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                    Abstract 

   The minimum discrimination information (MDI) procedure for lowering 
the mean squared error (MSE) of the minimum variance unbiased estimator 

(MVUE) of the normal mean is considered. The procedure is employed to 
shrink the MVUE toward a preliminary conjectured interval under the 
information measure of Kullback and Leibler (1951). MDI estimator and its 
mean squared error are derived. The suggested estimator compares favorably 
with the previously proposed estimators in terms of mean squared error 
efficiency.

1. Introduction 

   Let XI,. .. ,X„ be i. i. d. N(t, a2) where p is the parameter of interest. Then the 
minimum variance unbiased estimator of p is the sample mean X„ given by 

1 " X
„ _ X,.(1.1)                                                  11 _I 

However, for the problem of estimating the normal mean, if we have a preliminary 
conjecture that p E [a, b], and if that information is strong compared to other available 
evidence, it would be better to use an estimator µ„ which combines the preliminary 
conjecture in the estimation space around which accuracy seems most crucial. So that 

u„ has smaller mean squared error (MSE) than X„ for all Ft in the conjectured interval 
[a, b], even though its MSE is greater than that of X„ if p is not in the interval. 
Thus, if the preliminary conjectured interval [a, b] contains p, we gain in MSE 
efficiency by using p„ instead of X„. 

   For the known variance case. the literature has given considerable attention to the 

problem of estimating the mean of a normal population under a prior information. For 
the point prior information case a = b = p(, various choices of the shrinkage type 
estimator have been considered. Hirano (1977) studied a special type of preliminary 
test estimator using Akaike's (1973) information criterion. Thompson (1968a) and 
Mehta and Srinivasan (1971) derived their shrinkage estimators based on the MSE
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criterion. Inada (1984) derived an estimator by a minimax regret criterion . Howkins 
and Han (1989) proposed a class of shrinkage estimators by a minimum average risk 
approach. On the other hand, when prior information at hand is in a form of p E [a , 
h], Thompson (1968b) gave an estimator which shrinks to an interval centered at a 

point, ,a0. Disadvantages of the estimator may be specified on two grounds. First, its 
loose specification gives rise to enormous numerical calculations for detecting optimal 
value of parameters. Secondly, its MSE sometimes takes larger value than that of X„, 
even though p takes some value in [a, b]. 

   The object of the present study is to propose and study yet another estimator 
which shrinks toward an interval, and to eliminate those problems attached to 
Thompson's estimator. Estimation of the normal mean with the interval prior information 
is treated as a constrained optimization of the KullbackLeibler discrimination infor
mation function. Ths is called "minimum discrimination information” (MDI) procedure 

(cf. Gokhale and Kullback, 1978), so that we shall call an estimator of p obtained from 
this procedure as a minimum discrimination information estimator (MDIE). In section 
2, we obtain the MDI estimator for the problem, and derive its MSE. In section 3, 
some shrinkage estimators that already exist in the literature, including preliminary test 
estimator, are reviewed and their MSE efficiencies over X„ are compared with respect 
to the MDI estimator. Section 4 contains some conclusions and further research topics 
of interest related with this study.

2. Minimum Discrimination Information Estimator 

   In the analysis of discrete and categorical data, the minimum discrimination 
information (MDI) procedure pioneered by Kullback (1959) is defined as the problem 
of finding the discrete frequency distribution p* E P that minimizes the Kullback
Leibler discrimination function 

1(P yr) = EP(w)log ~()(2 .1) 
                n(w) 

subject to linear constraints on p in the form of Cp =0 , where .7(w) denotes a reference 
distribution which arises from the problem of interest, and the distribution p(w) is a 
member of a family P of distributions. The problem is the "external constraints 

problem (ECP)" when the reference distribution is .Tr = ,n , the vector of observed 
proportions (the unconstrained maximum likelihood estimates), and the constraints are 
provided "externally" to the data (cf. Gokhale and Kullback, 1978). 

   We apply this procedure to our problem in the continuous case. More specifically, 
we are concerned with estimating the mean p of a continuous distribution f (x I p, a2) 
with known a2 and the preliminary conjecture p E [a, b]. Usually, the interval [a, b] 
is centered at po. In that case it can be expressed as [p0 — 6, p0 + 6]. We assume, 
to begin with, that the underlying distribution is normal under external constraint 
p E [a, b]. 

   Let g(x I X„, a2) be the reference distribution which uses the normal distribution 
with mean X„ (the unconstrained maximum likelihood estimate of p) and known



A  minimum discrimination information shrinkage to interval estimator of the normal mean 63

variance o2. Then the KullbackLeibler (1951) discrimination information is given by 

I (f : g) _ f f(x 1,u,o2) logAAu, 6-)  dx (2.2) 
g(x1X,,, Q-) 

where 1(f: g) is a random variable which uses the statistics X„. 
Motivation of choosing this disparity measure can be found in Shore and Johnson 
(1980). Our aim is to find a normal density f*(x1u, u2) from the family of normal 
distributions f (x (,u, 02) which is as close as possible to the reference distribution 
g(xiX,,, u2) subject to the preliminary conjecture u E [a, b] that is a constraint 
provided externally to the data. Since u2 is known, this optimization is the same as to 
find the mean of the normal density f *(xl u, o2). That is, we want to find the mean of 
f*(x u, u) such that f *(x L u, a2) minimizes I(f: g) subject to the external constraint 
that true of u lies in an interval [a, b]; 
Thus we 

                      minimize 1(f: g) 
                                                     (2.3)                        subject to u E [a, b]. 

This problem bears analogy to the "external constraints problem (ECP)” in the MDI 
procedure. 

   THEORM 1. The minimum discrimination information estimtor of u and its mean 
squared error are given by 

                          b if X„>b, 
T,MDI = X„ if X„ E [a, b], (2.4) 

                           a if X„<a, 

and 

MSE[TMD,] = c4„[(0„ — 0)0(0„ — 0) — (Oh — 043(6), — e) 
                 + I(eb — e) — P(e„ — e) + (e„ — 0)2c(e„ — e) (2.5) 

                + (eh — 0)2 {1 — '(eh — 0)}] 

where 0„ = a/Q—v , eh = b/QX , 0 = ,u/QT,,, and 4(•) and I(•) respectively denote p.d.f. 
and c. d. f. of the standard normal distribution. 

   PROOF. Integrating the right hand side of (2.2) with respect to x, 

I(f : g) 2a2(u— X„)2(2.6) 
This is a convex function of u with grobal minimum at X„. Subject to the external 
constraint u E [a, b], I(f : g) minimized by u = b if X„ > b, u = X„ if X, E [a, b] and 
u = a if X„ < a. Thus we get the minimum discrimination information estimator TMDJ 
given by (2.4). Using the p.d.f. of X„, h(•), we have the mean squared error of TMDi 
given by
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b MSE[T.1101] f_ f (b — p)2h(v)dv + I (X„ — u)2h(v)dv 
bu 

                                             a             + J (a — u)2h(y)dv,(2 .7) 
which yields (2.5). 

   Further, we consider the estimation problem subject to the following condition 

   (A): the estimators have the form 

aX„+ (1 — a),uo(0< a 1),(2 .8) 

          and belong to the conjectured interval [, , — 6, po + 6]. 
Usually the estimator having the above form is said shrinkage estimator. 

   THEOREM 2. Subject to (A), the minimum discrimination information estimator of 
p given by 

                      po+6 if X„>14)+6                'T
.11 .0 1  = X„ if X„ E [p — 6, [to + 61.(2.9) 

                            —6 if X„<po-6. 

   PROOF. The problem is reduced to finding an optimal a(0 __ a _ 1) which 

        minimizes I(f : g) 
       subject to aX+(1 — aEk] (0<)(2.10) 

I(f : g) is found to be 

I (f : g) _ (X„ — u02(a — 1)2.(2.11) 

Thus subject to a X „ + (1 — (quo E [ p — 6, p0 + 6] (0 a 1) we get estimator 
Tp:1D, which is given by (2.9). 

   If we let a = po — 6 and b = o + 6, then the estimator T,, / f), is equal to T,V11)1, 
which has exactly the same expression as (2.4) with Po — 6, ut, + 6 instead of a, b, 
respectively.

3. Comparison of MDIE with Other Estimators 

   The estimator Tti11)1 claims only to minimize the KullbackLeibler information 
measure that have externally constrained parameter space , p E [a, b]. Therefore, 
under the same preliminary conjecture, we now compare its MSE efficiency with that 
of some other estimators in the introduction. When considering the normal distribution 
which is translation invariant, we can clearly confine the comparison without loss of 

generality to the case of p)) = 0. So that, in our comparison, we shall take [-6, 6] as 
the preliminary conjectured interval and the origin as the center of the interval of 
critical accuracy.
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   For comparison with the MDI estimator given by (2.5) with replacements b = b 
and a = —(5, we have chosen four estimators as described below. 

   (a) Two types of preliminary test estimator for this problem (cf. Bancroft and 
Han, 1977) is given by 

                    0 if 1X„1la < Z(;'), 
       PT(i) =i = 1, 2,(3.1) 

X„ if 1 X„ /a, Z(.4 

and if we denote 0(•) and p(•) are respectively c.d.f. and p.d.f. of the standard normal 
distribution, final expressions of their mean squared error are 

MSE[PT(i)] = a. [02 { 1)(C, — 0) + cP(C, + 0) — 1} 

                    +(C1 — 0)0(C; — 0) + (C, + 0)0(C, + 0) (3.2) 
+2—.1)(C10)0(C,+0)1, i=1,2. 

where C, = Z(1') and 0 = piaA,-„. 
Here PT(1) denotes the preliminary test estimator with the significant level al = 0.05 
for the test Ho: u = 0 against H1 : µ 0, and PT(2) indicates that with an optimal level 
of significance (av, = 0.1572...) for the test, obtained by Akaike information criterion 
(cf. Hirano, 1977). 

(b) Two shrinkage to an interval estimators proposed by Thompson (1968b) are 
given by 

                             -(X
„ — (5)2 + k;u  

     7H(j) = X„ + ------"In ------------------------------I. j = 1, 2. (3.3) 
46 _ (x„ + 6)2 + k~ a ,1z 

Here TH(1) corresponds to the Thompson's estimator with value kt selected on the 
basis of the maximum width of the interval for which MSE/o-2,,‹ 1, and the other 
estimator TH(2) denotes that with k-, chosen on the basis of the minimum value of 
ll1SEl6~ . Mean squared errors of these estimators are given by 

7 k;ok. (x + 0 — 002 +k;a MSE[TH(j)] =a;~x + ------"In ------------------------------r(3.4) 
400 (.x+0+00) +k;ak

                     x sp(x)dx, j = 1, 2. 

where 00 _ o/a  , 0 = u/a,~. and 0(.) denotes p.d.f. of standard normal distribution. 
Here we may need massive numerical calculation to get the values of k1 and k, which 
correspond to a given value of 6. For our comparison we used values of 6 whose 
corresponding k, and k, values are tabulated in Thompson (1968b). 

   We shall denote MSE efficiencies of T_ti1L,J, PT(i) and TH(j) over X„ as 
e(T,ti1DI) = MSE(TvJn/)Iax,,, 

                 e(PT(i)) = MSE(PT(i))l Q , i = 1,2, (3.5) 
e(TH(j)) = MSE(TH(j))l at. . j = 1,2. 

Following figures show the graphs of (3.5) plotted against 101 = 11110-T„1 for 2 different
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preliminary conjectured interval cases, Go = 1, 2, where 00= 8/6X,,. Since our aim is to 
compare the efficiencies of the shrinkage estimators in or near the preliminary con
jectured interval, it would be sufficient to depict the efficiencies of them only for the 
region of 9! 5. These figures are symmetric with respect to the origin. 

   In Figure 1 we see the efficiencies of the five different estimators which shrink 

toward an interval constructed by setting 00 = 1, i.e., 10 1. Several behaviors of the 
efficiencies may be pointed out from this figure. First, the preliminary test estimators , 
PT(1) and PT(2), are inferior to the other estimators in a sense that , comparing to 
the others, these estimators do not attain any single most efficient point throughout the 
values of 10i, and yield worst case, e(PT(i)) > 1, i = 1, 2, even in some regions of the 
conjectured interval I e) 1 (cf. Table 1 and Table 2). Secondly, Thompson's estimators 
TH(1) and TH(2) show thier smallest e(TH(j)), j = 1, 2, at the middle of the interval of 
shrinkage, and give the 101 values at which e(TH(j)) = 1, j = 1, 2, i.e., the 
breakeven points, outside the interval of shrinkage. On the other hand , the MDI 
estimator achieves smallest e(Tm1,/) around the edge of the interval of shrinkage . This 
behavior, which is not in general equated to 0, gives rise to the estimator to have the 
widest efficient interval, for which e(Tmm) < 1, of all the five estimators. If we 
compare the MDI estimator with Thompson's estimators in terms of MSE efficiency , it 
appears that Thompson's estimators are better when the value of 101 locates in the

Fig. 1. Efficiencies of the five estimators in case of H„ = 1.
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middle parts of the interval of shrinkage, but get worse than the MDI estimator as that 
of 6 lies around the edge of the interval (cf. Table 1). 

   Figure 2 depicts the efficiencies of the five shrinkage estimators with the interval of 

shrinkage 61 2. The analyses of this figure are same as those of Figure 1. But it is 
important to notice that, compared to X,,, unliked the MDI estimator both Thompson's 
estimators do not achieve uniformly smaller MSE over the interval of shrinkage 

(cf. Table 1). For the purpose of overall comparison of the five estimators, we show in 
Table 1 and Table 2 two key indications of MSE efficiency of each estimator for 60 = 1, 
2, 3.5. 

   These tables show that unlike others. over the every case of shrinkage interval, the 
MDI estimator produces uniformly lower MSE than X,,, and tends to sustain this 

property in the outside vicinity of the interval of shrinkage (or preliminary conjectured 
interval).

4. Concluding Remarks 

   We have proposed and studied yet another estimator for the mean of a univariate 
normal distribution by shrinkage toward a preliminary conjectured interval. The sug

gested estimator is obtained from the minimum discrimination information (MDI) 
procedure using the reference distribution as the maximum entropy distribution with

Fig. 2. Efficiencies of the five estimators in case of O = 2.
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  Table 1. Breakeven points (BP); value of 01 on which e(PT(i)) , e(TH(j)). 
           and e(T,11,1) = 1. 

H,> PT(1) PT(2) TH(1) TH(2)T,J/„ 

1.0 0.83 0.771.631 .331.84 
2.0 0.83 0.772.011 .372.83 
3.0 0.83 0.772.221 .393.83 
5.0 0.83 0.772.401 .405.83 

 Table 2. Most efficient intervals: intervals of 101 on which certain estimator 
         achieves the minimum MSE efficiency of all estimators. 

Hb PT(1) PT(2) TH(1) TH(2)I ,wvi 

1.0(0 , 0.79) (0.79. 1.84) 
2.0(1.09. 1.15) (0, 1.09) (1.15. 2.83) 
3.0(1.04. 1.75) (0, 1.04) (1.7.5. 3.83) 
5.0(1.03. 2.38) (0 , 1.03) (2.38, 5.83)

unconstrained sample estimates of the corresponding parameters . 
   For various choices of the interval of shrinkage , we compared MSE efficiency over 

X„ and the most efficient interval (MEI) with the other shrinkage estimators . In 
particular, some choices of the interval of shrinkage, H„ = 2. 3, 5. unlike the others, the 
suggested estimator dominates X„ uniformly in MSE when the true value of H lies in 
the intervals, and this dominance continues to exist for the regions of somewhat beyond 
the intervals. These regions are not, in general. expressible as a function of 0. For a 
practical view point, the MDI estimator is unique, making the shrinkage estimation 
of the normal mean simple, while the other estimators have loose specifications , 
permitting great latitude in choices of the unspecified parameters. Unlike other estimation 
situations (cf. Gokhale, Inada and Kim, 1991), it is interesting to see that our MDI 
estimator coincides with that obtained by the constrained maximum likelihood method 
under the constraint u E [a, h]. 

   Finally, the principle of constructing the MDI estimator used in this paper can be 
extended easily to the derivation of a shrinkage estimator of the normal mean for the 
unknown variance case, and this estimator is now under investigation .
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