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ZERO-SUM GAMES FOR DISCRETE-TIME 

   MULTI-PARAMETER PROCESSES

      By 

Yuji YOSHIDA*

                    Abstract 

   The present paper formulates zero-sum games for discrete-time multi

parameter processes. Under the assumption of independence of reward 
processes, we give the unique optimal value and the optimal Markov strat
egies, which are constructively provided by Bellman's equation derived from 
a value iteration.

1. Introduction 

   We treat zero-sum games where two players alternately select either one of several 
reward processes. The theory of multi-parameter stochastic processes has been studied 
by Mandelbaum [5], Mazziotto [7] and many authors. On the other hand multi-armed 
bandit problems have been studied by Berry-Fristedt [1], Gittins [2], Whittle [8] and 
many authors. Especially Mandelbaum [4] has discussed the relation between discrete
time multi-armed bandit problems and discrete-time multi-parameter processes. The 

purpose of this paper is to formulate the zero-sum games for multi-parameter processes, 
by using the theory of discrete-time multi-parameter processes in [4]. 

   Now we shall sketch zero-sum games for multiparameter processes. We regard 
that a discrete-time dparameter process consists of d independent reward processes, 
which evolve according to transition laws of given Markov chains. If player A selects 

one of reward processes at time t, then he gets a reward at the time and the state of the 

process moves to a new state at time (t+1) according to transition probabilities of a 
given Markov chain, and it is player B's turn next to select one reward process. Both 
players alternately continue in this way and finally settle accounts. The strategies of 
both players are represented by (2.1) -j (2.3) in Section 2. Player A's aim is to 
maximize his gain (2.4) of Section 2 by controlling his strategy .7r, and player B's is to 
minimize (2.4) with respect to his strategy a. Generally, admissible strategies for one 

player depend on another player's option of strategies. 
   Concerning the abovementioned problem, we show existence of the optimal 

Markov strategies by using the independence of reward processes. Next we give a value 
iteration method and derive Bellman's equations. Finally the present paper gives the
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unique optimal value and the optimal Markov strategies, by constructing concatenations 

of one-step Markov strategies on the basis of Bellman's equations we derived in this 

paper. 

   This paper is structured as follows. In Sections 2.1 and 2.2 we formulate multi

parameter processes and strategies for zero-sum games and show a few fundamental 
lemmas regarding to their concatenations. In Section 2.3 players' expected rewards and 

zero-sum games are presented. Section 2.4 provides a proposition to guarantee existence 

of the optimal Markov strategies. In Section 3.1 we give a backward value iteration and 

demonstrate its convergence. Section 3.2 is devoted to construct the optimal Markov 

strategies on the basis of Bellman's equation. Finally in the remainder of this paper we 

demonstrate uniqueness of the optimal values.

2. Zero-sum Game for Multiparameter Processes 

2.1. Multiparameter processes 

   In this section we shall formulate zero-sum games for multiparameter processes. 
Let d, the number of arms, be a positive integer. We regard that dparameter processes 
consist of d mutually independent reward processes. Let N be the set of nonnegative 
integers and put 

 N(e,r)= {even t:0<t<r} and N(o,r)= {odd t:0<t<r}forrENU {+00}. 

   For each i = 1, ... , d, let (Q', `, Pi) denote a probability space and let Xi = 

(Xit)tE N denote {Rti}tENadapted timehomogeneous Markov chain with a Borel 
state space Ei. Here {t t`}tEN is an increasing family of completed suba-fields of 
and {Xi}i=1, .,d is assumed to be mutually independent. Let Ori denote the time-shift 
operator on Qi. Next we shall define a dparameter process by their products as 

dd 
follows. Set T = Nd, Q = fl Qi and E = Fl Ei. T, Q and E are the time space, the 

           i=1i=1 
path space and the state space of the dparameter process, respectively. Hence we 
introduce the usual partial order into T: 

    For r =(r1,...,rd),s = (s1,...,Sd) E T, r < s means that ri < Si for all i = 1, 
    d. Then a dparameter process X with the state space E, its a fields Rs and its 

time-shift operators Os are defined by 

X = (Xs)sET = (Xs'1, ... , Xsdd)s = (s'....,sd)E T~ 

Rs = Rs' Qx ...cidfor s = (s1, ... , sd) E T, and 

esw = (esiwi,...,eddcod) for s = (s1, ...,sd) E T and w = (w1,...,w") E Q. 

d Further Ex denotes the expectation operator induced by a probability measure P = 11 
Pi with an initial state x E E.i=1
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2. Strategies 

d Let 0 denote the zero vector in T and  e denote the i'th unit vector in Nd. Let = 

E s' for s = (s1, ... , sd) E T. In the pair (7r, o-) of A's strategy ar and B's strategy a, 
=1 

when player A moves `first' and second does player B, we call the pair (az,a) a first
type strategy. First-type strategies (ar,a) are defined as follows: For s = (s1, ...,sd) E 
T, 

      ar = {7r(1s1+t)}tEN(o,.) = {((Isl+t),...,aid(~s~+t))}tEN(o,—) and 

       a = {a(l sI +t)}tEN(e, o') = {(a'(I s1 +t), ... ,ad(I sI +t))}tEN(e,.) 

are Tvalued stochastic sequences on (Q, ) satisfying the following (2.1) — (2.3) : 

(2.1) ar(1sI) =o-(1s1) = s. 
(2.2) For all t E N (e, co) it holds that ar(Isl+t+1) = a(IsI+t) + e, for some i = 

       1, .. , d, 

     and for all t E N(o, cc) it holds that a(IsI+t+1) = ar(ls1+t) + e1 for some i = 
       1, . ,d. 

(2.3) For all t E N(0,00) (N(e, 00)) and all s' E T it holds that 
{7r(10t) = s'} E ({o(IsI+t) = s'} E Z~ resp.) 

We similarly define second-type strategies when player B moves first and "second" does 

player A. Namely a second-type strategy is defined by exchanging N(e, cc) with N(o, co) 
in (2.1) - (2.3). Thus we put the families of first-type (second-type resp.) strategies and 
Markov strategies as follows: for s E T 

S(F; s) (S(S; s)) = {all first-type (second-type resp.) strategies (7r, a) starting at s} , 

and we put

               S(F) (S(S)) = S(F; 0) (S(S; 0)) 

and 

       MS(F) (MS(S)) = {all Markov strategies (ar,o) E S(F) (S(S))}. 

   In the Markov strategy, when we are interested in the options during the time 
interval [0, r], (r E N), we shall call it an r-steps Markov strategy. The families of first
type (second-type resp.) r-steps Markov strategies are denoted by 

     MS(F; r) (MS(S; r)) = {all r-steps Markov strategies (7r,a)E S(F) (S(S))} 

for r E N. Especially since (ar,a) E MS(F; 1) (MS(S; 1)) does not depend on a (7r), we 
shall represent only ar E MS(F; 1) (a E MS(S; 1) resp.). 

   Hence when one player's strategy is fixed, the other player's admissible strategies 
are denoted as follows: We respectively put 

D( ;s;Q) (D(S;s;Q)) = {ar: (ar,a) E S(F;s) (S(S;s))} for s E T, 

D(R;s; r) (D(S;s;ar)) = {a: (.7,a) E S(F;s) (S(S;s))} for s E T,
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 D(R;a) (D(S;a)) = {Jr: (1r,a) E S(F) (S(S))}, and 

D(R;n) (D(S; r)) = {a: (7r,a) E S(F) (S(S))}. 

Finally {i3',(t)}tEN(o,x) and {Z'o(t)}(EN(e,.) denotes informations available at time t: 

Raw = {E E zj : l 11 {a(t) = s } E t s for s E Nd} for t E N(e, CC), and 
zj a(t) = {F E zy : F fl { a(t) = s } Efor s E Nd} for t E N(e, cc). 

   Hence we shall prepare the following lemma concerning concatenations of Markov 
strategies. 
   LEMMA 1. The following (i) and (ii) hold: 

   (i) For r E N(e, Op) (N(o, cc)), (.rc,a) E MS(F;r) (MS(S;r)) and .7T' E MS(F;1), 
       we define a concatenated strategy (7r", a") of (7r, a) and 7r.': 

it"(t, co) = Jr(t, co) for t E N(o, r+ 1) and co E Q, 

a"(t, co) = a(t, w) for t E N(e, r+ 1) and co E Q, and 

it"(r+ l,co) = a(r, (o) + JT'(l, 6,r)co) for co E Q. 

      Then it holds that (rr",a") E MS(F; r+1) (MS(S; r+1) resp.). 

   (ii) For r E N(o, CO) (N(e, c)), (.7,a) E MS(F; r) (MS(S; r)) and a' E MS(S; 1), 
       we define a concatenated strategy (z", a") of (,rr, a) and a': 

. "(t, co) = ir(t, co) for t E N(o, r+ 1) and co E Q, 

a"(t, co) = a(t, co) for t E N(e,r+1) and co E Q, and 

a"(r+l,co) = Jr(r,co) + a'(1,0,t(r)w) for co E Q. 

      Then it holds that (.7r", a") E MS(F; r+1) (MS(S; r+1) resp .). 
   PROOF. Trivial from the definitions of Markov strategies. ^

2.3. Expected rewards and zero-sum games 

   First we shall define player A's expected values and player B's ones when player A 
moves `first'. Let j3, a discount rate, be a constant satisfying 0 < j3 < 1. For i = 1, 

   d, let f` (g`), player A's (player B's resp.) running rewards for i, be a bounded 
measurable function on E'. Hence we shall introduce the following notation < •,• >, 
referring to the inner product of ddimensional real vector spaces : For example, we 
describe 

d 
< f(`Yn(1)), 1) — 0(0) > = E ft(X`,„,(1)) (7r`(1) — a`(0)). 

                                                            =1 

   When a first-type strategy (Tr,a) (E S(F)) is taken, player A's expected gainl to be 

paid from player B at an initial state x is 

OF{Jr,a](x) = E'[EtEN(e, ~) 13t < f(xn(t+1)), ir(t+1) — a(t) > (2.4) 

— EtEN(o,co) Pt < g()G(t+1)), a(t+1) — .rr(t) >1,
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When one player's strategy is fixed, the values optimized by another player are as 
follows: 

 VF[*,  o](x) = supnED(F;a) VF[,rr,o](x) for x E E, and (2.5) 

FF[lr, *](x) = infGED(F;70 VF[,rr,o](x) for x E E. (2.6) 

Then we shall call the following game when player A moves `first' first-type zero
sum games: To find strategies (ir*,o*) E S(F) such that VF[,rr*, o*] = VF[*,o*] 
VF[Jr*,*]. 
   Next we shall similarly define values of games when player A moves second. For a 
second-type strategy (rr,o) (E S(S)) and x (E E) we put 

Vsk,o](x) = EX[EtEN(o,) fit < f(X:r(t+1)),,7r(t+1) — 0(t) >(2.7) 

EtEN(e,c.) fit < g(Xo(t+1)), 0(t+1) — ,rr(t) >1, 

Vs[*,o](x) = sup,rED(s; a) Vs[7r, o](x) for x E E, and(2.8) 

Vs[rr, *](x) = infoED(s;,r) Vs[n, o](x) for x E E.(2.9) 

Then second-type zero-sum games are as follows: To find strategies (yr*,o*) E S(S) 
such that Vs[7r,o*] = Vs[*,o*] = Vs[.rr*,*].

2.4. Existence of optimal Markov strategies 

   We need some more notations in order to prove existence of optimal Markov 

strategies. Set s = (s1,.. .,sd) E T such that Is' is even (odd). If we adopt a strategy 
(7r, o) E S(F; s) (S(S; s) resp.) after each reward process i has been already selected s 
times, the value of first-type zero-sum game is given by 

ZF[7r,o](s) = E lEtEN(e,00) Pt < f(xn(sl+t+l)), r(Isi+t+1)  o(Isl +t) > 

ItEN(o,) f3t < g(Xa(~s1+t+1)), Q(Isi+t+1) — ,rr(IsI+t) >1. 

Hence referring to (2.5) and (2.6), we put 

ZF[*,o](s) = ess sup,rED(F;s;a) ZF[JT,o](s) and 

ZF[a,*](s) = ess infaED(F;s:n) ZF[i,o](s)• 

Similarly for s = (s',... ,sd) E T satisfying that Is' is odd (even) and for (Jr, o) E 
S(S; s) (S(F; s) resp.), values of second-type zero-sum games are denoted by 

Zskr,o](s) = es[EtEN(o,-) /t < f()G(IsI+t+l)), r(Isj+t+1)  o(sl+t) > 
— EtEN(e,..) ft < g(Xa(Is1+t+1)), o(Isl+t+1) — 7(I0t) >].

1 This description is referred from the value of the reward process in Mandelbaum [8,(2.2)], by shifting 
 time.
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Then we define 

 Zs[*,  al  (s) = ess sup7zED(s;s;a) Zs[rr,o](s) and 

Zs[ir,*](s) = ess inf,ED(s;s;n) Zs[ r,a](s)• 

Now we obtain the following fundamental lemmas. 
   LEMMA 2. The following (i) and (ii) hold: 

   (i) For (.7r, a) E S(F) (S(S)) and r E N(e, x) (N(o, x) resp.) it holds that 

ZF[Jr,o](a(r)) = E"0(r)[< f(X„(r+l)), 7r(r+1) — o(r) > + /3 Zs[ r,a](7r(r+1))]• 

   (ii) For (7r, a) E S(S) (S(F)) and r E N(e, 00) (N(0,00) resp.) it holds that 

Zs[ir,Q](7r(r)) = E1(r)[< — g()Ca(r+1)), a(r+1) — ir(r) > + N ZF[ r,Q](U(r+1))]• 

   PROOF. (i) Fix any (ir,a) E S(F) and r E N(e, 00). Then we have 

ZFkr,Q](Q(r)) = ea(r)[tEN(e ,co) 13t < f(Xjr(r+t+1)), ir(r+t+1) — a(r+t) > 

     — tEN(o, cc) 131. < g(Xa(r+t+1)), a(r+t+1) — Yr(r+t) >] 

   = ea(r)[< f(X7r(r+1)), .rr(r+1) — a(r) > 

     + /Z EzSn(r+1)[/3 < f(X7r(r+3)), 74r+3) — a(r+2) > + ..... 

       ItEN(o, oo)pt_1<g(Xa(r+t+1)),a(r+t+1) — i(r+t) >11 

   = ea(r)[< f(X 7r(r+1)), ir(r+1) — a(r) > + j3 Zs[ir,a](ir(r+1))] 

Therefore we obtain (i) in the case where (ir, a) E S(F) and r E N(e, 00). The other 
cases are similarly. 

   LEMMA 3. The following (i) and (ii) hold: 

   (i) For (sr, a) E S(F) (S(S)) and r E N(e, 00) (N(0,00) resp.) it holds that 

ZF[*,a](a(r)) 

= ess sUp.nED(F;a(r);a) E-Mr)[< f(X. r+1)), ir(r+1) — a(r) > + /3 Zs[*,a](7r(r+1))] 

= sup .n'EMS(F; 1) EX0(r)[< f(XJr'(1)), n'(1) > + 1 Zs[*,a'](r'(1))], 

where we take strategies n' E MS(F; 1) and a' by 7r(r+1,w) = .7'(1, Ba(r)w) + a(r, w) 
and Q(r+t, w) = a'(t, 6,r)cv) + a(r, w) for all t E N(e, 00) and w E Q. 

   (ii) For (ir, a) E S(S) (S(F)) and r E N(e, 00) (N(e, «c) resp.) it holds that 

Zs[ir,*](r(r)) 

= ess infaED(s; n(r); n) E<5.7(r)[< — g(Xn(r+1)), a(r + 1) — ir(r) > + /3 ZF[n,*](a(r+ 1))] 

= info'EMs(s;1) EXn(r)[< g(Xa'(1)) , a'(1) > + /3 Z Az' ,*](a'(1))], 

where we take a' E MS(S; 1) and ,rr' by ir(r+t, w) = Jr' (t, 9,t(r)W) + Jr(r, w) and 
Q(r+t, w) = a'(1, e„(r)w) + ir(r, w) for all t E N(e, 00) and w E Q. 

   PROOF. Fix any (sr, a) E S(F) and r E N(e, 00). We shall show only this case of
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(i), because the other cases are similar. The definition of the essential supremum 
implies that there exists a sequence  {(  r,,, a)}nEN of strategies of S(F) satisfying 

nn(t) = z(t) for all odd t satisfying 0 < t < r+1, 

E`°(r)[< f(Xsr(r+l)), z(r+1) — a(r) > + /3 Zs[*,a](z(r+1))] and (2.10) 

       lim °(r)[< f(X .7r(r+1)), ir(r+1) — a(r) > + 3 Z , a](,Tr(r+1))]} 
n ---> 

Then we have 

             (2.10) = lim ZF[7rn, a](a(r)) ZF[*,a](a(r))• 
n~~ 

Therefore we obtain 

    ess sun ,rED(F;a(r);°) Ezs0(r)[< f(XJr(r+1)), 7r(r+1) — a(r) > + /3 Zs[*,a](a(r+1))] 
Z4*,a](a(r)). 

   On the other hand Lemma 2 implies 

ZF[7r,a](a(r)) = f(XJr(r+l)), ir(r+1) — a(r) > + /3 Zs[jr,a] (ir(r+1))] 

  ess sup,,ED(F;°(r);°) e °(r)[< f(X.7(r+l)), z(r+1) — a(r) > + /3 Zs[*,a](7t(r+1))]• 

Therefore the reverse inequality of (2.11) holds. So we obtain the first equality of (i). 
Next by using the Markov property and the independency of Markov chains X` (See 
LawlerVanderbei [3, Theorem 3(b)]), we obtain 

 ess supJrED(F;o(r);a) EF°(r)[< f(Xjr(r+l)), 7r(r+1) — a(r) > + j3 Zs[*,a](jr(r+1))] 

 = SUpn'EMs(F; 1) EX °(r)[< f(X (1)), r'(1) > + /3 ZS[*,a'](7r'(1))], 

where we take strategies rr' E MS(F; 1) and a' by n (r+1,co) = Yr'(1,60(r)co) + 
a(r,co) and a(r+t,w) = a'(t,6°(r)co) + a(r,w) for each (.7r,a) E S(F), N(e,m) and w 
E Q. Thus we obtain (i) . 0 

PROPOSITION 1. For (ir,a) E S(F) ((.rr',a') E S(S)), there exist Markov strategies 
rrM E D(F;a) and am E D(F;Jr) (Jr'M E D(S;a') and a',y E D(S;,Tr')) satisfying the 

following (i) ((ii) resp.): 
   (i) VF[irM,a] = VF[*,Q] and VF[ir,GM] = VF[n,*]• 

   (ii) Vs[7r'M,a'] = Vs[*,a'] and Vs[lr',QM] = Vsk',*]• 
   PROOF. (i) Fix any strategy (ar,a) E S(F). Lemma 3 implies that for each r E 

N(e, m) 

ZF[*,a](a(r)) = Sup7T'EMs(F;1) E '°(r)[< f(Xn'(1)), .7r'(1) > + /3 Zs[*,a'](n'(1))], 

                                                  (2.12) 

where we take strategies n' E MS(F; 1) and a' by ar(r+1,w) = Tr'(1,9cr)co) + 
a(r,w) and a(r+t,w) = a'(t,90(r)co) + a(r,co) for each (ir,a) E S(F), t E N(e,m) and w 
E Q. 

Hence it holds that 

SUp,n'EMS(F; 1)EX°(r)[< f(X.gt'(1)), r'(1) > + /3 Zs[*,a'](7r(1))]
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         = max EXalfI(X-i) + f3 Zs[*,c'](e1)]• 
1 d 

Here we define 

        F, = { max Exu(r)[fJ(XJi) + j3 Zs[*,cr'](ej)] 
1 -�d 

        = EX0(r)[fl(X i) + 13 Zs[* ,d ](e,)] } for i = 1, ... , d. 

Further we set F'1 = F1 and F',+1 = Fi+1 — (F1 U ... U Ft) for i = 1, ..., d-1. By 

putting 

71-"m(1,0,0(0) = e, for r E N(e, 00), i = 1, ... , d and w E F'i, 

we have ,7"M E MS(F; 1) and then the supremum of (2.12) is attained by :Cm: 

ZF[*,Q](Q(r)) = Ex0(r)[< fPG,'M(1)), 7U„ M(1) > + /3 Zs[*,a'](yr"M(l))] 

for each r E N(e, c). Hence owing to Lemma 1, we may inductively define a Markov 
strategy 7tM by 

7rM(r+1,w) = ir"M(1,6Q(r)W) + a(r,w) for w E Q and each r E N(e, co). (2.13) 

Then we obtain 

EX0r)[C f(X~~(1)), JtrrM(1) > + /3 Zs[*,a']('rr"M(1))] 

       = ea(')[< f(X „,(r+1)), it (r+1) — a(r) > + /3 Zs[*,Q](IUM(r+l))]• 

Therefore we conclude that for all r E N(e, cc) 

ZF[*,cr] (a(r)) = E`'0(r)[< f(XJr (r+1)),IUM(r + 1)) — a(r) > + /3 Zs[*,Q](JrM(r+1))]• 

                                                  (2.14) 

   On the other hand owing to Lemma 2 (ii), we have that for all r E N(e, 00) 

Zs[*,a](lrM(r+l))(2.15) 

= E`s7znr(r+1)[< _ g(Xa(r+2)), u(r+2) — /rM(r+l) > + /3 ZF[*,a1(Q(r+2))]• 

Hence (2.14) and (2.15) conclude the results that VF[IrM,Q] = VF[*,o] and (gm, Q) E 
S(F). We can also check the other equations similarly. ^

3. The Optimal Values and the Optimal Strategies 

   In this section we investigate the following backward iteration in order to find the 

optimal values in both type zero-sum games. Further we shall show that the lower 

bounds and the upper bounds of values coincide and that the iteration converges to the 

unique optimal values.

3.1. A value iteration and the optimal values 

   Let us consider the following iteration.
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    ITERATION 1. 

      (0) Put  UF,p = Us,0 = 0. 

For r E N we define successively as follows. 

      (F.r) For x = (x1,...,xd) E E, put 

UF,r+l(x) = max Ex[f'(X 1) + /3 Us,r(x 1, ... ,Xi, ... ,xd)]• 

(S. r) For x = (x1,... ,x d) E E, put 

US,r+1(x) = min Ex[ — gi(X 1) + /3 UF,r(x1, ... 
1<i~d 

   First we shall prove convergence of sequences {UFr}rEN and {Us, r, in 
Iteration 1. Let II • II denote the supremum norm on the space of bounded measurable 
functions on E. For Markov strategies Jr E MS(F; 1) (a E MS(S; 1)) and for i = 1, ... , 
d we shall introduce the following semilinear operators SA7 (SB° resp.) and SA' and SBi 
on the space of all bounded measurable functions on E: 

SA"4(x) = Ex[< f(Xn(i)), ir(1) > + / oXn(1))] (x E E), 

SB°4(x) = Ex[< — g(Xa(1)), o(1) > + /3 ((x,,(1))] (x E E), 

SA`4(x) = Ex[f`(Xi) + / (x1,... Ail, ...,xd)I (x = (x1,...,xd) E E), and 

SBio(x) = Ex [— g` (X i) + /3 4(x1,...,xd)I (x = (x1 , ... ,xd) E E), 

for bounded measurable functions 4 on E. Then we have the following lemmas. 
   LEMMA 4. Let u1, u2, v1 and v2 be bounded measurable functions on E such that 

vj = max 2 SA'uj for j = 1, 2. 
1�i�d 

Then it holds that II v1  v2 II /3 II ul  u2 II • 

    PROOF. We obtain this lemma, since for each x E E we have 

Ivl(x) — v2(x)I = I max SA`u1(x) — max SA`u2(x)I 
1�i�d1�i�d 

          max I SA'ul(x) — SA'u2(X)I l3 II u1  u2 II . 
1<_i<d 

   LEMMA 5. For each r, r' E N, 
//tt~he following (i) and (ii) hold: (i) II UF,r+r'+1—UF,r+1 II<NII US,r+r' US,r IL 

• (ii) II US,r+r'+1 — US,r+l II C N II UF,r+r' UF,r II . 
    PROOF. For each r, r' E N we have 

UF,r+1 = max SA'Us r and UF,r+r'+1 = max SA'US,r+r'• 

By using Lemma 4, we obtain (i). The proof of (ii) is similar. 
    Then we obtain the following results regarding Iteration 1. 

    2 max{4,ip} denotes max{O,ip}(x) = max{¢(x),ip(x)} for functions i and ip on E and x E E.
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   THEOREM 1. Iteration 1 converges: 

UF(x) = limr~+~ UF,r(x) and Us(x) = Us,r(x) for x E E. 

Further OF and Us is a unique solution of the following equations (3.1): 

OF = max SA'Us and Us = min SB'UF.(3.1) 
l~i~d1<_i<d 
   PROOF. From Lemma 5, we have for each r, r' E N 

II UF, r+ r' +2 UF, r+ 2 II — 13 I US, r+ r' +1 US, r+ 1 II — 132 II U r' UF, r II • 

We inductively obtain II UF,r+r' — UF,r II < fir II UF,r, — UF,o ~I for all r' E N and all 
even r. As letting r and r' infinite, we obtain the existence of lim,+,, OF r. Similarly 
lim,+x Us,r exists. We obtain (3.1), by applying the bounded convergence theorem 
to Iteration 1. Finally the uniqueness of solutions OF and Us is easily checked, by using 
Lemma 4. 

    COROLLARY 1. 

OF = supnE Ns(F;1) SAs and Us= infacMs(s;l) SB°UF. 

   PROOF. They are trivial from (3.1), by considering the definition of one-step 
Markov strategies.

3.2. Construction of the optimal strategies and uniqueness of the optimal values 

   Now we shall construct the optimal strategies. First we define subsets of E as 
follows. 

D A~ = {max SA` Us = SAI US} for j = 1, ... , d, 
1 <i�d 

D B' _ { min SB'UF = SF/UF} for j = 1, ..., d. 

Further we let 

DAi+1=DAi+1—(DAIU ... UDA') for i=1,...d-1, 
DBi+1 _ D'Bi+1 — (D B1 U ... U D B') for i = 1, ... , d — 1. 

Then by putting 

.7e(1) = ei (a°(1) = ei) on {X0 E DAi (DBi)} for i = 1, ... , d, 

we have Markov strategies i E MS(F; 1) (a° E MS(S; 1) resp.). 
   Hence owing to Lemma 1 we may give another representation of Markov strategies. 

For (7,0 E MS(F; r) we describe (rr, a) as 

1.71,(72,73, a4, .. • ],(3.2)

where 7r, and at are player A's (player B's resp.) one step Markov strategies for t. 
Hence the meaning of (3.2) is as follows. Player A selects a reward process, by using 
Markov strategy 71. Next player B selects, by using Markov strategy a2. Further player
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A does, by using Markov strategy Jr3. The game continues in this way. Moreover we 
have similar representations concerning second-type Markov strategies: For (yr, a) E 
MS(S; r) we write (Jr,a) as [ai,,7r2,a3,.74, ... ]. Hence by using these representations, 
we give the following Markov strategies (Jr*,a*) E MS(F) and (,7'*,a'*) E MS(S) by 

(Tr* a*) = [SL° a° ?L° a° rr° a° ] and (.7f* a'*) = [a° ,'r° a° ^"r° a° :r° ..]. 
                                                    (3.3) 

Then we obtain the following results. 
   THEOREM 2. (z*,a*) E S(F) ((ir'*,o'*) E S(S)) is an optimal strategy and OF 

(Us) is an optimal value for the first-type (second-type resp.) zero-sum game: 
   (i) VF[n,a*] < OF = VF[7r*,a*] VF[Jr*,a*] for every .7r E D(F;a*) and 

       a E D(F;ir*). 

   (ii) Vs[n',a'*] < Us = Vs[n'*,ce*] Vs[ir',*d] for every yr' E D(S;ce*) and 
d E D(S;:r'*). 

   PROOF. First we shall show that the inequality of (i) holds for Markov 
strategies. From Corollary 1 (i) and (ii) we have 

OF = SA''t°Us ? SA"US and Us = SB°°UF(3.4) 

for every Markov strategy it E MS(F; 1). From (3.4) we obtain 

                            OF = SATr°Sg°°UF > SA7'Sga°UF 

for every Markov n E MS(F; 1). Therefore we inductively obtain 

OF = SA;z°SB°°SA'r°SB .. SA'n°5ga°UF(3.5) 

                             SA71-1Sga°SA'73Sga° ... SA.nz, 15ga°UF 

for every r E N and every Markov nt E MS(F; 1) (t E N(o,2r)). Hence from the 
definitions of SAn and Sg° we have 

SA7Tq51 — SA p  � II fii  952 and S °01 — Sg°4  11(Pi — (P211 

for .rr E MS(F; 1), a E MS(S; 1) and bounded measurable functions 01, 02 on E. By 
letting r infinite in (3.5), we obtain 

OF = VF[Yr*,a*] > VF[yr,a*], 

where (Tr*,a*) = [7r°,a°,7r°,a°,7r°,a°,...] E MS(F) and (ir,a*) = [Trl,a°,Jr3,a°, 
75,a°, ... ] E MS(F). Since the other Markov cases can be proved similarly, we obtain 
the inequalities (i) for every Markov strategies it E D(F;a*) and a E D(S;.7r*). 

   Next we shall show the nonMarkov case. Hence by the use of Proposition 1, there 
exists a Markov strategy JrM* E D(F;a*) satisfying 

VF[7rM*, u*] = VF[*,a*]. 

Then we have 

VF[JrM*,a*] = VF[*,a*] > VF[n*,a*]•
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   On the other hand from the definitions (2.13) and Lemma 1,  jrM* E D(F;a*) is 
Markov. Therefore owing to the first part of this proof we obtain 

OF = VF[jr*,a*] > VF[IEM*, O*]. 

Thus we conclude 

OF = VF[9t*,a*] = VF[JUM*, a*] = VF[*,a*]. 

Since the other inequalities can be proved similarly, the proof is completed. 
   Now owing toProposition 1 we may respectively define the lower bound VF and 

the upper bound VF of values in the first-type zero-sum games by 

VF= sup, info VF[.r,a] and VF= infa sup„ 

In the second-type we similarly put 

Vs = sup„ infa Vs[n,o] and Vs = infa sup, Vs[7r,a]. 

Finally we obtain the following results concerning the optimal values. 
    COROLLARY 2. The zero-sum games have the unique optimal values: 

UF= VF= VF and Us = Vs = Vs. 

   PROOF. From Theorem 2 we have 

              VF sup, VF[Jr,a*] = VF= infa VF[n*,a] VF. 

Since VF VF is trivial, we obtain the result. The other is similar.
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