 + KV;), 
1=1j=i+ I 

we can obtain 

                sup IIX„II < x a.s., (5.6) 
11 

and 

E a„ (X„, M(X„)) < Dc a.s.(5.7) 
„=I 

Hence it follows from Al(i) and A3 that there exists a subsequence {X„,} C {X„} such 
that 

lim IIX„hII = 0 a.s. 

Moreover (5.2) yields that 

Il—I „-111-1 

111X//112   I I X,n 121 �IIYiII'+ EU;+ E W; . 

We note that (5.5), A1(i) and A4(ii) imply 

Eal11Y„112<x a.s.. (5.8) 
11=1 

Hence (5.4), (5.7) and (5.8) imply 

lim IIIX„II2  IX„,1121 = 0 a.s.. 

Hence (5.1) has been proved. 

                                                                                    Q.E.D. 

   THEOREM B. Assume BO to B6. Then (5.1) holds. 

   PROOF. Substituting B3 into (5.2) we obtain 

IIX„+ 1 12 (1 — 22„a„ + Ka,,, + Ka a~) 1X„ 12 — 2a„ (X„, Z„) + Ka (cY + 1) . 
                                                      (5.9)
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First we note that B1 and B4(ii) yield that 

m(n,T) 

               lim sup >, a (cr, + 1) = 0 on no(5.10) 
                        n-7 iz i=n 

for any T > 0. Next we shall show that, for any T > 0 there exists a positive random 
variables W,(T, w) such that 

      sup max E ai (Xi(co), Zi(Xi(w), w)) Wo(T, w), w E no. (5.11) 
n n~k<,n(n,T) i=n 

Define Sk,(x) = E ai(512Zi(x),k>n and W(n,k) = E ai(Xi,Zi),k>n + 1. 
                     ;=n;=n+ 1 

Since Zi(x, co) = Zi(x) = aT 1 o {S;,(x) — Si„-1(x)}, i > n + 1, W(n, k) can be rewritten 
the following formula 

         W(n, k) = W1(n, k) + W,(n, k) + W3(n, k), k > n + 1, 

where 

k 
Wl(n, k) = E (Xi, oS,(Xi) — (Xi_ )) 

i=n+ I 

W,(n, k) = E(Xi,o 1{S;; 1(Xi-1) — Sin 1(Xi)} ) 
1=11+1 

and 

             W3(n, k) = E(Xi,  (5) Sin-1(X1-1)}) 
1=/7+1 

Then we have 

k-1 

01(n, k)I E (xi  Xi+1, oS;,(Xi)) + I (Xn+1, a2s;r(Xn))I 

+ I(Xk, (5kS,(Xk)) I , k > n + 1. 

Since X;+1 = Xi — aiYi, it follows from BO, B5(i), (5.5) and B6 that there exists a 
positive random variable W 1(T, w) such that 

k 

            max IW1(n, k)I K max E 
n-k<m(n,T)n<k<m(n,T) i=n 

W1(T) on no. 

Since sup On_ 1 S,7 1 < cc, it follows from (5.5), B0(iii) and B5(ii) that there exists a 

positive random variable W,(T, co) such that 

                 max I W2(n, k) I < W2(T) on [1g. 
nk<,n(n,T) 

And we also obtain from BO and B5(i)
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max W3(n, k) 1 W3(T) on fIo. 
, I ) 

Where W3(T) = W3(T, (o) is a positive random variable. 
Hence (5.11) has been proved. Noting B1 and B4(ii) and applying Lemma 1 to (5.9) it 
follows from (5.10) and (5.11) that 

sup l I X„ < x on R).(5 .12) 

It is easily seen from B5(i), (ii) that there exists sequence of positive random variables 
{13„(w)} such that 

lim 13„(w) = 0 , co E Do,(5 .13) 

     max E a1Zi(x, w) < /3„(w)(114 + 1), (x, co) E H x Do. (5.14) 
n<k<m(n, I') i=n 

     maxE ai {Z, (x, co) — Zi(y, (o) } /3„ (w)11 x — y , (x, (o), (y, (o) E H x fZ). 

                                                    (5.15) 
Hence using (5.12) to (5.15) and by the similar arguments of the proof of (5.11) we can 
show that 

k 
             lim max E ai (Xi, Zi) = 0 a. s..(5.16) 

n— c n,_k<,n(n,7') i=n 

Hence, by (5.12) and (5.16) and using Lemma 2 we obtain (5.1). 
                                                                                    Q.E.D. 

   REMARK. Let us consider the following assumption. 
   B5: For any T > 0 there exists a sequence of positive random variables {/3„((o)} 

such that (5.13) to (5.15) hold. 
   And suppose that the conditions of Theorem B hold but with sup IX„(w)11 < x, 

w E (1O and B'S replacing BO and B5, respectively. Then (5.1) also holds.
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