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A COMPARATIVE STUDY ON THE METHODS OF 

  NUMERICAL ANALYSIS FOR MAXIMUM 
       LIKELIHOOD ESTIMATION

       By 

Hideyuki DOUKE*

                    Abstract 

   This paper comparatively studies adaptability of several methods of 
numerical analysis to obtain the maximum likelihood estimates of parameters 
in normal mixture distributions, on the basis of MLE-SYS system on a per
sonal computer. The comparative study is done for seventeen unconstrained 
and five constrained methods in MLE-SYS system.

1. Introduction 

   Estimating parameters of a mixture normal distribution by moment method was 
first discussed by Pearson [1]. Rao [2] also proposed maximum likelihood estimation by 
scoring method. Several other methods of maximum likelihood estimation (MLE) have 
studied by Hasselblad [3],[4], Wolfe [5], Day [6], Orcard and Woodbury [7]. Several 
kinds of iterative algorithms in numerical analysis have been examined, but unsolved 
difficulties and obscurities still exist for the algorithms, e.g. nonconvergency, local 
optimality, inadequate initial values, unsuitable timing for the convergence, frequent 
occurrence of improper solutions. Recently, Everitt [9] studied comparatively on six 
different methods of numerical analysis to obtain the maximum likelihood estimates for 
normal mixture distributions. 

   The purpose of this paper is to study comparatively the adaptability of seventeen 
unconstrained methods and five constrained methods in numerical analysis by the use 
of MLE-SYS system. The MLE-SYS system [8] has been developed originally on a 

personal computer by a research group of RIFIS at Kyushu University, and enables us 
to dissolve interactively the above difficulties by the useful functions, e.g. choice of a 
method of numerical analysis, restrictions of solutions, convergence conditions, inter
mediate changes to another analytical method and to different initial values, graphic 

presentation of contour map, and so on.

* Department of Information Systems Engineering , Kyushu Tokai University, Kumamoto 862, Japan 

                              185



186H.  DOUKE

2. Maximum Likelihood Estimation of Normal Mixture Distributions 

   A mixture of m normal univariate distributions is as follows, 

f (x) = E Pkfk(x) (2.1) 
k=1 

where
klpk=1, fk(x)=exp(—(x—µk)2I2Qk2)I(2T)1/2Qk,k=1, 2, . . . , m. Letting 

n independent observations be x1, x2, ... , xn, the loglikelihood function is given as 
follows, 

               log L= E log Gi(2.2) 
i=1 

where Gi =IPkGk1 Eki, Eki = eXp(—Aki2I2) and Aki = (xi —µk)I ak, k=1, 2, ... , 
               k=1 

m. To obtain the maximum likelihood estimates, the partial derivatives of log-like

lihood function with respect to p, pk, and 6k2 are shown as, 

alog LI aPk=. Eki l Gick, 
i=1 

                    alog LI aµk=E pk EkiAki IGiok2, 
i=1 

                  alog L/ 30-k2= E Pk Eki (Aki2 — 1)I2Giak3. 
i=1 

   Equating to zero, the equations can not be solved explicitly, then the maximum 

likelihood estimates must be obtained by methods of numerical analysis.

3. The Features of MLE-SYS and Involved Methods of Numerical Analysis 

   MLE-SYS system has been developed on a personal computer to obtain interactively 
the maximum likelihood estimates by the iterative methods of numerical analysis. The 
system provides the following summarized features. 

   (a) Easy entering; For the input of underlying likelihood function or the logarithm 
in FORTRAN language, substitution of parts of the function are available at the same 
time, and furthermore if user wants, numerical differentiation of derivatives is available. 

(b) Variety of the methods of numerical analysis; Since many methods of numerical 
analysis have been studied with the respective advantages under various circumstances, 
the system provides twenty-two representative methods. Therefore, one can apply any 
method registered in the system. (c) Controllable changes of methods and initial values 
in numerical analysis; After applying a method of numerical analysis, if unsatisfied, the 
method is complementarily changeable to the other one. Initial values are also able to 
be devised concretely by using contour maps displaying the values of likelihood function. 
Thus, it will be possible to expect that MLE-SYS has attainability to the maximum 
value of likelihood function through the iterative process of calculation. (d) Easy 
operation; After user's input of likelihood or loglikelihood function, the compilation
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and linkage are automatically done by the computer, without user's experience. User's 
requests for numerical analysis will be satisfied by simple indications in the menus and 
messages. (e) Easy registration of new analytical method; Regarding registration of 
new method of numerical analysis, only the subroutine is needed. The command is to 
be inserted in the menu of analytical methods in the system. (f) Machine independence 
and System maintenance; MLE-SYS is fully written in FORTRAN 77 language, and 
is available on any personal computer with Japanese MS-DOS and English MS-DOS, 
e.g. NEC PC-9801, TOSHIBA J-3100, IBM PC/AT.

3.1. Unconstrained methods 

   Representative and ordinary methods to be applied to MLE, seventeen uncon
strained and five constrained methods, are provided in MLE-SYS system. 

   Let x and f(x) be ndimensional parameter vector and the object function. The 
descent methods for minimizing f(x) [10] generate a sequence x0, x1, ... of n dimen
sional points sucn as f(xk+1) < f(xk), where xk+1 is xk + a dk, k = 0, 1, .... 

     i. Random search 
       A point is searched as the minimum value of the object function is located 

        among points indicated by random numbers. 
    ii. Steepest descent method 

       A large number of steps are usually needed and this method is inefficient in 
        many cases, although many text-books introduce. 

iii. NewtonRaphson method 
       Since many nonlinear functions can be approximated by quadratic forms, the 

       method is frequently applied for obtaining the optimal point. If the Hessian 
       matrix is positive definite for all points, the algorithm will converges rapidly. 
    iv. LevenbergMarquardt method 

        For nonpositive definite Hessian matrix, the method converts the Hessian 
       matrix into a positive definite by adding a positive definite matrix. 

    v. Variable metric method 
       The inverse Hessian matrix is approximated by the following methods. 

       (a) FletcherPowell method (b) BroydenFletcherShanno method 
       (c) Pearson method (d) McCormick method 

    vi. Powell method 
       The conjugate directions are generated without any gradient vector and 

        Hessian matrix. 
   vii. Conjugate gradient methods 

       Gradient vectors g(xk) at xk are applied for generating conjugate directions, 
       and the direction vector is given by dk=—g(xk) +fikdk-1, 13k E R1 
       The following methods are introduced in the system. 

       (a) FletcherReeves method (b) HestenesStiefelDaniel method 
       (c) Sorenson-Wolfe method (d) PolakRibierePolyak method 

   viii. Direct search methods 
       Without any derivatives, the following methods are introduced.
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(a) Cyclic Coordinate method (b) HookeJeeves method 
(c) Rosenbrock method

3.2. Constrained method 

    i. Penalty method 
      This solution for constrained optimization is to minimize f(x), subject to gt(x) 

          0, i = 1, 2, ... , m, and hi(x)=0, j=1, 2, ... , r. This converts the 

       problem into an unconstrained optimization problem by an augmented object 
      function with a penalty term on the object function, F(x, rk)=f(x)+rk P(x), 
       where P(x) is a penalty function, and rk+1 > rk, for k = 1, 2, .... 

    ii. Barrier method 
       The method proceeds toward the constraint boundary from the inside of 

      feasible region, and then the new object function is F(x, rk)=f(x)+B(x)/ 

      rk, B(x)=
1E11/(—g1(x))a, (ca> 0). 

   iii. Multiplier method 
      The augmented object function is applied with the connection between the 

       penalty functions and the Lagrange functions. 

F(x,A,,u) = f(x) + E Atgt(x) +iht(x) + s1Egl(x) + s2E h7(x), 
1=11=1 1=11=1 

       where A = (A1, A2, ... , Am), µ = (µ1, µ2, , µ,-) and sl, s2 > 0 are Lagrange 
       multipliers. 

   iv. The gradient projection method 
      The algorithm is basing on (a) If x, is in the interior of the feasible region, 

      take the step which minimize f(x) by applying the unconstrained method, 

      (b) If x, is on the boundary, treat some of the active constraints as equality 
       constraints, and continue to minimize f(x) along these constraints until Kuhn

       Tucker condition is satisfied. 
    v. Sequential quadratic programming 
      The method is concerned with finding a KuhnTucher point and is to solve a 

      sequence of the quadratic programming to minimize g(xk)d+dTBkd/2, 
      subject to u(xk)+ Vu(xk)d >_ 0, and h(xk)+ Vh(xk)d = 0, where Vu(xk) 

      and Vh(xk) are the gradient vectors of u(xk) and h(xk) respectively, Bk is the 
       Hessian matrix of the Lagrangian, depending on the scheme of variable 

      metric method. The procedure is (a) The dk and Largange multipliers are 
      obtained with solving a quadratic programming method by a symmetric and 

       positive definite matrix Bk, (b) Set xk+1=xk+akdk for an ak, satisfying 
min f(xk+adk), (c) Bk+i is updated by xk+1 and go to (a), until xk+1 is 

       satisfied by a convergence criterion.

4. Comparative Studies 

   The numerical studies are demonstrated by applying the above mentioned methods 

in order to obtain the maximum likelihood estimates of parameters in a mixture of two
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normal univariate densities as follows, 

                 f(x) =  Pfi(x)+(1P)f2(x)(4.1) 

where fk(x) = exp(—(x — µk)2/2ak2)l(27)-112ak 1, k = 1, 2. 
After generating the uniform random numbers in (0,1), sets of observations were 
obtained by applying (4.1), when the following three sets of parameters are given, 

0a = (P, µl, /12, a12, a12) = (0.4, 0.0, 3.0, 0.5, 1.0), 
6b = (P, 1-119 122, a12, a12) = (0.4, 0.0, 3.0, 1.0, 2.0), 

                                                           = (P, µl, ,ttz, a12, a12) = (0.2, 0.0, 3.0, 1.0, 2.0). 

   In the iterative process, the calculated parameters by the above described uncon
strained methods are always checked for satisfying following convergence criterion, 

6k+1 — 0 k1 < E, and E = 10-4, k = 0,17 ... , 

where 0k is an estimate of i-th parameter in five parameters at k-th iteration. Thus, if 
any one in five parameters at each iteration is not satisfied on the criterion, the 
iteration is continued. On the other hand, the iterations by the constrained methods 
applies the following convergence criterion, because the object function have a big 

penalty on the constraint boundary, 

llog f(Ok+1) — log f(6k)I < £, and E = 10-2, k = 0, 1, ..., 

where 0k is fivedimensional parameter vector at k-th iteration and log f (0k) is a value 
of object function at 0k. The uses of their criteria are to find the location of a global 
maximum, but the iterative calculations frequently lead to a local maximum in many 
cases. In the iterative process, if it is clear that the search attains to a local maximum in 
a few iterations without satisfying the convergence criterion, the iteration is auto
matically stopped. 

 The calculated parameters in each iteration are checked for exceeding the constraint 
boundary of parameters. If calculated parameters have a improper solution, the iteration 
is automatically stopped.

4.1. Comparative studies on unconstrained methods 

   (1) Results for Oa 
When the 0a is compared with 0b and 0,, it is clear that the configuration of two normal 
density functions has a separated position clearly rather than the other sets. Ten 
samples each containing fifty observations were generated from (4.1) and Oa. The 
iterations start from the following three sets of initial values. 

01° = (0.4, 0.0, 3.0, 0.5, 1.0), 
02° = (0.4, 0.0, 3.0, 1.0, 0.5), 
03 = (0.5, 1.0, 2.0, 1.0, 0.5). 

   For many samples, depending on the initial values 01°, 02° and 03°, each method 

leads to various maximum likelihood solutions. However, many methods are classified
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in some groups which have the similar maximum likelihood estimates although the 

estimates among their groups have the different solutions. Table 1 shows the comparison 

of the converged rates of all methods, e.g. the averages and ranges of iteration for ten 

samples without counting the case of improper solutions. It is clear that the speed of 

convergence depends on each initial value or method. Figure 1 shows the mixture 

density which corresponds to the estimates obtained from the Steepest descent method. 

For a sample, all methods from 010 have the following results. 

    i. Steepest descent method, FletcherPowell method, BroydenFletcherShanno 

       method, Pearson method, Mccormick method, FletcherReeves method, 

       HestenesStiefelDaniel method, Sorensen-Wolfe method and PolakLibiere

       Polyak method have the following estimates from all initial values, 

       p = 0.38, µl = —0.16, µ2 = 2.56, a12 = 0.30, a22 = 1.08, log L = —88.10 
       and LevenbergMarquardt method has similar estimates to the above estimates . 

      Thus, it is clear that they lead to higher likelihood than other methods , and it 
       usually gives the same maximum likelihood estimates regardless the initial 

       values. Comparing the estimates with the values of 0a, all methods estimate in 

       common a low values for the given µ2 = 3.0, a12 = 0.5. Steepest descent 

       method needs very many iterations, thus it shows that the method increases 

       very slowly with 10-88 order. 

ii. NewtonRaphson method gives different estimates to the above estimate after 

       only one iterations, 

p=0.42,µ1=0.23,µ2=2.50,a12=0.11,a22=0.73, log L=93.92*. 
       Also, NewtonRaphson method with linear search after 3 iterations has 

       estimates as follows, 

p=0.42,µ1=0.10,µ2=2.74,a12=0.32,a22=0.83, log L=88.41*, 
      where solutions with asterisks mean that the methods attain to a local maximum 

      without satisfying the convergence criterion and finally come to stop . For a 
       few cases, improper solutions appear on the NewtonRaphson method . Also 

      the NewtonRaphson method and the NewtonRaphson method with linear 

      search usually attain to a local maximum of lower likelihood after a few 

       iterations on 01°, 020. They occasionally need very many iterations on 0, 
       they attain to a local maximum. 

   iii. CyclicCoordinate method and Rosenbrock method have the following 

       estimates, 

       p = 0.45, µl = 0.00, µ2 = 3.00, a12 = 0.50, a22 = 1.00, log L = —89.75*. 
      HookeJeeves method give similar estimates to the above estimates . They 

      take a few iteration but have various estimates depending on initial values . 
  iv. The Powell method has the following estimates after 6 iterations , 

p=0.45,µ1=0.00,µ2=3.00,a12=0.50,a22=1,00, log L=89.76, 
      The method converges by the convergence criterion after a few iterations and 

      often takes lower likelihood. 
   v. Random method has the following estimates after 2 iterations , 

p=0.38,µ1=0.03,µ2=2.53,a12=0.29,a22=1.38, log L=88.87*. 
      Random search takes various solutions depending on the initial values after a
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few iterations. 

            Table.  1 A Comparison of convergence rates for  B„

MethodInitial valuesMethodInitial values 

Or BP BC")BC") e) in)) 

Random1.8 2.82.2 Powell6.4 6.88.5 
        (1-3) (2-4) (1-5)(6-8) (6-8)(8-9) 

Steepest descent 144.1 125.8 165.2 Fletcher Reeves 37.3 36.348.1 
            (53-266) (87-164) (96-288)(7-61) (17-61) (19-80) 

Newton Raphson 1.2 1184 Hestenes40.1 40.550.5 
          (1-3) (1-1) (1-437)(21-74) (18-89) (43-62) 

N.R. with L.S. 3.7 4.3 170.2 Sorensen36.7 39.553.7 

           (2-8) (1-14) (1-602)(18-68) (27-55) (33-91) 
Marquardt31.9 24.7 40.3 Polak88.5 94.4103.2 

            (2-80) (4-77) (18-88)(38-133) (48-151) (28-176) 

Fletcher Powell 28.3 18.6 32.1 Cyclic2.7 3.34.6 
          (9-68) (13-39) (18-48)(1-6) (2-4) (4-5) 

Broyden38.7 46.8 46.1 Hooke2.2 2.22.2 
          (25-62) (22-66) (31-72)(1-4) (2-3) (1-4) 

Pearson40.1 42.4 48.3 Rosenbrock 2.7 3.34.5 
          (21-55) (24-67) (37-62)(1-6) (2-4) (4-5) 

Mccormick34.1 35.4 53.4 

            (18-63) (19-78) (34-84)

Entries are the averages for 10 samples. Figures in parentheses give the range
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   (2) Results for 0b 
   The 0b shows that the configuration of the two normal density functions has close 

position rather than the Oa. Again ten samples each containing fifty observations were 
generated from (4.1) and 0b. The iterations start from three sets of initial values as 
follows, 

01° = (0.4, 0.0, 3.0, 1.0, 2.0), 
02° = (0.4, 0.0, 2.0, 0.5, 1.0), 
03° = (0.6, 1.0, 2.5, 2.0, 1.0). 

For many samples, each method leads to more different solutions than the different 
solutions for 0a. A comparison of convergence rates is given in Table 2. The whole 
iterations take more times than the case of 0a. The Steepest descent method and the 
NewtonRaphson method and the NewtonRaphson method with linear search from 
030 need much more iterations. Figure 2 shows the mixture density which corresponds 
to the estimates obtained from the Steepest descent method. 
A example from 010 shows as follows, 

    i. Steepest descent method, FletcherPowell method and Pearson method have 
       the following estimates regardless the initial values, 

p=0.43,µ1=0.17,µ,=2.95,a12=0.69,a22=1.16, log L=94.21. 
ii. BroydenFletcherShanno method, FletcherReeves method, HestenesStiefel

      Daniel method and Sorensen-Wolfe method give the following estimates 
       regardless the initial values, 

p=0.43,µ1=0.18,µ2=2.96,a12=0.69,a22=1.16, log L=94.21. 
   iii. Other methods usually lead to the different maximum likelihood estimates 

       depending on the initial values or samples, and also they have lower likelihood. 
       For many cases, improper solutions occasionally appear in some methods, 

       e.g. NewtonRaphson method, FletcherReeves method, HestenesStiefel
       Daniel method and so on.

Figure 2
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                      Table. 2 A Comparison of convergence rates for 0,, 

MethodInitial valuesMethodInitial values 

or or oror or e(-)) 

Random1.6 2.5 2.3Powell 7.37.9 8.0 
        (1-3) (1-5) (1-5)(6-9)(7-8) (8-8) 

Steepest descent 310.2 240.1 379.1 Fletcher Reeves 70.8 47.5 73.5 

            (80-522) (19-477) (181-524)(57-87) (17-100) (39-114) 
Newton Raphson 15.1 399.6 Hestenes 55.2 68.5 50.8 

          (1-1) (1-7) (1-652)(28-82) (22-109) (2-72) 
N.R. with L.S. 5.2 8.3 289.8 Sorensen 52.2 56.1 64.7 

           (1-16) (3-13) (1-796)(40-58) (26-105) (43-103) 
Marquardt24.4 54.2 36.6 Polak92.7 82.8 127.4 

            (3-54) (4-100) (3-100)(16-196) (21-132) (57-246) 

Fletcher Powell 41.3 53.4 42.7 Cyclic3.4 4.7 4.2 
          (13-112) (8-126) (9.76)(2-6) (3-10) (4-5) 

Broyden36.1 41.4 46.0 Hooke2.5 2.1 2.7 
          (16-66) (16-61) (26-91)(2-4) (2-3) (2-5) 

Pearson47.2 49.6 52.8 Rosenbrock 3.4 9.8 4.2 

          (25-81) (33-61) (40-81)(2-6) (3-56) (4-5) 
Mccormick69.5 54.2 58.0 

            (13-148) (23-89) (13-129)

Entries are the averages for 10 samples. Figures in parentheses give the range. 

   (3) Results for 0, 
   Here, starting values of the three sets are as follows, 

0° _ (0.2, 0.0, 3.0, 1.0, 2.0), 
0° _ (0.2, 0.0, 3.0, 1.0, 1.0), 
03 = (0.4, 1.0, 3.0, 0.5, 1:0). 

   Again, the methods for 0, have similar results to 0b. In this case, most of the 

samples have only a few methods which lead to the similar solutions to one another 

regardless the initial values. Table 3 shows the comparison of convergence rates of all 

methods. The result is similar to 0b except NewtonRaphson method and Newton

Raphson method with linear search from 030. Again Figure 3 shows the mixture density 

corresponding to the estimates obtained from Steepest descent method. A sample from 

010 shows as follows, 

i. BroydenFletcherShanno method, HestenesStiefelDaniel method, and Sor

       ensen-Wolfe method have the following estimates from all initial values, 

       p = 0.69, pi = 1.81, t2 = 3.54, Q12 = 2.98, 022 = 0.19, log L = 92.08. 
       FletcherReeves method shows similar estimates to the above ones. 

   ii. Steepest descent method gives the following estimates after 450 iterations, 

p=0.19,µ1=0.19,µ2=2.75,u2=0.25,022=1.24, log L=-89.36
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   The method has a higher likelihood, but has various estimates depending on 

   the initial values. 

iii. FletcherPowell method has similar result to the above estimates. 

 p=0.19,µi= 0.22,µ2=2.72,a12=0.22,a22=1.30, log  L= 89.35. 
iv. Other methods lead to the different maximum likelihood estimates depending 

   on the initial values or samples, and have lower likelihood. For the many 

   cases, improper solutions occasionally appear in some methods.

                      Table. 3 A Comparison of convergence rates for 9,. 

MethodInitial valuesMethodInitial values 

0C") eT)60)eV>orOP 

Random2.4 1.72.6 Powell6.9 7.4 8.4 

        (1-4) (1-3) (2-5)(6-8) (6-8) (8-9) 

Steepest descent 429.7 301.9 241.4 Fletcher Reeves 73.7 60.1 51.4 
            (227-812) (33-519) (170-404)(21-174) (20-102) (42-65) 

Newton Raphson 11.5 4.5 Hestenes83.0 56.4 60.1 
          (1-1) (1-4) (2-8)(36-106) (2-109) (2-101) 

N.R. with L.S. 3.0 5.2 6.6 Sorensen66.7 63.1 52.1 
           (1-14) (1-15) (4-10)(28-124) (38-106) (29-79) 

Marquardt21.7 47.0 35.4 Polak163.7 143.5 95.8 

            (5-88) (5-114) (3-100)(57-234) (42-296) (36-185) 

Fletcher Powell 36.2 50.5 29.2 Cyclic2.7 3.8 4.3 

          (18-68) (29-83) (9-49)(2-5) (2-6) (3-6) 
Broyden46.2 44.7 43.7 Hooke2.7 2.1 3.7 

(31-70) (35-65) (27-65)(2-6) (2-3) (2-5) 
Pearson39.4 48.4 42.9 Rosenbrock 4.5 10.6 5.8 

           (14-61) (28-75) (25-66)(2-23) (2-73) (3-19) 
Mccormick74.1 110.7 63.1 

            (24-159) (24-637) (14-133) 

Entries are the averages for 10 samples. Figures in parentheses give the range.

Figure 3
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4.2. Comparative studies on constrained methods 

   Studies on the constrained methods are demonstrated under the constraint  u2 — u~ 
  2.0. The starting values are as follows, 

                        010 = (0.4, 0.8, 2.2, 0.5, 1.0). 

For each sample, the constrained methods of numerical analysis lead to the various 
maximum likelihood solutions, but Penalty method, Barrier method and Multiplier 
method lead to almost the same maximum likelihood estimates although they have the 

different solutions for each sample. Table 4 shows the comparison of convergence rates 
of all methods. It also shows that Gradient Projection method needs fewer iterations 
than other methods. A sample shows as follows, 

    i. Penalty method, Barrier method and Multiplier method have the following 
        estimates, 

       p = 0.36, ui = 0.38, u2 = 2.40, a12 = 0.92, a22 = 1.12, log L = —89.22. 
   ii. Gradient projection method gives as follows, 

p=0.39,u1=0.40,u2=2.40,a12=0.88,a22=1.11, log L=89.13. 
      Thus, the Gradient Projection method for some samples have higher likelihood 

       than other methods. 
   iii. Sequential quadratic programming method has the following estimates. 

p=0.39,ui=0.74,u2=2.18,a12=0.66,a22=1.11, log L=94.17. 
       The Sequential quadratic programming method often obtains the estimates 

       which do not satisfy the constraint.

   Table 4. A Comparison of convergence rates for °a 

MethodInitial values Method Initial values 

  OrOr 

Penalty 10.6 Gradient6.3 

           (2-29) Projection(2-10) 
Barrier 9.2 Sequential7.7 

           (3-21) quadratic(3-12) 
Multiplier 10 programming 

           (3-21) 

Entries are the averages for 10 samples. Figures in parentheses 

give the range.

5. Considerations 

   The studies are to compare the adaptability of the seventeen unconstrained 
methods and five constrained methods in order to obtain the maximum likelihood 
estimates of the parameters in the mixture of two univariate normal densities. Thus, it 
is to say generally that the best methods were Variable metric method, Conjugate
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gradient method and Steepest descent method, because they obtain higher likelihood 
than other methods regardless the initial values. NewtonRaphson method and Newton
Raphson method with linear search usually attain to a local maximum with lower 
likelihood after having a few iterations in many cases. Powell method and Direct search 
method take a few iterations, but they do not always have higher likelihood. Thus, it 
seems that they are not suitable in this research. 

   On the other hand, regarding the methods on constrained problem, it seems that 
the most suitable method is Gradient projection method. However, for a few samples, 
Penalty method has higher likelihood than Gradient projection method.
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