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COMPARISON OF TWO CATEGORICAL MODELS 
         OF TYPED XCALCULUS

        By 

Hiroshi OHTSUKA*

                    Abstract 

   This paper discusses a relation between two categorical models of typed 
Acalculus which are both cartesian closed categories. One of them has a 
concept of variables in it. The other does not have such concept and based 
on de Bruijn's name-free expression. We show that the second one is 
obtained by certain construction over cartesian closed category and they are 
isomorphic from the categorical point of view.

1. Introduction 

   Category, particularly cartesian closed category (CCC for short), recently began to 
be treated as a model of typed Acalculus by several authors [2], [4], [5], [9]. The work 
of this paper is a Comparison of two categorical models of typed Acalculus which are 
introduced by Curien [2] and Koymans [4]. 

   The first model has indeterminate, a concept of variables in Acalculus, and is 
obtained by universal construction over certain CCC. That is, it assigns indeterminates 
to variables and translates A-terms into not the CCC but socalled polynomial category 
of it (polynomial CCC [5], another term is free CCC [2]). It is important that free 
variables are treated as themselves. For example, in [9], they were handled as being 
bound and only closed A-terms were considered. 

   On the other hand, the second model does not have such concept but it is based on 
de Bruijn's name-free expression to make up for it. That is, it assigns not indeterminates 
but projections characterized by socalled their indexes to variables and translates A
terms into the CCC itself. 

   But our observation shows that the second model is also obtained by certain 
construction over certain CCC known as Kleisli's construction. Kleisli category gotten 
by his construction becomes extended CCC just as polynomial CCC does. Therefore, 
we can regard that the second one deals with A-terms in Kleisli category of the CCC 
instead of in itself. 

   Moreover, functional completeness of CCC [5] tells us that Kleisli category is 
isomorphic to polynomial CCC. This means that two categorical models of typed A
calculus are both not merely CCCs but also extended ones obtained by certain con
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structions over it and have certain universality. In particular, the second model has 
been considered as merely CCC in early categorical model and it has been hard to 
investigate the categorical property of it. We conclude that the second model is gotten 
by Kleisli's construction just as the first one does by universal construction, and 
consequently, two categorical models are equivalent from the categorical point of view. 

   Section 2 sketches the basic notions of categories, CCC, polynomial CCC, Kleisli's 
construction. Section 3 introduces typed Acalculus and two translations of it into CCC. 
Section 4 gives some properties of them respectively. Section 5 contains the main result 
mentioned that these translations have reciprocal relationship from the categorical 

point of view. The functional completeness of CCC due to Lambek and Scott  [5] is 
essential for this relation.

2. Cartesian Closed Categories 

   In this section, we recall some relevant notions and notations of CCC, in particular 
Kleisli's construction and universal construction over CCC and their relation. 

DEFINITION 2.1. A CCC G is the category which has some additional structure. 
Let C be a set of basic objects. Objects of G are defined as follows. 

   1. Elements of C are objects of C. 
   2. The special object 1 (terminal object) (t C is an object of G. 

3. If A and B are objects of C then so are A x B (product) and BA (exponential). 
Morphisms of L are defined as follows. 

   1. For any object A, there exists the identity idA : A —* A. 
   2. For any object A, there exists !A : A --* 1. 

   3. For any objects A and B, there exist first and second projections 

7rA,B:A x B—~AandJr ,B:A x B—B. 

   4. For any objects B and C, there exists evaluation EB C : BC x C —> B. 
   5. If f : B —* C and g : A — B then fog :A C. 

   6. If f: A —> B and g : A —* C then < f, g > : A ---> B x C. 
   7. If h : A x C — B then A(h) : A --> B`. 

We omit the required structure of cartesian closedness. It is referred [5], [7]. 
We omit the subscript of morphisms and the symbol of composition o if no confusion 
occurs. In the rest of this section, and 0 denote CCCs. If a functor F: --j 

preserves cartesian closed structure, we call it cartesian closed functor (CCF for short). 
In the next paragraph, we present two constructions over CCC and certain relation 
between them [5]. 

   First, we construct an adjoint pair of functors which induces a comonad < SA, 
r]A > over an c2X and an object A in 21. The comonad consists of an endofunctor SA over 
~l associated with two natural transformations 

: SA — Ic (identity functor) and 7A : SA —> S2 (composition of S with S), 

which are defined as follows.
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   1. SA(B) = A x B, and SA(f) =  <  ITA,  B, f rrA, B > for f : B — C. 
   2. A(B) _ yA,B : A x B B. 

   3. 71A(B) _ < 7rA, B, idA x B > :A x B — A x (A x B) . 
for any objects B, C in '21. Then it is easy to show that < SA, cA, riA > becomes 
comonad (c.f. [7], [8]). 

   It is known that inducing pairs of functors are not uniquely determined by the 
comonads. But there are two essentially different pairs of adjoint functors satisfying 
this condition and having certain universal property. These pairs were independently 
found by Eilenberg-Moore and Kleisli. As pointed out by Lambek and Scott, the 
Kleisli category of < SA, , 71A > over c2t is isomorphic to polynomial CCC of %. That 
is why we present Kleisli's construction and its universal property. 

   Let usA be the the Kleisli category of < SA, TJA >, which has the same 
objects as %. A morphism f: B -> C in SA is called Kleisli morphism f: SA(B) = A x 
B — C in 2l. Below, morphisms with superscript A denote Kleisli morphisms. In 

particular, 
   1. The identity idB in'sA is (B) _ JrA,B in I. 

   2. The composition in Kleisli category is defined by 

                gof = gSA( )71A = g < JrA, B, f > : SA(B) -* D 

      for f : SA(B) -> C and g : SA(C) — D in a. 

Moreover, 2-lsA becomes CCC by the following cartesian closed structure. Let B, C, D 
be any objects in %SA 

   1. Following morphisms are Kleisli morphisms. 

= !AXB, 43,C = 71B,C n'A,Bxc, ?r'g C = 763,C n'A,BxC and EB,C = EB,C AJA,BxC 

   2. If f: B -> C and g : B -* D are morphisms in %A, then so is 

< f,g>A = < f, g>:B-> C x D. 

   3. If h: B x C --> D is a morphism in s?CsA, then so is 
AA(h) = A(ha) : B -> DC. 

      Where a = < Tr r, < 7r' Jr, 'r' >> : (A x B) x C -* A x (B x C). 

Accordingly, the functors from 51 into GIsA and vice versa can be defined. The CCF 
FsA : 2l -> s?1SA is defined by 

   1. FsA(B) = B for any objects B, 
   2. FSA(f) = fgA(B) = frrA,B for any morphisms f: B --* C. 

The inverse functor GSA: S2LSA -> 21 is defined by 
   1. GSA(B) = SA(B) = A x B for any objects B, 

   2. GsA(g) = SA(g)7A(B) = < ,rrA, B,g > for any Kleisli morphisms g : A x B -* C. 
It is clear that FSA is the left adjoint of GSA. Moreover, above construction has the 
universal property known as Kleisli's construction. We present it without proof. 

   THEOREM 2.1. (Comparison theorem of Kleisli's construction [7], [8])
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Let < S,  ~, > be a comonad over a category C?, FS : C — L and G: L, —> CC are the 

pair of adjoint functors obtained by Kleisli's construction. If F:07. —> T and G : L 
are another pair of adjoint functors inducing the given comonad , then there exists 
uniquely determined functor L : C — such that 

F = LFs andGs = GL. 

Of course, this theorem still holds in the situation of < SA, ~A, r1A > over CCC t . 
    On the other hand, universal construction of CCC 'u gives rise to polynomial 

CCC V1[x], where x : A —* B is an indeterminate over Vt. A polynomial category 2t[x] 
over Vt is freely constructed by adding x as a morphism to VT. Morphisms in ct[x] are 
called polynomials. We introduce equality `=x' between polynomials such that rendering 
tt[x] CCC [5]. The subscript of equality is a set of indeterminates (if one element , then 
abbreviate like as above and for a set of indeterminates X , we write =X). 

    PROPOSITION 2.1. (Universality [5], [6]) Let x: A — B be an indeterminate over Vt. 
For any CCF F: t — 3 and a morphism b: F(A) — F(B) in 8 , there exists a unique 
CCF F' : ~Z [x] — 3 such that 

                   F'(x) = b and F'H = F. 

Where H: 21 — ' i [x] is the CCF which sends f: B — C onto the "constant" polynomial 
with the same name. 

PROPOSITION 2.1 which asserts that the polynomial CCC %[x] has the universal 

property corresponds with Theorem 2.1. Moreover, 52Z [x] whose indeterminate is x:1 
                                                                  —* A has closed relation with Kleisli category Gis

A. 
   PROPOSITION 2.2. (Functional completeness [5], [6]) For every polynomial ay(x) : B 

—> C in an indeterminate x:1  —> A over JC, there is a unique morphism f: A x B —> C in 
cC such that 

                       f < x! B, id > = 4(x). 

We only exhibit the algorithm finding morphism f for a polynomial 4)(x). We take the 
following xrirp(x) as f satisfying above equation. 

    1. xxk = k ItA, B : A x B — C for constant polynomial k : B — C. 
    2. xxx = ,1rA,B : A x 1 —> A for indeterminate x : 1 — A. 

   3. xx < 0(x), p(x) > = < Kir(p(x), Kx (x) > : A x B —> C x D 
      for cp(x) : B — C and v(x) : B ---> D . 

   4. xx( (x)q(x)) = Ri ip(x) < 7rA B,Kxq(x) > : A x B — A x C — D 
      for 4(x) : B — C and 'p(x) : C — D. 

   5. xxA(x(x)) = A((xrx(x))(x) : A x B —* C° for x(x) : B x D — C. 
The next proposition is taken another look at the Proposition 2.2 ([5], [6]). 

    PROPOSITION 2.3. For an indeterminate x: 1 — A over 2t, 

'Mx] = 21,A. 

The isofunctor 21[x] —> VlsA is defined through the algorithm in the proof of Proposition 
2.2. The isomorphic situation is made mention by the functional completeness .
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   Although we concern only one indeterminate above, the following situation holds 
in general: 

ti)([xo, ..., xn-1] = (... 0,)i[x0])...)[xn-11 

(-• • (1)tsAO) . . )SA„-1 
where x,: 1  A,(0 <_ i n  1). 

3. Typed Acalculus 

   We abbreviate typed A/3icalculus with product types (another term is surjective 
pairing) to typed Acalculus. In this section, we present the system of typed Acalculus 
and two translations of it into CCC. The formal system of typed Acalculus consists of 
types, A-terms of each type and certain rules between A-terms of the same type ([1], [2], 
[6]). 
   DEFINITION 3.1. Types have the same structure as objects of CCC. Let C be a set 
of basic types. Types are defined as follows. 

   1. Elements of C are types. 
   2. The special object 1 C is a type. 

   3. If A and B are types so are A x B and AB. 
AA (VA) denotes the set of typed A-terms (variables resp) of type A. For each type A, 
there are countably many variables of type A. A-terms are inductively defined by 

    1. vAEAA, 
   2. ME ABA, NEAA (MN)EAB, 

   3. ME AB, XE VA~(/~.Y.M) EABA, 
   4. M E AA, N E AB (M, N) E AA X B, 

   5. M E AAXB (fst(M)) E AA, (snd(M)) E AB, 
   6. * E Al 

Free and bound variables are defined as usual. We use FV(M) to denote the set of free 
variables of A-term M. A term of the form (MN) is an application (of M to N). A term 
(Ax. M) is a Aabstraction, x is called binder and M is body. A term (M, N) is a pairing, a 
term (fst(M)) is a 1st projection and (snd(M)) is a 2nd projection. We adopt usual 
brackets convention if confusion may not occur and use `=' to indicate syntactical 
equality. 
   Substitution is the replacement of all the free occurrence of a variable in a A

term by another A-term. The result of substituting N for the variable x in M is denoted 
by M[x : = N]. In general, it is assumed that substitution does not influence the binding 
structure. 
   DEFINITION 3.2. Substitution is defined as follows. 

x[x: = N] nN. 

y[x: =N]Ey if y. 

(PQ)[x : = N] = (P[x : = N])(Q[x : = N]). 

      (P,Q)[x: = N] = (P[x: = N], Q[x: = N]).
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(Ax. P)[x : = N] = Ax. P. 

(Ay.P)[x : = N] = Ay.(P[x: = N]), if x y and y FV(M). 

(Ay.P)[x: = N] = Az.((P[y: = z])[x : = N]), 

                  if x y and y E FV(M), choose z FV(P) U FV(N). 

fst(P)[x: = N]  fst(P[x : = N]). 

snd(P)[x: = N] = snd(P[x: = N]). 

*[x:=N]* . 

   AXIOM 3.1. A-terms of the same type are to satisfy the following rules. 
   1. )x.M = Ay. M[x: = y], if y FV(M).(caconversion) 

  2. (Ax.M)N = M[x: = N].(/.conversion) 
  3. Lx. Mx = M, if x FV(M) .(77conversion) 

  4. M = * for M E Al.(srconversion) 

fst(P, Q) = P, snd(P, Q) = Q. 
     (fst(M), snd(M)) = M. 

   5. Standard compatible rules (see Barendregt [1], Lambek and Scott [6]) . 
We denote induced equation M = N by above axioms in typed Acalculus for A I M = 
N. 
   Next, we present two translations of typed Acalculus into the CCC 2l which has 
the same objects as types. Because we concern categorical properties of them, we 
restrict free variables in typed Acalculus to finite. They are gathered up and make right 
associative ordered list, 

             FV = (x0, (x1, (... , (x_1 ,*)... ))) = (x0, x1, ... , xn_1,*) 

Remark that numbering is started with 0. If we assume a finite list of variables as 
several pairings, it can have the same type of the pairing. Particularly , FV has the type 
Ao x (Al x (... x (An_1 x 1) ... )), where each variable x, has type A1. We denote 
typed Acalculus whose free variables are included in FV for A(FV) 

   The first translation translates k-terms into polynomial CCC, that is, indeterminates 
are assigned to variables. This is due to Lambek and Scott [5] and introduced by Curien 

[2]. In Poigne [9], free variables are handled as being bound in the sense that his 
method assigns idA to all free variables with same type A. Thus, A-terms have been 
translated not into polynomial CCC but into CCC. We extend his method to be able to 
treat free variables themselves and adopt polynomial CCC. Moreover, this is a simple 
version of Curien's one which translates A-terms into polynomials via socalled Categ
orical Combinatory Logic. First of all, we add the indeterminates , having the same 
name as variables in FV, 

x0:1->AO,x1:1--->A1, ...,xn_1 : 1--->An-1 

to CCC % and make 21[x0, ... , xn_1]. We denote the set of indeterminates which have 
the same name as variables in FV for { FV}.
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   DEFINITION 3.3. We identify the basis of objects in CCC  t to that of types in 
typed Acalculus, and define polynomial 

                     L(M, ENV) : 1 — A 

for A-term M of type A in A(ENV) as follows. 

               L(x, ENV) =xi: 1–>A, 

                           where x, in ENV has the same name as x. 

           L(MN, ENV) = E < L(M, ENV), L(N, ENV) >. 

         L((M, N), ENV) = < L(M, ENV), L(N, ENV) >. 

L(Ax.M, ENV) = A(x,L(M, (x, ENV)) < ni,A, .n1,A >), 

                          where x has type A. 

         L(fst(M), ENV) = .n L(M, ENV). 

L(snd(M), ENV) _ .n'L(M, ENV). 

              L(*, ENV) = id1. 

A list ENV is equal with FV at the top level. 
Obviously, if FV(Ax.M) is included in ENV then so is FV(M) in (x, ENV) and L does 
not depend on the order of variables in ENV. It is easy to show that if FV' is another 
list of variables and let M be the A-term whose free variables are included in both FV 
and FV', then 

                  L(M, FV) = {FV}n{ FV'} L(M, FV') 

It is essential that FV(M) is included in FV. We denote above translation for LFV 
A(FV) —> 9Jl .....x,_1].-1] 

   The second translation translates A-terms not into polynomial CCC but into CCC. 
This method is given by Curien [2] and typed version of Koymans's one [4]. Although it 
does not use indeterminates, it treats free variables as themselves using so-caled indexes 
of them instead of their names. Therefore, it may be based on the variable concept of 
de Bruijn's name-free expression. 

   DEFINITION 3.4. We identify the basis of objects in CCC 21 to that of types in 
typed Acalculus, and define morphism, 

G(M, ENV) : X —3 A 

for A-term M of type A in A(ENV), where ENV has type X, as follows. 

G(x, ENV) = irir't : X — A, 

                       where i is the minimum such that x = x, in ENV. 

L(MN, ENV) = E < G(M, ENV), G(N, ENV) >.
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C((M, N), ENV) = < (s_"(M, ENV), C(N, ENV) >. 

C(ax.M, ENV) = A(C(M, (x, ENV)) < x,A, 71-X,A >), 

                      where x has type A and ENV has X. 

C(fst(M), ENV) = n((M, ENV). 

      C(snd(M), ENV) = .r'C(M, ENV). 

C(*, ENV) = !X. 

Jrir'i means A,, Yir'A,_,,A x Y • • • IT'Ao Al x Z, where Y = Ai+1 x (... x 1) and Z = A2 x 
(... x 1). And if i = 0 then sr" becomes id. A list ENV is equal with FV at the top 
level. 
Remark that C does depend on the order of variables in FV contrary to L. We denote 
above translation for CFV: A(FV) -> %. We give some properties of C relating the 
manipulation of list. First, we provide the following notations of list. 

   1. ENV(i, m, +) denotes the list which is made by adding m variables in the 

      preceding position of the ith variable in ENV. We restrict the added variables to 
      ones which can not appear in ENV or ones which appear in the left positions of the 

      ith variable in ENV. 
   2. ENV(i, m, -) denotes the list which is made by removing m variables starting 

      with the order i in ENV. 
Of course, we assume that there are enough variables in ENV to be able to define 
above definitions. Next, we define the morphisms corresponding with above notations 
of list. Let X be the type of FV (or FV(i, m, +)) and Xl m be FV(i, m, -) (or FV resp). 
We define y~,m : X * Xi m as follows. 

Yi,m = < •n, Yi_1,m•n' > : Xo X Y --> Xo x Z 

                             where yi_1,m : Y -> Z 

                         and X0 is the type of the first variable in FV. 

Yo,m  Tr'm : Xo X (... (Xm-1 X Y) ...) -> Y, 

                            where yo,o = id : Y  Y. 

Finally, we get the following property of manipulation of list. 
PxoPosruoN 3.1. Let M E A(FV) be the A-term of type A. If FV has type Y and 

FV(i, m, +) has X, then, 

C(M, FV(i, m, +)) = C(M, FV)yi m : X -~ A, 

where yi,m : X  Y. 
We prove only two cases, variable and Aabstraction. If M = x and x is the jth variable 
in ENV, then the first case 0 <_ j < i, 

C(x, ENV(i, m, +)) = rrjr'3.
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((x, ENV)yi ,m = TLTG'' < 7L, Yi-1,mJT' > 

                               =                                                                                                                                                                                                

• 

                                                                   Yi—l,m't 

= 1L 'j 

                               = The second case i j, we can assume that x can not appear the added variables in 
ENV(i, m, +). 

G(x, ENV(i, m, +)) = 

G(x, ENV)Yi,m=7r1LrjYi,m 

 =~~Yi -1,mr 

= z7r1j-iY0 m7rri 

= mei+m. 

If M = Ay.P, then 

(((Ay.P), ENV(i, m, +)) 

              = A(Cs(P, (y, ENV(i, m, +)) < sr', n >)) 

              = A(Cs(P, (y, ENV)(i + 1, m, +)) < ,n', n >). 

CT((A,y.P), ENV)Yi,m 

              = A(((P, (y, ENV)) < n', n >)y, ,m 

              = A(G(P, (y, ENV)) < n', y,,m yt >) 

               = A(G(P , (y, ENV)) < ir, Yi,mJU' >< a', 7L >) 

               = A(Cc(P, (y, ENV)) yi±i,m < iv', n >). 

By inductive assumption, G(P, (y, ENV)(i + 1, m, +)) = fS(P, (y, ENV))yi+i ,m hence 
above two formulas are identical. ^ 

   Next, we consider the order of variables in the list of them. ENVi denotes the list 
which is made by exchanging ith variable with (i + 1)th one in the list ENV. Of course, 
we assume there are enough variables in X to be able to define ENVi. On the other 
hand, we define the morphisms corresponding with above notation. Let X be the type 

of FV and Xi be FVi. We define 6i: X — Xi as follows. 

bi_<7L,bi_1TL'> : X0 Y —>XaxZ
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                           where  8i_1 : Y —> Z 

                        and X0 is the type of the first variable in FV. 

60 = < 7LTr ,< Jl, Tr' 2 » : X0 X (X1 X Y) —* X 1 x (X0 x Y) . 

Then, we get the following property. 

PxoPosruoN 3.2. Let M E A(FV) be the A-term of type A. If FV has type X and 
FVi has Xi. Moreover, ith and (i + 1)th variables do not appear in the left position of ith 
one in FV. Then, 

G(M, FT/i) = L(M, FV)bi : Xi —* A, 

where bi : Xi — X. 
We prove only two cases, variable and /1abstraction. If M = x and x is the ith variable 
in ENV, then, 

G(x, ENV) = yur,i±1 

G(x, ENV)bi = mr'i < n bi-1jr' > 

= Tr1Lri-1 

= 7r6OTr , i 

= ~~,i+1 

If M = y and y is the (i + 1)th variable in ENV, then, 

G(y, ENV) = Jrn'`. 

G(y, ENV)bi = ,nn,i+1< Jr, bi-1n' > 

= ?L?r'i1bi-1r, 

                                    = nn' b07r, 

= If M = z and z is the jth variable in ENV and j < i, then, 

G(z, ENVi) = Jut'3. 

Cs(z, ENV)bi = mr'3 < ,Tr, bi-g' > 

= TLTC'~-1 b JL'                                                                      i-1 

                                         = 7rbi_~TL'1 

= iur'j .
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If i + 1 < j, then, 

                  L(z, ENV) = 

L (z, ENV) of = < 7r, 8i i it' > 

                                                                                                                                      • 

                                             TCTG'~ 1~i—l~r 

7uri j—i27Ei27Tri 

                                                   = JL,TI'j. 

We must only consider M = )1z. P, where z x and z y, then, 

(((az. P), ENV) 

= A(G(P, (z, ENV)) < it', it >) 

= A(C(P , (z, ENV)i+1) < n', it >). 

(((A,z.P), ENV)bi 

= A(C(P , (z, ENV)) < ,n', .n >)bi 

               = A(C (P, (z, ENV)) < ,t, bin' >< n', n >) 

= A(((P, (z, ENV))bi+i < it', it >). 

By inductive assumption, C(P, (z, ENV)1+1) = ((P, (z, ENV))81+1 hence above two 
formulas are identical. ^

4. Some Properties of Two Categorical Models 

   Before we compare LFV with CCFV in the categorical situation, in this section, we 
investigate some properties of them respectively. First, we extend the algorithm K 
introduced in Section 2 to be able to treat several indeterminates. We get the following 
commutativity for the order of several applications of algorithm K. 

PxoPOSmoN 4.1. Let p(x, y) be a polynomial C — D in indeterminates x : 1 --> A 
and y : 1 --> B over CCC 2t. Then, 

Kx(Ky(p(x, y)) = Ky(KxO(x, y))(50. 

60 is isomorphism which replaces the order of products. That is, the essential part of 
above equation is that the order of several applications of algorithm K only effects the 
order of products of the domain of the resulting morphism. For (i(xo, ... , xn_1) in 

polynomial CCC cMxo, ... , xn_1], we abbreviate several applications of K, Kr (.. . 
(Kx(4(x0, ... , xn_ )) ... ), to Kx„_1, .. , x0 4)(x0, ... , xn-1). 

   The first translation LFV gives the following identities.
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   PROPOSITION 4.2. Let M, N be A-terms in A(FV) and x be a variable in FV. Then 
   1. For substitution, we have 

L(M[x: = N], FV) = {FV} (xxL(M,(x, FV))) < L(N, FV), id >. 

    2. For f3conversion, we have 

L((Ax.M)N, FV) _ {FV} L(M[x: = N], FV). 

   3. For riconversion, if x Et FV(M), we have 

L(Ax.(Mx), FV) = {FV} L(M, FV). 

We prove only two cases, variable and Aabstraction, of 1 in Proposition 4.2. If M = x, 
then 

L(x[x: = N], FV) = {FV} L(N, FV). 

(xrt(x, (x, FV))) < L(N, FV), id > = {FV} yr < L(N, FV), id > 
                           = {FV} L(N, FV). 

If M = y x, then 

L(y[x: = N], FV) = {FV} L(y, FV) 

_ {FV} Y• 

(xxL(y, (x, FV))) < L(N, FV), id > = {FV} YJ' < L(N, FV), id > 

{FV} Y• 

If M  Ax. P, then 

L((Ax. P)[x : = N], FV) 

_ {FV} L(Xx.P, FV) 

= {FV} A(KKL(P,(x, FV)) < ,n', 7r >). 

On the other hand, 

(xKL(()i.x.P),(x, FV))) < L(N, FV), id > 

_ {FV} xx(A(KXL(P, (x, x, FV)) < z', n >)) < L(N, FV) , id > 

        = {FV} A(xxL(P, (x, x, FV)) < ir', sr >) ir' < L(N, FV), id > 

_ {FV} A(KKL(P, (x, x, FV)) < sr', Tr >). 

Because {(x, FV)} = {(x, x, FV)}, above two formulas are identical. 
If M = Ay.P and y Et FV(N), then 

    L((Ay.P)[x: = N], FV) 

_ {FV} L(Ay. P[x : = N], FV)
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= {FV} A(K),(L(P[x : = N], (y, FV))) < it', n >) 

= {FV} A(K
y(K,(L(P, (x, y, FV))) < L(N, (y, FV)), id >) < .Tt', n >) 

= {FV}A(Kyx(L(P,(x,y, FV)))<n,Ky<L(N,(y,FV)),id>><it',it>) 

= {FV} A(Ky,x(L(P, (x, y, FV))) < it, < L(N, (y, FV)), id > it' >< ,Tt', ,~t >) 

= {FV} A(Ky,x(L(P, (x, y, FV))) < ,Tt', < L(N, (y, FV)), id > n >) 

= {FV} A(Kx,y(L(P, (x, y, FV))) < L(N, (y, FV)) Tt, < ,rr', ,rc >>) (By Proposition 4.1). 

On the other hand, 

(rcyL((Ay.P), (x, FV))) < L(N, FV), id > 

_ {FV} Kx(A(KyL(P, (y, x, FV)) < rt', rc >)) < L(N, FV), id > 

          {FV} A(Kx(KyL(P, (y, x, FV)) < it', it >)a) < L(N, FV), id > 

           {FV} A(Kx,yL(P, (y, x, FV)) < L(N, FV) it, < ,7t', ,rt >>). 

Because y Et FV(N), L(N, (y, FV)) = {FV} L(N, FV), hence above two formulas are 
identical. If M = Ay.P and y E FV(N), then z FV(N) U FV(P), 

L((Ay. P)[x : =N], FV) 

= {FV} L(Az. P[y: = z][x : =N], FV) 

= {FV} A(KK(Kx(Ky(L(P, (y, x, z, FV))) < z, id >) < L(N, (z, FV)), id >) < it', n >) 

= {FV} A(Kz,x yL(P, (y, x, z, FV))) < Jt', < L(N, (z, FV)) ,7t, < ?t', ,rt >>>) 

= {FV} A(Kx,),(L(P, (y, x, z, FV))) < (L(N, (z, FV)) < it' 7t > >). 

On the other hand, 

(KxL((Ay.P), (x, FV))) < L(N, FV), id > 

{FV} A(KK,yL(P, (y, x, FV)) < L(N, FV)i, < rt', ,Tt >>). 

Because z FV(N) U FV(P), we get L(P, (y, x, FV)) _ {(y, x, FV)} L(P, (y, x, z, FV)) 
and L(N, FV) = {Fv} L(P, (z, FV)), hence above two formulas are identical. 

   Similarly, the second translation LFV gives the following identities. 
   PROPOSITION 4.3. Let M, N, be A-terms in A(FV) and x be a variable in FV. Then 

   1. For substitution, we have 

L(M[x : = N], FV) = L(M, (x, FV)) < L(N, FV), id >. 

   2. For f3conversion, we have 

L((Lx.M)N, FV) = L(M[x : =N], FV). 

   3. For n-conversion, if x FV(M), we have 

L(ax. (Mx), FV) = Ls-(M, FV).
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Remark that above equation holds not in polynomial CCC but in CCC . We prove only 
two cases, variable and  ) -abstraction, of 1 in Proposition 4.3. If M  x, then 

L(x[x : = N], FV) = G(N, FV). 

((x,(x,FV))<((N,FV),id>= r<((N,FV),id> 

                                     = L(N , FV) . 

If M  y x and y is the ith element in FV, then 

L(y[x : = N], FV) = L(y, FV) 

                                                    = jrjr" . 

((y,(x,FV))<L(N,FV),id>=.7rar"+i<((N,FV) ,id> 
                                               = 7r t" . 

If M = Ax. P, then 

L((Ax.P)[x : = N], FV) 

                    = L(Ax. P, FV) 

                     = A(L (P , (x, FV)) < ,Tr' , ,7r >) . 

On the other hand, 

L(Ax.P, (x, FV)) < L(N, FV), id > 

     = A(L(P , (x, x, FV)) < ,rt', it >)) < Cs(N, FV), id > 

     = A(L(P , (x, FV)) yi,l < 7r', it >) < L(N, FV), id > (By Proposition 3.1) 

     = A(L(P , (x, FV)) < it', it >). 

If M  Ay.P and y 4 FV(N), then 

L((Ay. P)[x : = N], FV) 

    = A(L(P[x : = N] , (y, FV)) < it', it >) 

    = A(L(P , (x, y, FV)) < L(N, (y, FV)), id >< it', it >) 

     = A(L(P , (x, y, FV)) < L(N, FV) ~t, < ir', n >>) (By Proposition 3.1). 

On the other hand, 

L(Ay.P, (x, FV)) < L(N, FV), id > 

    = A(L(P , (y, x, FV)) < n', it >) < L(N, FV), id > 

    = A(L(P , (x, y, FV))60 < ,Tt', ,n >) < L(N, FV), id > (By Proposition 3.2) 

    = A(L(P , (x, y, FV)) < L(N, FV) n, < n', n >>).
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If M = Ay.P and y E FV(N), then z FV(N) U FV(P), 

C((5ty. P)[x : = N], FV) 

= C(Az• P[y : = z][x : = N], FV) 

 = A(C(P, (y, x, z, FV)) < CC(z, (x, z, FV)), id >< L(N, (z, FV)), id >< n', sr >) 

 = A(C(P, (y, x, FV))Y2,1 < 7r, < C(N, FV)Yo,l, id >>< ir', it >) 

 = A(C(P, (y, x, FV)) < it', < C(N, FV), id > it >). (By Proposition 3.1) 

On the other hand, 

C((Ay. P), (x, FV)) < C(N, FV), id > 

= A(C(P, (y, x, FV)) < ,rt', < C(N, FV), id > Jt >). ^ 

   Finally, we easily arrive at the next theorem by using above propositions. 
   THEOREM 4.1. Let M, N be A-terms having same type in A(FV). Then 

A.  M = N L(M, FV) = {FV} L(N, FV), 

C(M, FV) = C(N, FV).

5. Comparison of Two Categorical Models 

   In this section, we compare LFV with CFV in the categorical situation. LFV gives the 

polynomial from 1 to 21 (as an object) in %[xo, ..., xn_1] to A-term M of type A in 
A(FV). On the other hand, CFV does the morphism in c2C, 

C(M, FV) : Ao X (A1 X (...(An_1 x 1)...)) — A, 

to it, where FV = (xo, x1, ... , xn_ 1,*) and each x, has type A1. But we can show CFV 
gives not simply the morphism in but one in (... (tsq _i ... )sqo to M of type A in 
A(FV). 
   For the purpose of it, we sequentially apply several algorithms x to L(M, FV) and 
compare the resulting morphism with C(M, FV). The order of applications of x is 
descendant, that is, first apply x„_1, second Kn_2, ... , and finally xo. Then, we get the 
morphism, 

       'cox,L(M, FV) : Ao x (A1 x (... (An_1 x 1) ... )) —> A,                       ''  x
„-i 

which does not include indeterminates. We arrive at the following main result of this 

paper. 
   THEOREM 5.1. Let M be X-term of type A in A(FV) and FV = (xo, xl, ... , 
xn_1, Then, 

xn_,L(M, FV) =1(M,FV).
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We prove only two cases, variable and Aabstraction. Let FV be (xo, x1, ... , xn_1,*) 
and each x, has type A,. If M  xi in FV(0  i < n), then, 

Kx) x„ 1 L(xi, FV) 

                        = K
xo,  x.,_1 X, 

K 0, x„-? Xi z' A 1.1 

                                               rn 1-i                        = K
xo, .. x x~JL 

                                                     n-1-i r                   = K
x  . -x,-1 ,1 < ?r, r7 Tr > 

= K
x0,  A„ A,+1 x (...(A „_,  x 1) ...) 

               = If M  Xy. P, y may occur in FV, then we a'-convert X y. P into Xz. P[ y : = z] where z is 
not included in FV, which is assured by Theorem 4.1. 

Kx(„ L(Ay.P, FV) 

 = Kx., ..., x„ 1A(ic. L(P, (y, FV)) < Tr', 7r >) 

= Kx., . , .x„_,A(K ,_1 icy L(P, (y, FV)) < it, < it', Jr > it' > cr) 

= Kxo, .. , -x„-, A(Kx„-1, L(P, (y, FV)) < nn, < n', ir'Jr >>) 

= Kxox„ zA (Ky,.x„1L(P, (y, FV))o0 <,nt,<a',Ain>>) (By Proposition 4.1)• 

= Kx, ...,  A(Ky,x„ L(P, (y, FV)) < n', it >) 

               • = A(Kxo, ..., -x„ , L(P, (y, FV)) < Tr', ,Tr >) 

= A(((P , (y, FV)) < it', it >) (By inductive assumption) 

= T(Ay.P, FV). ^ 

   According to Theorem 2.2 (functional completeness) in Section 2, S.(M, FV) may 
be considered as Kleisli morphism i.e. morphism in Kleisli category in the following 
sense. 

Mxo, ... , Xn-1] — (... (T [xn-1]) ... )[X0] 

(• • . (GLSA„-1) • • .)SA. 

where FV = (xo, ... , xn_1,*) and xi : 1 — A,(0 < i < n). Additionally, we get the 
following corollary. 

   COROLLARY 5.1. Let M be A-term of type A in A(FV) and FV = (xo, x1, ... , 
xn_1,•Then,
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          L(M, FV) = ((M, FV) < x0, < ... < x„_t, idt > ... >>. 

Moreover, it is important that above Kleisli category is an extended CCC and has the 
cartesian closed structure. This theorem asserts that LFV translates A-terms into not 
only morphisms in the CCC but also ones in Kleisli category of it. It means that from 
the categorical point of view, LFV essentially adopt Kleisli category, while LFV does 

polynomial CCC. 
   However polynomial CCC does have indeterminates, Kleisli category does not 

have them. This difference corresponds with that between Acalculus and de Bruijn's 
name-free expression. Moreover socalled indexes of variables in FV, which characterize 
the composition of several projections, correspond with the minimal components in de 
Bruijn's name-free expression. That is, it gives rise to not only de Bruijn's name-free 
expression in Acalculus but also Kleisli category (or it's construction) in the categorical 
model.

6. Conclusion 

   We have compared two categorical models of typed Xcalculus which are both 
CCC. It is clear that the first model (polynomial CCC) is not merely CCC but 
extended one and has certain universal property. We show that the second one is also 
does. Consequently, two categorical models are both extended CCC having certain 
universality and equivalent from the categorical point of view. Of course, categorical 
models presented in this paper are quite simpler than others in Curien [2], Koymans 

[4]. But essential parts of them are same those of others. For example, it is indeterminate 
corresponding with variable for the first model. On the other hand, it is socalled index 
of variable based on de Bruijn's name-free expression for the second model. 

   For the purpose that we will investigate the categorical properties and relation of 
models, we adopt simple models instead of original but complicated ones in Curien [2], 
Koymans [4] . 

   The studies of categorical investigation of Acalculus are actively accomplished by 
Curien [3] et al. They would treat CCC or Cmonoid (type free version of CCC) as 
syntactic systems, e.g., categorical combinatory logic, while we do as description of 
semantics of Acalculus. They extend classical combinatory logic to categorical one and 
try to reconstruct several properties, e.g., syntactic equivalence theorem, confluency 
under some systems of several axioms. Because our investigation mainly consider CCC 
as a (categorical) semantics of typed Acalculus, it would not be immediately concat
enated with their studies. 

    By the way, because Kleisli category of some comonad over CCC becomes categ

orical model of typed Acalculus and it is based on de Bruijn's name-free expression, we 
can consider Cmonoid (not polynomial Cmonoid) as a categorical model of not A
calculus but de Bruijn's name-free expression in the type free situation. Moreover, 
diverting Kleisli's method to certain construction of Cmonoid, we will deal with 
extended Cmonoid (of course, this is not polynomial Cmonoid) as a categorical model 
of it.
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