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ASYMPTOTIC PROPERTIES OF SMOOTHED vs. 

UNSMOOTHED CONDITIONAL DISTRIBUTION 

       FUNCTION ESTIMATORS*

By 

K.L. MEHRA, Y.S. RAMA KRISHNAIAH** and M. Sudhakara RAO**

                    Abstract 

Let {(Xi, Y1) : i = 1, 2, ... } be a sequence of independent identically 
distributed random vectors in 12 with an absolutely continuous distribution, 
and let G.J.) denote the conditional distribution function of Y1 given X1 = .v, 
assuming that it exists. In this paper, the asymptotic normality and almost 
sure convergence rates for smoothed rank nearest neighbor and Nadaraya
Watson type estimators of G1(•) are established. It is also shown. using the 
concept of deficiency, that smoothed estimators are superior (asymptotically) 
to the corresponding unsmoothed ones under appropriate choice of the 
smoothing kernels.

1. Introduction 

   Let {(X1, Y1), i >_ 1} be a sequence of independent identically distributed random 
vectors with a common continuous distribution function (d.f.) H and marginal d.f.'s F 
and G, respectively. Further, let G, denote the (regular) conditional d.f. of Y given 
X = x E A(F) C 2 = 2kw1w = real line (A(F) = support of F), assuming that it exists 
and, for each 0 < A < 1, let q,(A) = Gr'(A) = inf{y E ,2k : G1(y)�_ A} denote the Ath 
conditional quantile of G, x E A(F). While literature is replete with work on the 
estimation of unconditional (joint and marginal) distribution and the quantile functions 
H, F, G and F I, work on the estimation of conditional distribution and qunatile 
functions GK and G1, , respectively, started only a decade or so ago, with the pioneering 
work of Stone [13] and those of Stute [16], [17] on weak and almost sure (a.s.) 
convergences of conditional empirical (c.e.) d.f.'s and the related empirical processes. 

(See also Horvath and Yandell [5] and Hardie et al. [4] for a.s. convergence rates of 
c.e.d.f.'s and those of Stute [17], Samanta [11] and Mehra et al. [9] on a.s. and weak 
convergences of conditional quantile estimators.) The above papers dealing with the 
estimation of conditional functions have a commonality in that they are all based on the 
kernel method of estimation; however, only the last two deal with "smoothed" estimators.
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    The object of the present paper is to establish the asymptotic normality and a.s. 
convergence rates for the "smoothed" Rank Nearest Neighbor (RNN) and Nadaraya
Watson (NW) type estimators of conditional d.f.'s and also study their asymptotic 
efficiencies and deficiencies relative to the corresponding "unsmoothed" estimators of 
the conditional d.f. G,(•). The asymptotic properties, including Bahadur Representation , 
of the corresponding inverse type conditional quantile function estimators are dealt 
with in Mehra, Rama and Rao [8]. 

    In case the underlying distributions are smooth, it would seem natural to consider 
smoothed estimators for their estimation. For the unconditional distribution functions , 
such estimators have been recommended by Efron [2] and Mack [7] among others, and 
have been shown to be superior by Falk [3] (see also Reiss [101) using the relative 
deficiency criterion, provided the smoothing kernel employed satisfies a certain 
"positivity" property . We shall prove below a similar result for smoothed c.e.d.f's. 

    Consider now the s.c.e.d.f. defined by 

G„x(v) = (na„t„(x))-1W(a,t'(F„(x) — F„(Xi)), a„'(v  Y'i) if t„(x) > 0 
e=l 

= 0 if t„(x) = 0, -x < v < x,(1.1) 

where t„(x) = (na„) ' W,((F,(x)  F„(X))/a„) with WO = W(•.cc). W(•,v) 
= f , k(• ,v)dv, k a suitable bivariate probability kernel, F„(x) = n-1 E,_ i Il.v < and 
{a„} a sequence of bandwidths with a„ 0 but na„ --> cc, as n — cc. In the sequel, we 
shall actually consider G„ , in a slightly more general form relative to (1.1) (see (3.1) 
below) where W(•, (,-,'v) is replaced by W„(• of), with W,,(•,•) a sequence of suitable 
bivariate kernel functions, possibly of higher order; see Remark 3.5) satisfying the 
assumptions A.III below. The c.e.d.f. G,,, defined by (1.1) is a proper (probability) 
d.f. and a "smoothed” version of the one considered by Stute [17] (see also Horvath 
and Yandell [51), provided the bivariate kernel function W satisfies appropriate 
smoothness conditions in respect of the second argument. We shall refer to it or its 
generalization (3.1) as a smoothed RNN estimator of G. Samanta [11] also considered 
the so called smoothed NadarayaWatson version, say G of (1.1) with x and Xi in 
place of F„(x) and F„(Xi) respectively. From our standpoint, however, the estimator 
G„ Y is superior to G ,Y. This is because the ratio (oil)! a(')2) of asymptotic variances of 
suitably normalized G, r and G ,, equals the value f(x) of the marginal density f of X1 
at x (see Theorems 3.1(b) and 3.2(b)) which is usually less than one for most values of 
x E A(F). However, the results of this paper cover both the RNN and the NW type 
smoothed and unsmoothed estimators of c.d.f.'s. The results obtained in Section 3 are 
valid, under appropriate conditions, for kernels of first as well as higher orders for the 
comparison of smoothed vs unsmoothed c.d.f. estimators. They are conditioned by the 
choice of appropriate bandwidth sequences {a„} and the order of the kernel functions 
employed. 
   The paper is organized as follows: In Section 2, are given the notation, assumptions 
and some preliminaries. Section 3 contains the weak convergence and a.s. convergence 
rates of estimators of conditional d.f. Gr(•). The asymptotic relative efficiencies and 
deficiencies of smoothed vs. unsmoothed estimators are studied in Section 4. The final
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section contains some concluding remarks.

2. Assumptions and Preliminaries 

   In this section, we shall state all assumptions that are needed in the sequel and 
refer to them as need arises in proving our results below. These assumptions hold for a 
variety of bivariate kernels including, for example, the commonly employed product 
kernels in literature (cf. (4.3) below and Samanta [11]). We shall also state, for 
convenience, certain well known results that are needed for the proofs. The C,'s and 
c,'s that appear in the proofs denote generic constants.

2.1. Assumptions 

A.I.(i) The joint d.f H is continuous. 
  (ii) H is absolutely continuous with bounded density h and marginal d.f's F and G 

      with bounded densities f and g respectively. 
  (iii) H(u, v) and F(u) have continuous bounded (partial) derivatives upto (m + 

1)`h order for an integer m >_ 1 and at all v, —0c < v < x, and all u in a nghd 
N, of x E A(F). 

A.II. For fixed x E A(F) and v E 9 the conditional d.f. Gr1(v) = G(vI F—'(r0) 
      possesses (m + 1) continuous partial derivatives in 17, 0 < < 1 in a nghd N* 

      of A = F(x) with 

a,r, + t 
                    sup sup --------,n+t (G,;(v)) <x• 
                             riEN' vE:J~71 

A.III. The sequence {W„(t, s) : —cc < t, s < x, n > 1} of bivariate kernel functions 
      satisfies 

   (i) for each fixed s E 2k and n = 1, 2, ... , W„(t, s) is a bounded twice 
      differentiable kernel function in t E 2k that vanishes outside [-1, 1]; 

  (ii) for each fixed t E '2k and n = 1, 2, ... , W„(t, s) is bounded and of bounded 
       variation in the second argument and satisfies lim~_7 W„(t, s) = 0 and lims~ . 

W„(t, s) = W,(t) for some function W on R. 
  (iii) for each fixed n = 1, 2, ... , some positive integer m and each t and s E 2k, 

      respectively f s`dW„(t, s) = 0 and f t`W„(t, s)dt = 0 for i = 1, ... , m with 
f ~s~m+'d~W„(t, s)I and f Itl„'+'dlW„(t, s)I finite ((m, m) is said to be the order 

      of the kernel W„ which can also be (m1, m,) with m1 m,; see Remark 3.3 
      below); 

  (iv) for some real sequence {b„} satisfying a„ = O(b„) and b,„`+' = 0(n 'aj,=' 
       (log a,-,-1)f),   f 1s1—,,isrldm (s) = O(b,`;'+l) as n — x, where m„(s) = 

f W„(t, s)dt; 
  (v) for each fixed t E [-1, 11 and j = 0, 1, 2, 17,(/'")(t, s) = [W ~t'~(t, s)I W (')(t)] — 

       /[,,01 and W;i('(t) = W,'.") (t, Do) —s kS'(t), as n --> x, where k is a 
       univariate twice continuously differentiable bounded kernel function vanishing 

       outside [-1, 11.



74K.L.  MEHRA et al.

A.IV. Let {a„) be a bandwidth sequence such that a„ 0 and as n —> x, 
   (i) na„ —> s and (log a„-'/log log n) —> 

                                      (ii) na,; — cc for some 3 r < 5 and na ~ = 0(1) for some r* > r, as n —> r; 
  (iii) (na„ )1'2b„” l) — 0, as n — x, where b„ is as given in A.III(iv).

2.2. Preliminaries 

   We now state, as Proposition 2.1, a few well-known results available in literature 
which are needed to establish the results of this paper: Let H„(x, y) = n-1 E;`=1 

        denote the empirical d.f. of {(X1, Y1) :1 i n} and F„ and G„ the 
corresponding marginal e.d.f.'s of {X1:1 <_ i n} and {Y1: 1 i < n}, respectively. 
Let {0„(t): 0 t 1} denote the empirical process defined by /3„(t) = U„(F'(t)), 0 t 

  1, where U„(x) = n'[F„(x) — F(x)1, x E A. Further, let 

w„(o) = sup 1f3„(t) — P„(s)I 
It-sHo 

denote the oscillation modulus of the process {f3„}. Then we have (see Lemma 2.4 and 
Theorem 2.14 of Stute [14] and Kiefer [6]) 

   PROPOSITION 2.1. Under the assumptions A.I(i) and A.IV(i), 

                                           ! (i)lim,,_ {w„(a„)/(2a„loga„i)=} = 1 R.S. ; 

(ii){w„(a„)la,:;} = o11(1), as n —> x, and 

(iii) sup{n'I H„(x, y) — H(x, y) : (x, y) E &(2)} = O((log log TO), a.s., as n —> x.

3. Asymptotics of G„, 

   In this section, we shall establish the asymptotic normality and a.s. convergence 
rates for G defined by (1.1). We first note that for each fixed value of the first 
argument {W(•,va,j')/W*(•)} is a sequence of functions of bounded variation converg
ing weakly to the d.f. function with unit mass at zero. (Note that Lt {W(•,a,r 'v)/ 

                                                                    v~x 

W'(•)} = 1, %t {W(., a,j 'v)/W*(•)} = 0.) Such a sequence has been termed as 
"Heaviside” sequence by Walte r and Blum [18]. Also note that G„„ is a convolution 
type estimator of G,, and as such, as remarked by Mack (1984), has a definite advan
tage over the nonconvolution type estimators (for example, those based on the trigo
nometric series method, etc). The latter type, despite their finite sample global 
"optimality"

, are frequently in implicit form and, consequently, are quite intractable 
from the statistical analysis standpoint. 

   As stated above, we shall henceforth in this section deal with G„ ,., in a slightly 
more general form given by 

G„,(y) = (na„) '(t„(x)) ' E W„((F„(x) — F„(X;))la y — Y;) 
=1



Asymptotic properties of smoothed vs. unsmoothed conditional distribution function estimators  75

 = a„ t(t„(x))-I f f W„((F„(x) F„(u))la„, y  t')dH„(u, v), (3.1) 
where t„ is as defined in (1.1) with W4(.) replaced by W,(•) = W„(.,x) and the 
bivariate function W„ satisfies the smoothness conditions of Section 2 (see A.III). Note 
that, for each fixed value of the first argument, {W„(•,v)/W,(•)} is assumed to be a 
"Heaviside” sequence . 

   In order to establish the main results (Theorems 3.1 and 3.2) of this section, we 
need the following expansion of v,, (y) which is valid in view of the smoothness 
assumptions A.III(i), (ii) above: For each x E A(F) and y E ' , we have 

v„,(y) = t„(x)[G„,(y)  G,(v)] 

        = a,71 IIA,,[W„((F(x)  F(u))Iay  v)  
             W„((F(x)  F(u))1a„)G1(y)]dH„(u, v) 

          + nAa,7 2 f f [U„(x)  U„(u)] [W,,")((F(x)  F(u))la„, y  v) 
              W(1)((F(x)  F(u))la„)G.,(y)]dH„(u, v) 

           + 210-la-3 Jj [U (x)  U (u)]2[W;2'())(4 y  v) 
A„ 

W,4;(2) (A„)G_x(y)]dH„(u, v) 
       = J„1(y) + Ji2(y) + J„3(y) (say),(3.2) 

where A„ = {u: F„(x)  F„(u) I <_ a„}, W;/-1) (t, s) = (j, j')th partial derivative of 
W„(t, s), and a„4„ lies between [F(x)  F(u)] and [F„(x)  F„(u)]. 

   We first prove two results in Lemma 3.1 below concerning the asymptotic behavior 
of J„ i(y), j = 2, 3. 

   LEMMA 3.1. Let x E A(F) be fixed. Suppose the assumptions A.I, A.II and 
A.111(i), (ii) and (v) and A.IV(i) and (ii) hold. Then as n x, uniformly in y E 9k 

(a)J„j(y) = o(r„), j = 2, 3, 
Q.S. 

where r„ = (na„)t/'`(log a„1) 1/2 and 

(b)J„ 1(y) = oh(n 'a„'), j = 2, 3. 

   PROOF. We first deal with J„3(y). Since W„ vanishes for values of the first argu
ment outside [-1, 1], the expansion (3.2) holds with integration restricted to the set A„ 
= {u: IF„(x)  F„(u)I < a„}, and further by Proposition 2.1(i), we have almost surely 
on this set 

F(x)  F(u)I < IF„(x)  F„(u)1 + n1U„(x)  U„(u)1 
a„ + Ct (a„ log a,7 1 /n)' < Ca„(3.3) 

for some constants C1 and C and sufficiently large n. the last inequality following in 
view of A.IV(ii). Now writting p„(y, u, v) = [147;,2•())(A„, y  v)  W;;(2)(4„)G,(y)], we 
have
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J„3(y) = 2 )n~)a f f [U„(x) U„(u)12p„(v, u, v)d[H„(u, v)H(u, i')] 
A„ 

+ 2 ]n-)a„ 3 Jf [U„(x) U„(u)]2p„(v, u, v)dH(u, i') 
A„ 

     = J„31(y) + J„32(y) (say). (3.4) 

From Proposition 2.1, the boundedness of p„(y, u, v) and (3.3) we have , as n --> 

J„31(y) I < C1n-'a„ 3 JJ [U„(x) U„(u)12dI H„(u, L') H(u, v)1 
A„ 

C,n-la„3 sup I U„(x) — U„(u)I' sup IH„(u, v) — H(u, v)J 
I F(s)—F(u)HC(1„u.,                                                    

1 
                                              CI n'a,7 3 a„ log a,7 ]n '(loglog n)I' 

          = O(r „(na) 1a6,(log a„ ')'(log log n) .(3.5) 

where A = A„ fl { F(x) — F(u) Ca„}. As for J„32, we note that in view of the 
boundedness of p„(y, a, v), (3.3) and Proposition 2.1, as n -> x , 

IJ„32(y)I n l a,r 3C, sup U„(x) — U„(u) 2 fdF(u) 
1F(x)—F(u)1=Ci„F(_r)—F(u)H(a„ 

C1n 'a,t 3(a„loga,t') • Ca„ 

C~T,(3 .6) 

the last but one inequality following from the fact that P[IF(X) — F(u)1 Ca„] = 
2Ca„. From (3.4), (3.5) and (3.6), in view of assumptions A.IV (i) and (ii), we thus 
obtain 

IJ„301 = ()(T„) (3.7) 

Now for J„2(y), note that it can be expressed as 

J„2(y) = n =a,7 2 ff [U„(x) — U„(u)][W„ ((F(x) — F(u))/a„, y — v) 
A„ 

           — W„(1)((F(x) — F(u))/a „)C_.(y)IdH(u, v) 

        +  f[U„(x) — U„(u)][W,1,1))((F(x) — F(u))lay — v) 

A 

           — 1/17,',(1)((F(x)  — F(u))/a„)C _r(y)]d[H„(u, v) — H(u, v)] 
= J„21(y) + J„»(y) (say), (3.8) 

where, using the boundedness. of functions W„ and W,,, and Proposition 2.1, it can be 
shown as for Ji31(y) that 

I-1,220)1 < C,na„2 sup I U„(x) — U„(u)I supnIH„(u, v) — H(u,v)I 
„EA„(11,1) 

             < C,n 1a„'(loga,r')'(log log n)7
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   =  o(r „),(3.9) 

as n --> x, in view of the assumptions A.IV (i) and (ii). Further, making the transfor
mation F(x) — F(u) = a„t and setting x„(t) = F  1 (F (x) — to„), we obtain for J„21(y) 

IJ„21(Y)1 = n a„' Jf [U„(x) — U„(x„(t))][W ,''")(t, y — v) 
A„ 

           — W,t(')(t)G (y)PG.,,,(0(v)dt 

                                   ,.s. 

         Cr„J f[W0)(t,  y — v) —W„(')(t)GY(y)1dG_r(v) dt 
                     A,; 

                                           + f . J[w'°)(t, y — v) — W;,(''(t)G,(y)]d[G.r„(0(v) — G_r(v)l dt 
    = o(r „), as n — x,(3.10) 

£1.5. 

the last inequality following in view of Proposition 2.1 and the last equality since the 
preceding integrals are o(1) and 0(a„), respectively, as n in view of (3.3) and the 
assumption A.III(v). From (3.8), (3.9) and (3.10), it follows that, as n — x, with 
probability one 

J„2(Y) = o(r„).(3.11) 

The proof of part (a) is complete in view of (3.7) and (3.11) 
   To prove part (b), we use the facts that nIH,,(u, v) — H(u, v)] = Op(1) and 

sup{I U„(x) — U„(u)I : IF(x) — F(u)I < Ca„} = O1,(a) (see Proposition 2.1(ii)). Using 
these probability bounds, we have from the second inequality in (3.5) 

J,z31(Y)I .-5-p Cin-1a„ 3(a;z)2 • n_, 

                               = op(nAa,-,1), 

this together with a similar analogue of (3.6) implies J„32(y) = 011(n a„). Thus 
J„3(Y) =o(n1').(3.11a) 

By using probability bounds instead of a.s. bounds as for (3.11), it can be similarly seen 
that 

J,z2(Y) = 

and this completes the proof of part (b).^ 
   We now state the main theorem concerning a.s. convergence rates and the asymptotic 

normality of the estimators 0„, and G : 

   THEOREM 3.1. Let x E A(F) be .fixed and suppose that the assumptions of Lemma 
3.1 hold. 

(a) If in addition to the assumptions of Lemma 3.1, A.III(iii) and (iv) also hold for 
    some m ? 1, then for each y E
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O„ ,(y) G,(y)i = O(r„), a.s., as n --> cc
, 

where r„ is as defined in Lemma 3.1; and further 

(b) if in addition to the assumptions of Lemma 3.1, A.I V (iii) also holds, then for each 
y E'2, 

n=a,(G,,,(!')  Gv(y)) N(0, Q~(y)), as n — 7k, 

   where 0-2, (y) = Gv(y)(1  Gv(y))(f ki(t)dt) and k1 is defined by A.III(v). 
   PROOF. We shall first establish part (a). In view of Lemma 3.1(a), it suffices to 

prove for J„, and t„(x) in (3.2) that, as n — x, for each given x E A(F), t„(x) —> 1 a.s. 
and for each v E :It, 

IJ„i(y)1 = O(r„).(3.12) 

To see that (3.12) holds, we first note that, since for each y E 2, 

1J0(y)  J„i(y)I = O(r„) a.s.(3.12a) 

as n x (to be established; see (3.23) below) where Jo(y) is just Jo(y) with 
integration over the whole space instead of the set A„, it suffices to establish (3.12) 
with J„, (y) replaced by J,,, (y). To achieve this, we shall write J„, (y) = n-1 I,'_, Z„, 
with 

Z„, = a„' [W„((F(x)  F(X,))la„, y  Y,)  Wn((F(x)  F(XX)la„)Gr(y)), 
(3.12b) 

1 < i n, so that by using the transformation F(x)  F(u) = a„t and setting x„(t) = 
F -1(F (x)  to„) in below, we obtain, in view of assumption A.I. 

E(Z„,) = Jf [W„(t, y  v)  W ~(t)GY(y)]dGr„(()(v)dt 
           = f f [W„(t, y  v)  Wn(t)G_z(y)]dGx(v)dt 

             + Jf [W,(t, y — v)  W n(t)G.v(y)]d[G„(f)(v) G.v(v)]dt 
           = 1 W„(t, y  v)dt  G.v(y) dG.v(v) + O(a;r + 1); (3.13) 

that the second term in the last expression in (3.13) is O(aT+ ') uniformly in y follows 
by using Taylor's expansion of Gv„(,)(v) around G_v(v) in conjunction with assumptions 
A.I, A.II and A.III(i), (iii). Now the integral term in this last expression equals, using 
A.I, A.III(i), (iii) and integration by parts, 

m„(y  v)dG.v(v)  Gv(y) 

             =  
J [Gv(y  v)  Gv(y)]dm,,(v)
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_ f [vm+1/(m + 1)!] av/ri+t (GX(Y V)dml,(v) 
    C1 f -Ida/JO,(3.14) 

where V lies between 0 and v, m;,(v) = f W„(t, v)dt and C1 is a constant not depending 
on n. Further in view of the assumptions A.III(ii) and (iv) we have 

Jivr'dm„(v) — f vj” 'dm(v) + fIvi,„+idmn(v) 
                  = O(b;;,+') + 007, 1) 

= O(i „),(3.15) 

as n x. From (3.13) to (3.15) and the assumption A.III (iv), we thus have 

E(Z„i) = O(z„) •(3.16) 

Further, again by assumptions A.I. A.II and A.III(i), (ii) and (v), and the trans
formation used for (3.13) we obtain 

a„E(Z i) _ J f [W„(t, y  v)  W ,',(t)G.r(Y)]2dG-Y„(,)(v)dt 

J J [W n(t, Y v) + W„2(t)G2c(Y) 

            2W,(t, y  v)W;,(t)Gx(y)]dGY(v)dt + 0(a„) 

[k~(t)1~,_~.~„~ + ki(t)GY(Y)  2ki(t)11,,,.o1G.Y(Y)1dG.r(v)dt 

         = G_r(Y) [1  Cr(y)] (f ki(t)dt) •  (3.17) 
Now noting that 1Z„i1 a„-1 for all 1 i n and using (3.17) and Bernstein 
inequality (see Serfling [12] pp. 98-99), we obtain, for any E > 0 and some constant 
C1>0, 

  ,t(n E`  
      p[Z,,;  E(4„)] nE2 exp-[,E„ var(Z) + (2/3)a71E] 

—na
„E`                      2 exp{ C+2/3'                      CI£() 

which inequality, with E = C2 r„, yields 

                                      Tt 

P n-1 [4„1  E(Z„i)] > C2-17 
                                 i=1 

                                              C(loga„-1)                               2 exp +(2/3)r„}.(3.18) 

                          1
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   Now using the assumption A.IV(ii) (which implies for sufficiently large n the 
existence of a constant C3 such that a,71 > C3n7* and r„ — 0 as n — Do) and choosing CI, 
Cc, C3 appropriately so that R.H.S. of (3.18) is dominated by a constant multiple of 
n-2 for sufficiently large n, it follows in view of BorelCantelli lemma that 

1 " 
IJ„i(Y)  E(J0(Y))1 =  E [Z„,  E(Z„i)] = O(r„). (3.19) 

            n i= s. 

From (3.16) and (3.19) then, we obtain 

IJAY)1 = O(r„),(3.20) 

as n x. To conclude (3.20) for J„1 (y), we now establish the asymptotic a.s. equivalence 
(3.12a): First note that on the set A, l A, , where A = {u: 1 F(x)  F(u)1 a„}, for 
sufficiently large n 

a„ IF(x)  F(u)I =IF„(x)F„(u)n'{U„(x)U„(u)}1 

a„(1  E„),(3.21) 

the last inequality following since by Proposition 2.1(i) on A;;', uniformly in u, I U„(x) 
 U„(u)I < c,a„1/2(log a,7 1)1/2 = a„E„ a.s. with E„ = C-r„ for some constant c2 > 0, as 

n — x. From (3.21), we obtain for each y E 2J. on using transformation F(x)  F(u) = 
a„t, -1 <_ t < 1, and on setting u = x„(t) = Fi(F(x)  a„t) 

    J„i(Y)  Jo(y)1 f f [W„(t, y  v)  W ,(t)Gr(Y)]dGr„(f)(v)I dt 

              + a,;1 JJ  [W„(t, y — v) — W„(t)G.r(Y) I 
I1t„~ItH1J 

d I H„(x„(t) , v)  H(x„(t), v)  H„(x„(1), v) + H(x„(1) , v) 1 

2E„ J [W„(t,,, Y  v)  W ,(t :)G.r(Y)]dG,,,(,;)(ti') 
                + c3n 'a„ i[1 U„(x„(1 E„)) U„(x„(1))I 

                   + I U„(x„( 1))  U,(x„(E„  1))I1 
      = O(i„) ,(3.22) 

as n -~ x, where 1  E„ ~jt < 1, the last inequality following since E„ = c2r„ the 
integral in the first term of the preceding expression is 0(1) (cf. (3.13)? as n -* cc, and 
the second term, by Proposition 2.1(i), is 0(n-'a,i ias,E1,(log(a„E„)-'Y) = o(r„) a.s., 
as n —> cc, under conditions A.IV (i) and (ii) of the Theorem. The assertion (3.12) 
now follows from (3.20) to (3.22). Accordingly, from Lemma 3.1(a), (3.2) and (3.12), 
the proof of part (a) of the theorem would be complete if we show that 

I t„(x)  11 = 0(r„)(3.23) 
with probability one, as n —* x. The last assertion, however, follows (evidently) by the
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same reasoning as for Lemma 3.1(a) and (3.20). This completes the proof of part (a). 
   To prove that (b) concerningi theasymptotic normality of n=a ,[G„ ,(y) — G,(y)], as 

n — x, it suffices to show that n=a, Ji1(y)  N(0, QY(y)); the proof would then be 
complete in view of Lemma 3.1(b). Now by following arguments similar to those for 
(3.21) to (3.22), we can show that 1J0(y) — .1„1(y)1= O1,(n-'a-') as n —> x. Also from 
(3.13) to (3.17), we have J„ 1(y) = n-1 I,'_ Z„„ Z„1 being independent and identically 
distributed with E(Z„,) = 0(b,',"-1-1) and a„E(Z,)—> QY(y) = G,(y)(1 — G,(y)) 
(f ki(t)dt). Sincen'a,b;,i+1 —> 0, as n (A.IV (iii)), it follows by the standard 
Central Limit Theorem that rOa J„ i (y) ------> N(0, QY(y)), as n x. This completes the 

proof of part (b) ^ 

   REMARK 3.1. If m;,(.) = f W„(t,•)dt is smooth and possesses a bounded derivative, 
then in Theorem 3.1 (and also in Theorem 3.2 below) the condition A.III(iv) above can 
be replaced by the weaker condition (say) A.III(vi): f ~.~w ~vI"dm;,(v) = 0(b;,'+1) 
(with b„ as given in A.III(iv)) on the tails of m . However, this would not cover the 
case of unsmoothed c.e.d.f.'s. It should be noted, nevertheless, that unsmoothed 
c.e.d.f.'s and the smoothed ones with bivariate kernels (product or not) of the type 
W„(t, s) = W(t, ~) (see Section 4) do satisfy the stronger assumption A.III(iv). 
Consequently, our special comparisons of smoothed and unsmoothed c.e.d.f.'s in 
Section 4 remain valid. 

   Now we will show that even if a„ (or b„) — 0 at the so called "optimal” rate (see 
Remark 4.1) i.e., for m = 1 even if na or more generally, na ”'+3 —> 6 a positive 
constant and not zero, the asymptotic normality of Theorem 3.1(b) still holds with a 
non-zero centering constant. However, we need some additional conditions on the 
kernel function W: 

   COROLLARY 3.1. Suppose in addition to A.IV(i) and (ii), we have na ir+3 6 > 0, 
as n —> x, and that m;, (as defined in A.11I(iv)) satisfies for some 0', —x < 6 < x, 

t'"+1dm(a„t)- 6,asn-->x.(3.25) 

(which impies the condition f s`n+ 1 dm ,(s) = O(ani+1) resulting from A.111(0). Then under 
the assumptions A.1, A.II and A.III, 

(na,,)'(G,,,(Y) — G_r(Y)) — N(br(Y), a2(Y)), 

as n — x, where o(y) is as given in Theorem 3.1(b) and b,(y) by 

6,"+ 1 
br(Y) = ("V 6/(m + 1)!)66

y,„+1[G.,(Y)] 

+ (1trrt+lkl(t)dt) ----------,„+1[GF'(r,)(Y)1i)=F(x) 
where k1 is as defined in A111(v).
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    PROOF. Since Lemma 3.1(b) still holds, the proof of Theorem 3.1(b) shows that 
we need only to demonstrate that (na„)1 2EJi1(y) = (na„)112E(Z„,) --> b,(y) under the 
stated conditions of the corollary, where Z„1 is defined by (3.12b): We have from 

(3.13) by setting GI.-v)(v) = G ,(v) and using A.III(iii) 

EZ„1 = f f [W„(t, y — v) — 7,(t)G,(y)]dGH(,)_„,,,(v)dt 
      = J f W,,(t, y — v) — W„(t)G,(y)]dG; (,)(v)dt 

        + (4'1 + 1)!) f f [W„(t, y — 1') — W,(t)G,(y)1 t(n,+ 1)dG'<(m+ 1)(v)dt 
   = I + II (say),(3.26) 

where GY,»n,+l)(v) = ~~,+, G~(v)1 etc., x,„, lies between F(x) and F(x) — a„t, and 
the second equality is obtained by Taylor's expansion of G f.(,)_„ ,(v) around GF-(.Y)(v). 
Now following steps similar to those for (3.14), it is easily seen that as a x 

am+I a„(m+I)I = (1/(m + 1)!) aym--------+1 [G,(y)] f s'n+Idm„(a„s) 
am+ 1 (1/(

m + 1)!)a
ym--------+1[G,.(y)]0'(3.27) 

Further, using the limits W,',(0---> -~ k1(t) and [W„(t, y — v)/W,(t)] —> I[,._,.-01 as n x, 
we obtain that, as n — x, 

ff tm+1[W„(t, y — v) — W,(t)Gz(y)](1G1m+1)(v)dt 
am+ 1 

(( t,n+Ik1(t)dt) ---------[G , y(3.28) 
From (3.26) to (3.28) we thus have under the assumptions of the corollary that (na„) "2 
EZ„ 1 b,(y), n — x, as asserted. ^ 

   REMARK 3.2. The bias term b,(y) above involves the (m + 1)th order partial 
derivatives of G,(y) both w.r. to y and w.r. to x. It should be noted that the (m + 1)lh 
order partial derivative in the second term of the bias for m = 1 equals 

       32322G,.l(,1)(y)I,i=H(.t)= {f(x) [G(y)I—f'(x)x[G.r(y)]l/f3(x). (3.29) 
   REMARK 3.3. In Theorem 3.1 and Corollary 3.1, we have assumed the same order 
m for the kernel W„(•,.) in either argument (cf. A.III(iii)). If we choose different 
orders, say, m 1 and m, for the first and second arguments, respectively, then on 
evaluating E[Zi11 in (3.13) the order of E(Z„1) in (3.16) would be O(r „ ) with m = 
m1 A m,. Further in Corollary 3.1, the asymptotic bias br(y) would be br1 = [\/6/(m, +
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)!](„T.()'nr+3fmT+t:V) 1---- (~~ ------iG))               ,Vwith 0 = llm„~7 na,-,and B~=hm~rSdm,tar,S, 
b,n = (V/ 61(m1 + 1)!) (f tnii+1kl(t)dt) -------i [GE'(,1)(y)] 1 ,1=1.1,) with 6' = hm„~,_ 
na ,2,”" + 3 or [by, + b,2] according as m, < m 1 , m2 > m 1 or rn 1 = m2. The remarks above 
also apply to the results of Section 4 dealing with deficiency calculations. 

   REMARK 3.4. If m = 1, and smoothing is not employed (as in Stute [16]), we then 
have m(s) = 1t,-111 so that f s'dm*(a„s) = 0; and the bias in this case reduces to 

                                                       , 2(Jrki(t))'[G~''(11)(y)]r1=~(-x),                                 rl 

the same as given in Stute (1986a, p. 641). 
   Furthermore, if W„(t, s) = W(t, s/a„) for some bivariate kernel function as defined 

in (1.1), then f s"'+ 1dm ,(a„s) = f sm tdK,(s), with K2(s) = f W(t, s)dt. Accordingly the 
case of product kernels considered in literature (see Section 4) is also covered by our 
results. 

   REMARK 3.5. In defining G„_t, if we take the kernels W„ to be nonnegative and 
nondecreasing in the second argument, then G,t., satisfies all properties required of a 
probability d.f., namely, (i) 0 ~ G„ ,(y) < 1`dy, (ii) nondecreasing in y, and (iii) 
limti.~_r G„_,(y) = 0 and lim,,~ . G„ _,(y) = 1. For 6„, based on higher order kernels, the 
first two properties may not hold for a given set of observations. However, in view of 
the result (Theorem 3.1) that G,,.,(y) G,(y), with 0 < G_,(y) 1, as n 3c, at a 
rate no slower than i„ = n a(log a,71)1/20, it follows that, on a set S 
of arbitrarily high probability, G„, will be close to satisfying these properties for 
sufficiently large n say, for n >_ no, with no not depending on w E S. 
   Now we state a result analogous to Theorem 3.1 for the NW type estimate G;;„ of 
the conditional d.f. G. The proof is, in fact, contained in the proof of Theorem 3.1 
and is hence omitted. 

   THEOREM 3.2. Suppose x E A(F) is fixed and the assumptions A.I, A.II, 
A.111(i)-(v) and A.IV(i), (ii) and (iii) hold. Then as n  x, with r„ as defined in 
Lemma3.1, 

   G (a) I",(y)  G_t(y) l = 0(r„), a.s., for each y E 2k, and        -~ 
N(0, rY'(y)), where QY'(y) = o(y)/f(x) with a (y) as 

    defined in Theorem 3.1(b). 

   REMARK 3.6. If na '"+3 — 6 >_ 0, as n  x, it can be shown, under the additional 
required conditions as in Corollary 3.1, that the asymptotic normality holds with bias 
term given by b',(y) = 6/(m + 1)!) {0?:-",141[G.,(y)] + (5 t2ki(t)dt) IAGY(y)]}, 
where 6' is as given by (3.22).
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4. Relative Defliciencies of G„x and G ,*,.. 

    We shall now investigate the conditions under which the "smoothed” c .e.d.f.'s 
and G;,,. give better performance relative to the corresponding "unsmoothed" ones, 
namely, G„, and G;,r, respectively, given by 

Gm(y) _ (na„)'(d„(x))-' E kt((F„(x)  F„(X,)1(1„))I1Y,,.1, x < y < x; (4.1) 
,= 1 

and 

G;,,(y) = (na„)1(d„(x)) k,((x — X,)ia))IrY,~ — < y < Do; (4.2) 
,=1 

where d„(x) = (na„) ' Eii=i ki((F„(x)  F„(X,))/a,,) and d„(x) = (na„)-1 E;`=1 k1((x 
X,)la„). Both G and G;,, have been extensively studied in literature (see Stute [16], 
[17]; see also Hardle et al.[4]). 

   We shall derive below relative deficiency expressions of G,1(G) w.r. to G„ ,(G ,) at 
a given point y and show that, under certain conditions on the sequence {a„} of 
bandwidths and the kernel function employed, these relative deficiencies diverge to 
x , as n  x. In above, our relative deficiency calculations are based on the mean 
square error (MSE) criterion. Also, for simplicity as well as for ready comparison of 
the present deficiency results with those of Falk [3] for the corresponding smoothed 
unconditional d.f. estimators, theyareconfinedto the important special case when the 
bivariate kernel function used inG„ .,(G;,,) is a "product” kernel function given by 

W„(t, s) = k1(t)K,(sla„), -x < t, s < x,(4.3) 

where k1 is a symmetric kernel vanishing outside [-1 , 1], K1(t) = f_7 k1(u)du and K, 
satisfies, for some m > 1, 

K1,K2E`6(„0= {L E dL=1,L(-x) ---- 0, ft” dL(t) = 0,1 p m and 

                                  fItl,1dIL(t)I <},(4.4) 
with A denoting the set of real valued functions of bounded variation . For m >_ 1, it is 
clear that the bivariate kernel function defined by (4.3) satisfies the assumptions 
A.III(i) to (v). We note, however, that if m > 1, the function k1 can not be a 

probability kernel and K2 a probability distribution function, so that the estimator 
defined by (3.1) may not be a proper (empirical) distribution function. Despite this , in 
the interest of better overall efficiency and improved convergence of (kernel) estimators 
of density and distribution functions, the use of higher order kernels has been recom
mended by Bartlett [1] and subsequently by several other authors. The comparative 
results below, however, being valid for all m > 1, do cover the case m = 1 when the 
smoothed c.e.d.f.G„ „ defined with k1 a probability density and K, a proper d.f., 
satisfies the standard properties of a probability distribution function. 

   We shall now derive the large sample expressions , as n — x, for the mean square
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errors of  G„_,(y)(G,  (y)) and G„,(y)(G ,,(y)), respectively, the smoothed and un
smoothed RNN (NW) estimators of G,(y), for fixed x E A(F) and y E ??.. These 
expressions are essential to our derivations of asymptotic relative efficiencies and 
deficiencies of these estimators. 

   First consider MSE (G„ ,(y)) = E[G„ ,(y)  G,(y)12. By setting D„(x) = 1 — t,'`,(x), 
we have from (3.2), for any fixed 0 < < 1, 

MSE[(G,,,(Y)] = E[v ,(Y)lt (x)] 
                 = E{v ;2,.,(Y)(1 — D„(x))-11 [I ,,(x)I <q]} 

                 + E{v,'`,.,(y)lt (x))1[IJ)„(v)I,nl) 
                = E[v t(Y)] + E{v,, ,(Y)[(1 — D„(x))11 [I D„ (,)I <>>i — 1]} 

                 + E{ v .,(Y)l t 2„(x))1 [0„(.0I -r i} 
              = E[v .x(y)] + E ~ )(Y) + Eir)(Y) (say) 

               = E[v _,(y)] + o(n-I), as n — ',(4.5) 

provided we show that E,(/)(y) = o(n-1) for j = 1, 2. This we shall demonstrate later 
(see (4.40) and (4.41)). First we shall evaluate E[v.,(y)] by studying the asymptotic 
expansion terms on the right of 

3 
E[v, .„(Y)] = E 4Jj40] + 2 E E[J„i(Y)J„T(Y)]•(4.5a) 

                                    For dealing E[J 1(y)], note that by following arguments similar to those for (3.21) to 
(3.23); we obtain from (3.22) with E„ = c7(na„)-1/2 

E[J„I(Y) — J„i61)12 4E ki(tn) [J[K2(Yav)—Gt(Y)da,,,(0(v) 
              + c4n-1 a,7 2{I F(x„(1  En))  F(x„(1))I 

+ I F(x„(-1))  F(x„(E.  1))I} 

                 c3(na„)kl(t,,)a4 + c4(na ) • a„(na„ ) 1/2 
     = o(1/n) ,(4.5b) 

as n  x, since k2i(t;;) —* 0, as ~t~ -* 1 and by assumption A. IV(ii), na -> x. Thus 

E[J 1(Y)] = E[J 1] + o(n-1) 

                                                     2 

                  = E Z„1ln + o(n-t) 

                  = n-1E(Z t) + n 1(n — 1) [E(Z„,)12 + o(n-1) (4 .6) 

with (cf. (3.13)) 

E(Z„ i) = 1(1(0  [ f KAY — v)l a„) — G.,(Y)1 dG.,„(t)(v) ] dt
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        = f k1(t) Gr(,)O' — a„s)dK2(s) — Gx(v) dt 
kt(t) [G.v((y) — Gr(y) + a„ f s g ) (y — 4„a„s)dK2(s) dt, 

                                                      (4.7) 

where in (4.7), we have used integration by parts, Taylor's expansion and assumed that 
K2 E `t(„0. Further, again assuming K1 E (€(„,) and using Taylor's expansion, we obtain 
in view of assumptions A.I and A.II that 

J[G.,,(y) — Gr(y)]k1(t)dt = 0(4'1), (4.8) 
as n —* x; (4.7) and (4.8) then yield 

E[Z„t] = O(a,'+i) (4.9) 

Also we can write for sufficiently large n, using Taylor's expansion and integration by 

parts, 

a„E[Z 1] = f k (t){J [K2((y — v)Ia„) — G.r(y)]2dGr„(,)(v) dt 
    = f k (t)[{k2((y — v)Ia„) — G.,(y)}2G.r»(,)(v) Ix x — 2 f Gr,(,)(v) 

x [K2((y — v)/a„) — Gr(y)]dK2((y — v)Ia„)]dt 

    = f ki (t)[G r(y) + 2 J Gr„ (,)(y — a„s)K2(s)dK2(s) 
—2G x(y) f G, (0(y — a„s)dK,(s)]dt 

    = f k (t)[GY(y) + Gr„(,)(y) — 2a„gr,,(0(y) f sK2(s)dK2(s)] + (Aa;„+') 
       — 2G r(y)Gr„(,)(y) + O(a;,'+')]dt 

_ (J ki(t)dt)[Gr(y)(1 — Gr(y)) — 2a„gr(y) f sKz(s)dK2(s)] 
      + O(a,) + O(a;1+1)                                                    (4.10) 

where in the last line we have used the symmetry of k1 around zero (f tki(t)dt = 0). 
From (4.6) to (4.10), for sufficiently large n and under the conditions assumed above, 
we have 

E[J j(y)] = (na„)-`(J ki(t)dt)[G_r(y)(1 — G.r(y)) — 2a„gx(y) f sK2(s)dK2(s)] 
            + O(n-ta„) + O(a;,n+2) 

    = O((na„)-').(4 .11)
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Now  for  J (4.3) yields W,,''t')(t, s) = k1')(t)K2(sla„) and W;,(t)(t) = kY)(t) so that, 
defining J„2(y) analogously to J„i(y) (see (3.2a)), we obtain from (3.2) that 

J 2(y) = 11-3a,T 4{ E [U„(x) — U„(X,)]'KY) ((F(x)  F(XX))la„)[K7((y  Y,/a„)  G.,(Y)]' 

     + E E (U„(x)  U„(X,)) (U„(x)  U„(X;))kY)((F (x)  F (X1))l a„) 
i#1 

• kS''((F(x)  F(X1))1a„)[K7((v  Y,)la„)  G.,(y)][K2((y  Yi)la„)  G_,(v)] 
= I + h (say).(4.12) 

where for I1, on taking expectation and using the fact that (X1, )71), i = 1, 2, ... , n, are 
i.i.d. r.v.'s, we have 

E(11) = n 'a„4E{kY'' ((F(x)  F(X1))1a„)E([U„(x)  U„(X1)12I Xt) 

E([K2((y  Y1)/an)  G_,(y)]2I X1)},(4.13) 

with 

E([U„(x)  U„(X1)]2I X,) = n 'E E  1[X<<xii — F(x) + F(Xi)) 

+ (I[x,>.,1 — F(x) + F(X1))121X1} 
                                               IF  F(X01(1  IF(x)  F(X1)1) + cln-i, 

                                                    (4.14) 

for some constant c 1 > 0 and 

E{[K2((y  Y,)la„)  Gr(y)]'/Xi} [Gx,(y)(1  G.v(y))  G_,(y)(G.v,(y)  G.v(y)) 
                        a,S4y)i1)(K2) + c,a ](4.15) 

for some constant c2 > 0. From (4.13) to (4.15) on, setting x„(t) = F  ' (F (x)  a„t) we 
obtain 

IE(I1)I In-2a,72 J kY'.2 (t)1t1(1  a„I t1)I Gr„(,)(y)(1  G,(y)) 
          G.,(y)(GK„ (t>(y)  G.,(y))  a„ G-x„(r)(y) 2V(K2) + c2a I dtI 

           + O(n 3 a„-2) 
  = o(n-'a„),(4.16) 

as n  x, by the assumption A.IV(ii), since the integral on the right is 0(1), as 
n --> x. Similarly for I,,2' noting that the expectations of expressoins under double 
summation do not depend on the pair (i, j), we obtain from (4.12) that 

E[I2] = n-2a,; 4(n  1)E{k(1)((F(x)  F(X,)/a„))ki(i)((F(x)  F(X2))la„) 
• E{(K2((y  Y1)/a„)  G.,(y))1X1} • E{(K2((y  Y2)/a„  G,(Y))1X2} 
E{(U„(x)  U„(X,))(U„(x)  U„(X2))IX,, X2}}, (4.17)



 88K.L.  MEHR1 Ct al.

where by reasoning similar to that for (4.14) and (4.15), 

E{(U„(x) — U„(X,))(U„(x) — U„(X2)IX,, X2} 
_ —[F(x) — F(X,)][F(x) — F(X7)] + c3n-i ,(4.18) 

for some constant c3 > 0, and 

E{K2((Y — I')/a,,) — Gr(Y) I X 1 } = (Gx,(Y) — G.Y(Y)) + c4a / (4.19) 
for some constant c„> 0; from (4.17) to (4.19), thus, we obtain by employing again the 
transformation u = x„(t), —1 t 1, 

I E(1?)1 n-ta-3((10,0(t)1 {1 F(x)  F(.1-„(0)1 + c5n 1}                  JJ 

• { I G.v„(t)(Y) — G.Y(Y)1 + coa } dt 
    c7n a(4 .20) 

for some positive constants c5, c6 and c7, the last inequality following in view of the 
assumption A.I and A.II and the symmetry of k, around zero. From (4.12), (4.16), 
(4.20) and (4.35) below, we thus obtain 

E[J ~1(y)] = 0(n-'a„), as n x. (4.21) 

As for ,/,2,3,  we have from (3.2) that 

EJ ,(Y) <_ (1/4)n-4a,7 `' E E{(U„(x) — U„(X,))4(kr(a,„))2 

[K2((Y — Y,)/a„) — Gx(Y)]2 

          + EE E{(U„(x) — U„(X,))2(U„(x) — U„(Xj))'ki2'(a,„)ki''(aj„) 
,4j 

• [K2((Y — Y;)/a„) — GX(Y)] 

[K2((y — Y,)Ia„) — Gr(Y)]}
     = 13 + 14 (say),(4.22) 

where for 13 and 14, using the boundedness of kV), (4.15), (4.19) and arguments similar 
to those for (4.14) and (4.18), we obtain 

I'31 can4a„ 6na„ JI F(x) — F(x„(t))I2dt 
                                          t c9n-3a,, 3 = o(n-2)(4 .23) 

and 

          1141 c,on 2a,74(.1 /42)'(A 1„) [F (X) — F(x„(t))I2dt) 
          = O(n'a „-'`) = o(n-la„)(4.24)
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as n  -> x. From (4.22) to (4.24), it follows that 

E'[J;2,3(Y)] = o(n l a„), as n  x.(4.25) 

Now we deal with cross product terms: For this, first note that from (4.12), (4.21) and 
(4.25), it follows by Schwatz inequality and the assumption A.IV (ii) that 

I E[J„ 1(Y)J„3(Y)] I [E42,(y)}1/2 . [E4273(Y)i1/2 
                                               = C11n1/2a-1/2• n-1a

„-1 

             = o(n I)(4 .26) 

and similarly 

                                                               1E[J„2(Y)J„3(Y)] I c12nliza„liz. n-1a„1 
                 = o(n-la„);(4 .27) 

and further that 

E[J„t(Y)J„z(Y)] = n512a„3[nE{41(X1)02(X1)E([K2((Y  171)/a„)  Gr(Y)]21 X1)} 
             + n(n  1)E{(1)1(X1)42(X2)E([K2((Y  Y1)/a„)  G.Y(Y)] 1 X1) 

• E([K2((Y  Y2)/a„)  G-v(Y)11X2)} 
      = I5 + /6 (say)(4 .28) 

where 41(X1) = k(1l)((F(x)  F(X1))Ia„)[U„(x)  U„(X1)) and 02(X2) = k1((F(x) 
F(X2))la„). Noting that E([U„(x)  U„(X1)]I X1, X2) n =[I~x~r~ + + 

 2F(x) + 2F(X1)] and E([U„(x)  U„(X1)]I X1) = n-11 [x i>,1   F(x)  F(XI)], it 
follows from (4.15) and (4.19) that 

I51 < cnn 2a,73a„ J I141) (t)Ilk1(t) I dt 

                                    = O(n-22a,7 2) = o(n-Ia„), (4.29) 
and 

1l61 cl4n la,t 3a2 ff  I k ll)(tl) l Ikt(t2) I I G,„(r1)(Y) 
                  GC(y) + c4a , I I (Gr„((,)(Y)  Gz(Y)) + caa,'`, I dtidt2 

      = 0(n-la „)(4.30) 

as n —> x, the last equality in (4.30) following as for (4.20). From (4.29) and (4.30), we 
obtain I E(J„1(y) • J„2(y))1 = 0(n-la„) which implies, in view of (4.5b), (4.11) and 
(4.21), 

E(J„t(Y)J„z(Y))I I E((J„1(0J„2(0I 
                       + EIJ„1(Y)  J„I(01J„20,))I 

                        + EI J„1(Y)1I J„2(Y)  J„2(Y))1 

O(n-Ia„) + o (n 1a„`)
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                              + n4a,,,4E[J„2(y)  J,2]2)1i2 
            = o(n-I) ,(4.31) 

provided we show that 

E[J„2(y)  J„20')12 = o(n I a„)(4.32) 

as n -› x. We now establish (4.32): From (3.2) and the steps for (3.22) and (4.5b), one 
obtains using boundedness of kS” and K2 

J„2(y)  J„2(y)Ici5n 'a„ 2 f f Ik1'(t)1 I U„(x)  U„(x„(t))I 
           P[1F„~~r~~i] 

x d I H„(x„(t), v) — H(x„(t), v)  H„(x„(1), v) + H(x„(1), v) 

                                                           _, 

                „~IkSi)(011U „(x)  U„(x„(t))1 

x J [K2((y v)la„) G.r(y)]dGY„(f)(v) dt 

             c17n-1a„2JIU„(x)  U„(x„(t))IdJU„(x„(t))  U„(x„(1))I 
             + cl8n 'an ' E„ l kl' (t „) I U„(x) U„(x„(t„)) I 

             x J [K2((y  v)Ia„)  Gx(y)]dG.z((;>(v) (4.33) 
where 1  E ! 1 and E„ = c(na„) '. Now squaring and taking expectation on 
both sides, we obtain 

E[J„2(y)  J„2(y)12 ci9n 2a„4{EI U„(x„(1  E„))  U„(x„(1))14 
                  + ElU„(x„(-1))  U„(x„(E„  1))I4} 

                 + E[U„(x)  U„(x„)(1)]2[U„(x„(1  E„))  U„(x„(1))]2 
                + E[U„(x) U„(x„(1)]2[U„(x„(-1)) U„(x„(E 1))]2 

+c2onIa„2Erki') (tt)E[U„(x)  U„(x„(tn))]2 (4.34) 

Following the arguments used for (4.22) to (4.24), we obtain 

E[Ji2(y)  J„2(y)]2 < c2in 2a, 4[a„E„ + a„E„] + c22n-'a„ 2 a„ 
                    1-3/2-7/2 1l3                       = c7lna „[n2a/7-4+na„] + c22nan(na„) 

       = o(n-'a„)(4 .35) 

as n -> x. This proves (4.32). Thus from (4.5a), (4.6), (4.11), (4.21), (4.25) to (4.27) 
and (4.31), we obtain that 

E[v :,2,.Y(y)] = E[4 2,1(y)] + o(1/n),(4.36) 

as n -> D
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   We now turn to c(„,(y), i = 1, 2 defined in (4.5). First consider E; ;)(y): Now on the 
set { D„(x)I = 11  t (x)I < < 1} expanding [1  D„(x)]-1 in powers of D„ = D„(x), 
we obtain 

IE;LIAY)I = ( + E(vZ.,(Y)1[ID„I<,lJ(D„ + D, + ...))I 
[Ev4n (Y)]"2(P[ID„I  r7])"2 

           + (1  ri)-1 [Ev1z(Y)]I i2(E(D ,2,))t/2 
           = [Ev7tz(y)]1/2 . (ED ,2,)1/2[1 + (1  ~l)—t]•(4.37) 

Now after some lengthy computations one can show that 

2 E[v4„.Y(Y)] = c(na,l) 2 (f ki(u)du) {G.r(Y)(1  Gy(Y))  2a„gx(Y) rV(K2)}2 
     + o (n-2a,7 I)(4.38) 

and by using Taylor's expansion for t„(x) as for v„ .C(y) and arguments used for evaluating 
E(J i(y)), E(J4„ (y)), it can be shown after extensive computations that 

E[D] = E[1 7(x)]2 
                   = 1  2E[t , (x)] + E[64, (x)] 

                  = c(na„)-t (j ki(t)dt) + o(n-I),(4.39) 
as n > x. Using (4.38) and (4.39) in (4.37), we obtain 

I E;,'(Y)I = O((na„) t(na„) 112) 
           = o(n-1)(4.40) 

as n -> x. To prove a similar result for 1E;,22(y)1,  we need the order of the fourth 
moment of D„, viz., (obtainable after extensive computations) 

2 E[D4] = c(na„) 2(J k (t)dt)) + o(n `'a„-t),(4.41) 
as n — x. For the case m = 1, since IG„_Y(y)  GC(y)I = I v„_C(y)lt„(x)I is bounded, we 
obtain using (4.41) that 

I £ 1r(Y)I cP[I D„I ~ ~] 
critE[D,] 
                = o(n I ).(4.42) 

For the general case m > 1, we need to impose a condition on the estimator, viz., 

supE I G„ ,(y) 12” < x for some p >_ 4;(4.43) 

then taking p = 4, and using Holder's inequality, we obtain 

I4 AY)I [E(Gx.Y(Y) + 1)]U4(P[ID„I > ~])~
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c(E[D4„D 
= o(n-~) ,(4.44) 

as n - c, where for the last inequality we have utilized the order of E[D`;] given by 
(4.4). Thus (4.40) and (4.44) establish (4.5). 

   From (4.5), (4.11) and (4.36), we obtain as n ---> x 

MSE(c,,r(y)) _ (na„)-' (J ki(t)dt)[G.r(y)(1  G.Y(y)) 
                      2a„g.r(y) J sK2(s)dK2(s) + o(a„)] 

                         + O(a'„+2) 

_ (na„) I (1 ki(t)dt) [GY(y)(1  G.,(y)) 
                       2a„g_Y(y) J sK2(s)dK2(s) + o(a„)], (4.45) 

provided we assume that na ,  0, as n — x for the case m = 1; for the general case m 
> 1, the result (4.45) holds if we assume na,,,'„+3 —> 0, as n -> x, and that the condition 

(4.43) holds. 
   By following similar arguments, under the same conditions (excepting the not 

relevant ones on K2) we obtain for the unsmoothed conditional empirical distribution 
function G„ ,(y) that, as n ---> x, 

MSE(G„.Y(y)) = (na„)-1(J ki(t)dt)[Gx(y)(1  Gr(y)) + o(a„)]. (4.46) 
We thus have 

   LEMMA 4.1. Suppose that the assumption A.I(ii), A.II hold and the kernel 
functions K1, K2 defining W„(t, s) in (4.3) satisfy (4.4) for some m 1 with (4.43) also 
holding if m > 1. Further, assume for the bandwidth sequence {a„} that, as n — x, in 
addition to A.IV(i) and (ii), na2'„+3 —> 0, as n  x. Then for sufficiently large n, the 
MSE(b„ .t(y)) and MSE(G„ ,(y)), for fixed x E A (F) and y E 2k with W„(t, s), as given 
in (4.3), are given by (4.45) and (4.46) respectively. 

   PROOF. The proof has been accomplished as assertions (4.45) and (4.46) above. ^ 

   We nowderive the (asymptotic) expressions, as n ->x, for the MSE's of the NW 
type smoothed and unsmoothed estimators G„_Y(y) and G„_Y(y)                                                    of the conditional d.f. 
G_C(y), for fixed x E A(F) and y E 9k, respectively, given by 

       G r.r(y) = (na„)`(di(x))-' kt((x  X,)Ia„)K2((y  Y,)/a„) (4.47) 
f=I 

and
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 G,~.~(y)= (na„)1(d,(x))-' E ki((x — X,)/a„)I1y1 1,(4.48) 
=t 

where d (x) = (na„)-I ki((x  X,)la„). By noting that, as n  x, d,(x) — f(x) 
with probability one and arguing as for (4.5) and (4.6), we have for sufficiently large n 

E[G ;.r(y)  Gr(y)]2 f 2(x)[Var(J;,(y)) + (4r(y))2] 
                     = f 2(x)[n'E(Z„i) + n '(n  1)(E(4,1))2], 

where J„t(y) = n I 1 Z i(y) = E[J,1(y)] and 

Za, = a,T tkt((x  X,)Ia„)[K2((y  Y,)1a„)  G,c(y)], 

i = 1, 2, ... n. Now using below the transformation a„t = x  u and a„s = y  v, and 

integration by parts, we have for sufficiently large n 

E[Z ,,] = a,71 f ki((x  u)/a„) f (K2((y  v)Ia,,)  Gz(y))dG„(v) dF(u) 

     = f ki(t)[1.  G(r c,t>(y  a„s)dK2(s)  GY(y) f(x  a„t)dt 

   = O(a,„+i)(4.49) 

In concluding the last assertion in (4.49), we have specifically used the fact that K1, K2 
E ce(,„). Further similarly as in (4.10), for sufficiently large n, we have using (4.26) 

a„E[4,2t] = f ki(t) [J[K2((y   v)Ia„)  G_z(y)]2dG(.v_a„,)(v) f (x  a„t)dt 
         = f ki(t) GY(y) + 2 f G(_ a„t)(y  a„s)K2(s)dK2(s) 

              2G.x(y) f G.r-a„f(Y  a„s)dK2(s) f (x  a„t)dt 
        = f (x) (f ki(t)dt) [ GY(y) (1  G,(y)) 

            2a„g,(y) f sK2(s)dK2(s) + O(a,) + O(47+1)(4.51) 
Thus from (4.47), (4.49) and (4.51), we obtain 

MSE(G,.Y(y)) = (f(x))1(na„)71(f ki(t)dt) Gz(y)(1  G.Y(y)) 
                    2a„gz(y) f sK2(s)dK2(s) + O(a,m+1) + O(a2m+2) 

              = f t(x) (na„) 1(f ki(t)dt) G.r(y) [1  G,c(y)) 
                  2a„gz(y) f sK2(s)dK2(s) + o(a„)(4.52)
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for sufficiently large n, provided we assume that na ~"'+3  0, as n --> x. 
   By following similar arguments and under the same assumptions as for (4.52) 

(except for those on K2), we obtain for the unsmoothed NW-type conditional empirical 
d.f. G;,r(y), that as n -* x 

MSE(G,,,(y)) = f1(x)(na„)1(Jki(t)dt) [Gx(y)(1  Gx(y) + o(a„)]. (4.53) 
We can thus state 

   LEMMA 4.2. Suppose that assumption A.1(ii), (iii), A.II hold and kernels K1 and 
K2 defining W„(t, s), belong to €(,,,) for an m >_ 1 with (4.43) also holding if in > 1. 
Further assume that the bandwidth_sequence {a„} satisfies a„—> 0, na„— x, but na”'+3  0

, as n -> x. Then the MSE(G;;(y)) and MSE(G,,1(y)), for fixed x E A(F) and 
y E 3t and W„(t, s), defined by (4.3), are given, respectively, by (4.52) and (4.53) for 
sufficiently large n. 

   REMARK 4.1. Bandwidth Selection. Combining arguments of Corollary 3.1 with equation (4.45), one can rewrite (4.45) more precisely as 

f MSE(G,, (v)) = n-1 a„1( k (t)dt)G.r(y)(1  Cr(y)) 
                  n CJ ki(t)dt) 2gx(y) J sK2(s)dK7(s) 

                      z„,+~z ~ +a„2b( .0+ o(na„), 

where b.z(y) is br(y) defined in Corollary 3.1 with 0 and 0' replaced, respectively, by 
1 and f s'idK2(s). This equation yields the asymptotically "optimal” bandwidth 
minimizing MSE(G (y)) as a i = cr(k K2, G)nii(2"'+3) with a'(k1, K2, G) = 
[(f ki(t)dt)G.Y(y)(1  G.Y(y))I2(m + 1)br(y)]'/(2'"+3) Thus the "optimal" bandwidth is 
of order n 1/5 for m = 1 and n11(2m+3) in general when m > 1. In practice, one may 
use a bandwidth of slightly higher order than the "optimal” one , especially while 
choosing suitably the same band width for all values of y. Alternatively , for the "optimal” bandwidth one would need to replace G_Y(y) and its required partial derivatives 
in b_r(y) by their respective preliminary estimates. This remark applies, with appropriate 
modifications, to bandwidth selection in case of NW estimator G _C as well.

Relative Efficiency and Deficiency 

   From Lemmas 4.1 and 4.2, it follows that asymptotically, as n  x , the smoothed 
and unsmoothed RNN (NW) type (appropriately normalized) kernel estimators 
G,,Y(y)(G ,_r(y)) and G„x(y)(G;,Y(y)) of G_Y(y), for fixed x E A(F) and y E 91 have 
asymptotically the same mean, variance or MSE. For comparing the performance of 

the above smoothed vs. unsmoothed estimators, thus, it is necessary to invoke a 

higher order efficiency, namely, that based on the concept of Relative Deficiency 

introduced by Hodges and Lehmann. For this, first note from the expressions defining
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G„„(y) or G„ ,(y), that the probability that an observation (X1, Y,) will play an "effective” 
role in the definition, say, in the RNN case is PO'(x) — F(X,) a„1 = P[F(X,) E 
(F(x) — a,,, F(x) + a„)] = 2a„(and in the NW case P[X, E (x — a„, x + a„)] = F(x + 
a„) — F(x — a„) 2a,,f (x)). Consequently the "effective” sample size in the above 
definitions is of the order na„, as n c. 

   Accordingly for the definition of Relative Efficiency and Deficiency, we set N(n) = 
[na„] and denote by 

N (n) = min{R = [raj: MSE(G,x(y)) < MSEG„_t(y)}; (4.54) 

then [S(n)/N(n)] and IN (n) — N(n)] are called the Relative Efficiency and (relative) 
Deficiency, respectively, andtheir limiting values ARE(G, Y(y), G„.~-(y)) = 
N(n)] and ARD (G„_Y(y),G„ .r(y) = lim„~r [. A (n) — N(n)], if they exist, are called 
Asymptotic Relative Efficiency and Asymptotic Relative Deficiency, respectively, of 
G„ ,-(x) w.r. to G,, (x). Forthe NadarayaWatson type smoothed and unsmoothed 
conditional empirical d.f.'sG, .,(y) and G _Y(y), one may define .N' (n) as ,V(n) in (4.54) 
by replacing in these G„,(y) and G r(y) with G„_r(y) and G,.x-(y), respectively. The 
ARE and ARD of G, .Y(y) with respect to G,,(y) can then be defined similarly. 

   We can now state 

   THEOREM 4.1. Assume that N(n)In  1 as n — x. Then (a) Under the conditions 
of Lemma 4.1 and Lemma 4.2, respectively (i) ARE(G„,-(y), G,, (y)) = lim„~7[X(n)/ 
N(n)] = 1 and (ii) ARE(G 7.z(y), G,',_r(y)) = lim„_>x[S” (n)IN(n)] = 1; 
(b) Let ip(K2) = 2 f sK2(s)dK2(s). Then under the conditions of Lemma 4.1 and 
Lemma 4.2 respectively, we have 

(i) lim„~y N (n) — N(n)   gr(y)1p(K2)  N(n)a
„ G„ (y)(1 — G 

and 

 (ii) lim„~7 „V. (n) — N(n) = gx(y) 1V(K2)  N(n)a
„Gv 1 — G 

   PROOF. The proof of part (a) is straightforward and follows from (4.45), (4.46) 
and the definition of „N°(n) in (4.54): 

                       Gx(y) [ 1 — G.,(y)] + o (aroo)       li
m [~N~(n)/N(n)] = limG

Y(y)[1 — Gr(y)] — a„g.r(y) ib(K2) + o(a„)= 1. (4.55)   It~f„~7= 

This completes the proof of part (a)(i). The proof of part (a)(ii) follows similarly from 

(4.52), (4.53) and (4.54)*, that is, (4.54) with S' (n) in place of X (n). 
   For part (b)(i), from (4.55) we have 

lim.N(n) — N(n)— lim1  a„g_z(y)' V(K2) + o(a,t„)) + o(a„)  
       ,, N(n)a„ ,,a,, G -(y) [1 — G.Y(v)] — a„g.Y(y)1V (K2) + o (a„)
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                  _  g.,(y) 1V (K2)  
G.r(y)[1 — GY(y)]' 

where, to obtain last expression as limit, we have used the obvious result that(a,.(„)/a„) 
  1, as n — x. The proof of part (b)(ii) follows similarly using (4.52), (4.53), (4.54)* 

and the preceding arguments. The proof is complete. ^ 

   COROLLARY 4.1. If p(K2) > 0, then under the conditions of Lemma 4.1 (Lemma 
4.2) the relative deficiency of G„_r(y)(G „_Y(y)) iv.r. to G„,(y)(G;,.r(y)) for fixed, x E A 
(F) and y E A, namely, [J' (n) — N(n)] ([S '(n) — N(n)] — x), as n — x. 

    PROOF. Follows from Theorem 4.1. ^ 

   REMARK 4.2. If we define Deficiency using the actual sample size `n' instead of 
effective sample size `na„', we still have similar results as seen below: Let r(n) = 
min ft MSE(Grv(y)) MSE(Gf1.z(y))}. We then have from (4.45) and (4.46) 

        rna---------- [ar(y)+o(ar(,,))]Cna----[uY(y)— a,,g(y)Y (K7) + o(a,,)]~     ()r(,,),t 

where 6,(y) = G,(y)[1 — Gz(y)](f ki(t)dt). Since r(n) — x as n -~ x , it is easily 
verified that, if ip(K,) > 0, for sufficiency large n 

r(n)ar(„) 1
, and(4.56) 

na„ 

        r(n)—n C1 11+gv(y) V(K2) + on + o(1);(4.57)        r(n)ar„a,„ a„) a r(n) 

In fact, equality holds in (4.56) in the limit, as n --> x, irrespective of the sign of i(K,) . 
If {a„} satisfies (for large n) 

r(n)(40) 1 
r(n) >_ n,(4.58) 

na„ 

then it is easy to see from (4.56) and (4.57) that 

                    r(n)—n gv(y)t(K2) 
+ 01, 

                 na„Q .~(y)() 

which implies that if ip(K2) > 0, r(n) — n —> x as n —> x as in Corollary 4.1. The 
condition (4.58), in fact, implies that lim[r(n)/n] = 1 as n — x. The usual choice a„ = 

   with (2m + 2)-' < ri < 1/3 satifies (4.58) in addition to other stipulated conditions 
as required in Theorem 4.1. 

   REMARK 4.3. From Corollary 4.1, it follows that if K2 in (4.3) is chosen to satisfy 
the required conditions in (4.4) and that p(K2) = 2 f sK2(s)dK2(s) > 0, then since the 
asymptotic relative deficiencies ARD(G„r(y), G„_Y(y)) and ARD(G ,.1(y),6,L,(y)) — x, 
as n --j x, in either case of RNN or NW estimators above , smoothing with K2 does 
bring about improvement in the performance of the above defined c .e.d.f.'s as estimators
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of Gr(y), for all specified values of x E A(F) and y E Ji. However, since ARE(G„ r(y), 
G;, ,(y)) = f I (x) which in most situations is >_ 1, one should prefer the smoothed RNN 
type estimator over the corresponding NW type if both ARE and ARD are the criteria 
to be used in selecting the estimator.
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