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                    Abstract 

   For a mapping f from a Banach space to another space, a second-order 
extension of Ljusternik's theorem is given under certain assumptions weaker 
than those of previous literatures. Twice Frechet differentiability of f is not 
assumed. In place of it, the second-order Neustadt derivative and directional 
derivative are used.

1. Introduction 

    A second-order version of Lujusternik's theorem has been given. for instance on 
a finite dimensional space, by Ben-Israel, Ben-Tal and Zlobec (Ref. 1, Theorem 12.9) 
as follows: 

   Let H: R" — fe be twice continuously differentiable at a point xo satisfying H(xo) 
= 0. Assume that the range space of the Jacobian matrix CH(xo) is RP. Let VH(xo, x)) 
be defined by 

                              to > 0, 3r : (0. to]--->R" 
                          such that       V

H(xo, x1)=z E R"x
o+ tx) +;t2z + r(t) E N[H] Vt E (0, to) 

Hr(t)I/t2 --> 0 as t 1 0, 

where N[H] = {x E R"; H(x) = 0). Then for every x) satisfying FH(xo)x) = 0, it 
holds that 

VH(xo, x)) _ {z E R"; ['H(x0) z + H" (x0) (x1. x1) = 0) , (1) 

where H"(xo) is the Hessian matrix of H at x)1. 
   A similar result on Banach spaces has been given by Ben-Tal and Zowe (Ref. 

2, Proposition 7.2). 

   The purpose of this paper is to give an expression similar to (1), under weakened 
assumptions concerning the twice differentiability of the mapping H. In this paper H is 
a mapping from a Banach space to another space, and the twice Frechet differentiability 
of the mapping is not imposed, while the first-order Frechet differentiability is assumed. 

   * Department of Mathematics, Faculty of Science. Kyushu University, Fukuoka. Japan



 54N. FURU KAWA

In place of the twice Frechet differentiability, we use the Neustadt derivative and one
sided (curved) directional derivative, both of which are of the secondorder. In Section 
3 of this paper, an expression of second-order tangent direction for the kernel of the 
mapping is given in terms of second-order directional derivative of the mapping.

2. Basic Concepts 

   First we shall define two kinds of second-order variational sets. 

    DEFINITION 2.1. Let X be a real Banach space, and let Q an arbitrary subset of X. 
For x0 E clQ and xl E X, two kinds of variational sets of Q at x0 (with respect to xi) are 
defined by the following: 

2 to > 0, 3r: (0, to]—X 
           _such that      V(Q; xo, xi—h E Xx

o + txl + t'h + r(t) E Q for Vt E (0, to] 
Mr(t)11/12 -~ 0 as t ,1. 0 

2 {y„} C Q, 2 {A,,} ],0 
        T(Q; x0, x1) =h E Xsuch that 

(y„—xo—A„xi)/A — hasn —x . 

V(Q; xo, x1) is an extension of the tangent cone to the second-order case, and 
T(Q; xo, x1) a second-order extension of the cone of adherent displacements. These 
sets are the special cases of higher-order variational sets given by Furukawa and 
Yoshinaga (Ref. 4). We should note that the definition of V(Q; xo, x1) is slightly 
different from that of VH(xo, x1) in the coefficient of t2, when we put Q = N[H]. 

   Next we shall introduce the concepts of second-order Neustadt derivative and one
sided (curved) directional derivative. 

DEFINITION 2.2. Let X and Y be real Banach spaces, and f be a mapping from X to 
Y. Let xo be a point of X. Suppose that f has the first-order Frechet derivative at x0, say 
Df(xo). If, for a given point xi E X, there exists a point f (2)(xo, x1; x) of Y such that 

f'2 (xo, x1; x) = lim 2[f(x0 + Axi + A2y) — f(x0) — ADf(xo)xi] 
A 1o 

for every x E X, then the mapping x H f(2) (x0, x1; x) is called the second-order Neustadt 
derivative of f at x0 with respect to xi. In this case f is said to be twice Neustadt 
differentiable at xo with respect to x1. 

DEFINITZON 2.3. Let f be as in Definition 2.2. If, for a given point xi E X, there 
exists a point f” (x0, xi; x) of Y such that 

       f"(xo, x1; x) = limA[f(x0 + Axi + A2x) — f(x0) — ADf(xo)xi] 
                         AIO
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for every x E X, then we call the mapping x H f"(xo, xt, x) the second-order directional 
derivative of f at xo with respect to xi. 

   The following definition is essentially same as the notion of local Lipschitz. 

DEFINITION 2.4. (Ref. 3). Let f: X -s Y where X and Y are Banach spaces, and let 
xo E X. When there exist a neighborhood U of xo and a constant K such that 

~J (xr) — fix") }, < K x~ — x" IX for Vx', Vx" E U, 

,f is said to be Lipschitz near xo. 
    The following proposition is obvious from the definitions. 

    PROPOSITION 2.1. Assume that f: X — Y is Lipschitz near xo. If there exists the 
second-order Neustadt derivative f(2) (x0, xi ;•), then there exists the second-order direc
tional derivative f"(xo, x1;•) and one has f(2) (xo, x1;•) = f"(xo, x1;•). The converse 
relation is also true.

3. Main Results 

   Let X and Y be a real Banach spaces. Throughout this section we shall use the 
following notation for the kernel of a mapping g: X — Y, that is, 

N[g]= {x E X g(x)=0}. 

   Now let f be a mapping from X into Y. We shall explain some inclusion relations 
among two kinds of second-order variational sets for the kernel N[f] and the kernel set 
of the second-order Neustadt derivative of f in what follows. 

   LEMMA 3.1. Let xo E N[ f ]. Assume that f is Frechet differentiable at xo, and twice 
Neustadt differentiable at xo with respect to x1 for every x1 E N[Df(xo)]. Then the 
following results hold for all x) E N[Df(xo)] : 

   (i) v(N[f]; x0, x1) C N(f(2) (xe, x1;')], 
   (ii) T(N[f]: xo, xi) C N[f(2 (xe, xt:•)], 

where N[ f ('-) (xo. x1;•)] denotes the kernel of the mapping x H f(2) (x0, x1; x). 
   PROOF. Let xi E N[Df (xo)]. We first prove (i). 

   Let h be any point of V(N[ f]; xo, x1). By the definition, then, there exist a positive 
number to and a mapping r: (0, to] — X such that 

xo + txi + t2h + r(t) E N[f] for Vt E (0, to], (2) 

r(t) II t2 --> 0 as t J 0.(3) 

We put 

0(t) = f(x0 + txt + t2h + r(t)) — f(x0) — t Df(xo)x) 
             = f(xo + txt + t2(h + r(t)1t2)) — f(xo) — t Df(xo)xt. 

Since h + r(t)1t2 — h as t 0 by (3), from the definition of the second-order Neustadt
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derivative we have 

(p(t)lt2 —> f(2) (xe, xi; h) as t 0.(4) 

Obviously it follows from (2) and the way of taking x„ and xi that 

~(t) = 0 on (0, to]. 

Hence from (4) it follows that f(2) (xe, x1; h) = 0, that is, h E N[ f (') (x0, xi;•)]. 

   Next we shall prove (ii). Let h E T(N[ f]; xll, x1). Then there exist { y„} C N[f] 
and {A„} 0 such that 

(y„—xo) „xl)l2.„->hasn—pc.(5) 

Hence one has 

[f (y„) — f(x0) —„ = 0 for Vn, 

which yields with the help of (5) that 

     0 = lim [f (y„) — f (x0) — /1„Df(x0)xi]/), 

hm [ f (x0 + A„xl„(y„ — x0 — „x1)/)`„) — f(x0) it„ Df (x0)xl]/A„ 

       = f(2)(xo , xi; h). 

Thus h E N[ f (2) (x0, xi;•)]. This completes the proof. 
   The converse inclusion relations to (i) and (ii) in the above lemma are very 

important. To derive the converse relations we need to set up the following assumption. 

   ASSUMPTION H. (i) f is Frechet differentiable (in the sense of the first order) on a 
neighborhood U of x0, (ii) the Frechet derivative Df (•) is continuous as a mapping from 
U to L(X, Y) (the space of continuous linear mappings from X to Y endowed with the 
operator norm topology), and (iii) Df (xll) X = Y. 

   The following proposition is an easy consequence of Corollary in p. 32 of Ref. 3: 

   PROPOSITION 3.1. Suppose that f satisfies (i) and (ii) in Assumption H. Then f is 
Lipschitz near xo. 

   We are now ready to prove our main theorem. 

   THEOREM 3.1. Let x0 E N[ f ]. Let the assumptions of Lemma 3.1 be satisfied, and 
let Assumption H be satisfied. Then it holds that 

V(N[f]; Xll, xl) = T(N[f]; x0, xl) = N[f(2)(x0, xl;-)] = N[f"(x0, x1;-)] (6) 

for all xi E N[Df (x01. 

   PROOF. Let xl E N[Df (x0)]. Since, under Assumption H, f is Lipschitz near x0 by 
Proposition 3.1, Proposition 2.1 implies that the last two sets in (6) are equal. Hence, 
by virtue of Lemma 3.1, it suffices to show the following two relations:
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N[f(2 (x(J, x,;•)] C V(N[f]; xo, xi),(7) 

N[f(2)(x0, xi;-)] C T(N[f]; X. x1).(8) 

   Let h E N[ f (2)(xo, xi:-)]. From generalized Ljusternik's theorem given by Ioffe 
and Tihomirov (Ref. 5, p. 34), there exist a neighborhood U of x0, a constant K > 0 
and a mapping r: U —* X such that 

f ( + r(4)) = 0 d E U,(9) 

Ir(:±) K iIfO —f(xo)I = KIIfOI d E U.(10) 

In the right-hand side of (10), notice that x0 E N[ f ]. We set 

                        v(t) = x0 + txt + t2h, 

then we can take a positive small number to such that 

               v(t) E U Vt E [0, to].(11) 

We have 

                lim sup 
                1I r(v(t)) U limsupKl f(v(t)) 

          t()t(by (10) and (11)) 

                = K limsup1II f (xo + txi + t2h) II(12) 
                            ot" 

= K lim supt11 f (x0) + t Df (x0)x1+ t • 4[f(x0  + txi+ t2h)  f (x0)  t Df (x0) xt]li• 
      tyo 

Since f is Lipschitz near x0 as mentioned above, it holds that 

[ f (x0 + txi + t2/) — f (xt,) — t Df(x0) x1]lt2 —> 12 (x0, x1; h) as t [ 0. 

Thus the last term of (12) is equal to 

        K limsupt~iI f (xo) + t Df (x0)xl +t'f (2)(xo, x1; h)~~= 0, (13)                     ti 

in which the last equality follows from that x0 E N[ f ], x1 E N[Df (xo)] and h E 
N[ f (2)(xo, xi;-)]. Combining (12) with (13) yields 

lim Il r(t) lI /t2 = 0,(14) 
t10 

where 

                        r(t) = r(v(t))• 

Substituting 5 = v(t) in (9) yields, by virtue of (9) and (11), 

f(v(t) + r(t)) = 0 Vt E [0. to].
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Namely 

f(x)) + txi + t2h + r(t)) = 0 Vt E [0, to], 

which implies, together with (14), that 

                      h E V(N[ f ]; x0, x1). 

This completes the proof of (7). 
   Let again h E N[ f (2)(4, x) ; • )] . Let {Ak} 0 be arbitrary but fixed. Since f (2)(xo, 

-11;•) = f " (xo, x1;.)  under Assumption H, we have 

           lim1f(x0 (xo + Akxi + Akh) 

            = lim1[f(xc~+ Akxi + ) h) — f (xo) — kDf (x0)x1] 

              = f"(xo , xi; h) = 0, 

which implies 

                  lim1f(xo + Akx) + A2kh)11 = 0.(15) 

Set 

                             = x0 + Akxl + Akh, 

then from (10) there exists a positive integer ko such that 

kE U Vk ko, 
t( k) 11 K I f (k)11 Vk>_ ko.(16) 

Hence, by virtue of (15) and (16), 

             lim sup 11Zk)                    (~~<lim supKIIf(k)~~= 0, 
k~x~k 

which implies 

lim , IIr(k)UU = 0.(17) 
k k 

   On the other hand we get from (9) 

.f ( k + r(k)) = 0 Vk >_ ko. 

Therefore, letting zk = k + T(k), we have {zk; k >_ k0} C N[ f ]. Moreover, 

(zk — xo — Akxl)/Ak = h + r(k)IAk 
~hask x, 

by virtue of (17). These relations imply that
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                      h E T(N[ f ]; x0, x1), 

which completes the proof. 

   COROLLARY 3.1. Let xo E N[ f ]. Assume that f is twice Frechet differentiable at x0, 
and let D2 f (xo) be the second-order Frechet derivative of f at xo. Let Assumption H be 
satisfied. Then 

      V(N[f]; xo, x1) = T(N[f]; x0, x1)(18) 

                   = {x E X; Df(x0)x + 4D2 f (xo) (xi, x1) = 0}. 

   PROOF. Since f is twice Frechet differentiable at xo by the assumptions, f is twice 
Neustadt differentiable at x0 with respect to every x1 and 

,(2) 
kxo,  xt; x) = Df (xo)x + ;D'`f (xo) (x1, x1) Vx E X. 

Hence (18) is obvious from Theorem 3.1. 

   REMARK. One will find a difference between the two expression formulae in (1) 
and (18) : the coefficients of the second-order derivatives are not equal. This is due to 
the formal difference between the definitions of second-order tangent directions in 
Ref. 1 and in our present paper.
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