
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

COMPARISON OF TWO CATEGORICAL MODELS OF TYPED $
lambda $-CALCULUS

Otsuka, Hiroshi
Department of Mathematics, Kyushu University

https://doi.org/10.5109/13415

出版情報：Bulletin of informatics and cybernetics. 24 (3/4), pp.147-164, 1991-03. Research
Association of Statistical Sciences
バージョン：
権利関係：

Bulletin of Informatics and Cybernetics, Vol. 24, No. 3-4, 1991

COMPARISON OF TWO CATEGORICAL MODELS
 OF TYPED XCALCULUS

 By

Hiroshi OHTSUKA*

 Abstract

 This paper discusses a relation between two categorical models of typed
Acalculus which are both cartesian closed categories. One of them has a
concept of variables in it. The other does not have such concept and based
on de Bruijn's name-free expression. We show that the second one is
obtained by certain construction over cartesian closed category and they are
isomorphic from the categorical point of view.

1. Introduction

 Category, particularly cartesian closed category (CCC for short), recently began to
be treated as a model of typed Acalculus by several authors [2], [4], [5], [9]. The work
of this paper is a Comparison of two categorical models of typed Acalculus which are
introduced by Curien [2] and Koymans [4].

 The first model has indeterminate, a concept of variables in Acalculus, and is
obtained by universal construction over certain CCC. That is, it assigns indeterminates
to variables and translates A-terms into not the CCC but socalled polynomial category
of it (polynomial CCC [5], another term is free CCC [2]). It is important that free
variables are treated as themselves. For example, in [9], they were handled as being
bound and only closed A-terms were considered.

 On the other hand, the second model does not have such concept but it is based on
de Bruijn's name-free expression to make up for it. That is, it assigns not indeterminates
but projections characterized by socalled their indexes to variables and translates A
terms into the CCC itself.

 But our observation shows that the second model is also obtained by certain
construction over certain CCC known as Kleisli's construction. Kleisli category gotten
by his construction becomes extended CCC just as polynomial CCC does. Therefore,
we can regard that the second one deals with A-terms in Kleisli category of the CCC
instead of in itself.

 Moreover, functional completeness of CCC [5] tells us that Kleisli category is
isomorphic to polynomial CCC. This means that two categorical models of typed A
calculus are both not merely CCCs but also extended ones obtained by certain con

* Department of Mathematics
, Kyushu University 33, Fukuoka 812, Japan

 147

148H. OHTSUKA

structions over it and have certain universality. In particular, the second model has
been considered as merely CCC in early categorical model and it has been hard to
investigate the categorical property of it. We conclude that the second model is gotten
by Kleisli's construction just as the first one does by universal construction, and
consequently, two categorical models are equivalent from the categorical point of view.

 Section 2 sketches the basic notions of categories, CCC, polynomial CCC, Kleisli's
construction. Section 3 introduces typed Acalculus and two translations of it into CCC.
Section 4 gives some properties of them respectively. Section 5 contains the main result
mentioned that these translations have reciprocal relationship from the categorical

point of view. The functional completeness of CCC due to Lambek and Scott [5] is
essential for this relation.

2. Cartesian Closed Categories

 In this section, we recall some relevant notions and notations of CCC, in particular
Kleisli's construction and universal construction over CCC and their relation.

DEFINITION 2.1. A CCC G is the category which has some additional structure.
Let C be a set of basic objects. Objects of G are defined as follows.

 1. Elements of C are objects of C.
 2. The special object 1 (terminal object) (t C is an object of G.

3. If A and B are objects of C then so are A x B (product) and BA (exponential).
Morphisms of L are defined as follows.

 1. For any object A, there exists the identity idA : A —* A.
 2. For any object A, there exists !A : A --* 1.

 3. For any objects A and B, there exist first and second projections

7rA,B:A x B—~AandJr ,B:A x B—B.

 4. For any objects B and C, there exists evaluation EB C : BC x C —> B.
 5. If f : B —* C and g : A — B then fog :A C.

 6. If f: A —> B and g : A —* C then < f, g > : A ---> B x C.
 7. If h : A x C — B then A(h) : A --> B`.

We omit the required structure of cartesian closedness. It is referred [5], [7].
We omit the subscript of morphisms and the symbol of composition o if no confusion
occurs. In the rest of this section, and 0 denote CCCs. If a functor F: --j

preserves cartesian closed structure, we call it cartesian closed functor (CCF for short).
In the next paragraph, we present two constructions over CCC and certain relation
between them [5].

 First, we construct an adjoint pair of functors which induces a comonad < SA,
r]A > over an c2X and an object A in 21. The comonad consists of an endofunctor SA over
~l associated with two natural transformations

: SA — Ic (identity functor) and 7A : SA —> S2 (composition of S with S),

which are defined as follows.

Comparison of two categorical models of typed Xcalculus149

 1. SA(B) = A x B, and SA(f) = < ITA, B, f rrA, B > for f : B — C.
 2. A(B) _ yA,B : A x B B.

 3. 71A(B) _ < 7rA, B, idA x B > :A x B — A x (A x B) .
for any objects B, C in '21. Then it is easy to show that < SA, cA, riA > becomes
comonad (c.f. [7], [8]).

 It is known that inducing pairs of functors are not uniquely determined by the
comonads. But there are two essentially different pairs of adjoint functors satisfying
this condition and having certain universal property. These pairs were independently
found by Eilenberg-Moore and Kleisli. As pointed out by Lambek and Scott, the
Kleisli category of < SA, , 71A > over c2t is isomorphic to polynomial CCC of %. That
is why we present Kleisli's construction and its universal property.

 Let usA be the the Kleisli category of < SA, TJA >, which has the same
objects as %. A morphism f: B -> C in SA is called Kleisli morphism f: SA(B) = A x
B — C in 2l. Below, morphisms with superscript A denote Kleisli morphisms. In

particular,
 1. The identity idB in'sA is (B) _ JrA,B in I.

 2. The composition in Kleisli category is defined by

 gof = gSA()71A = g < JrA, B, f > : SA(B) -* D

 for f : SA(B) -> C and g : SA(C) — D in a.

Moreover, 2-lsA becomes CCC by the following cartesian closed structure. Let B, C, D
be any objects in %SA

 1. Following morphisms are Kleisli morphisms.

= !AXB, 43,C = 71B,C n'A,Bxc, ?r'g C = 763,C n'A,BxC and EB,C = EB,C AJA,BxC

 2. If f: B -> C and g : B -* D are morphisms in %A, then so is

< f,g>A = < f, g>:B-> C x D.

 3. If h: B x C --> D is a morphism in s?CsA, then so is
AA(h) = A(ha) : B -> DC.

 Where a = < Tr r, < 7r' Jr, 'r' >> : (A x B) x C -* A x (B x C).

Accordingly, the functors from 51 into GIsA and vice versa can be defined. The CCF
FsA : 2l -> s?1SA is defined by

 1. FsA(B) = B for any objects B,
 2. FSA(f) = fgA(B) = frrA,B for any morphisms f: B --* C.

The inverse functor GSA: S2LSA -> 21 is defined by
 1. GSA(B) = SA(B) = A x B for any objects B,

 2. GsA(g) = SA(g)7A(B) = < ,rrA, B,g > for any Kleisli morphisms g : A x B -* C.
It is clear that FSA is the left adjoint of GSA. Moreover, above construction has the
universal property known as Kleisli's construction. We present it without proof.

 THEOREM 2.1. (Comparison theorem of Kleisli's construction [7], [8])

150H . OHTSUKA

Let < S, ~, > be a comonad over a category C?, FS : C — L and G: L, —> CC are the

pair of adjoint functors obtained by Kleisli's construction. If F:07. —> T and G : L
are another pair of adjoint functors inducing the given comonad , then there exists
uniquely determined functor L : C — such that

F = LFs andGs = GL.

Of course, this theorem still holds in the situation of < SA, ~A, r1A > over CCC t .
 On the other hand, universal construction of CCC 'u gives rise to polynomial

CCC V1[x], where x : A —* B is an indeterminate over Vt. A polynomial category 2t[x]
over Vt is freely constructed by adding x as a morphism to VT. Morphisms in ct[x] are
called polynomials. We introduce equality `=x' between polynomials such that rendering
tt[x] CCC [5]. The subscript of equality is a set of indeterminates (if one element , then
abbreviate like as above and for a set of indeterminates X , we write =X).

 PROPOSITION 2.1. (Universality [5], [6]) Let x: A — B be an indeterminate over Vt.
For any CCF F: t — 3 and a morphism b: F(A) — F(B) in 8 , there exists a unique
CCF F' : ~Z [x] — 3 such that

 F'(x) = b and F'H = F.

Where H: 21 — ' i [x] is the CCF which sends f: B — C onto the "constant" polynomial
with the same name.

PROPOSITION 2.1 which asserts that the polynomial CCC %[x] has the universal

property corresponds with Theorem 2.1. Moreover, 52Z [x] whose indeterminate is x:1
 —* A has closed relation with Kleisli category Gis

A.
 PROPOSITION 2.2. (Functional completeness [5], [6]) For every polynomial ay(x) : B

—> C in an indeterminate x:1 —> A over JC, there is a unique morphism f: A x B —> C in
cC such that

 f < x! B, id > = 4(x).

We only exhibit the algorithm finding morphism f for a polynomial 4)(x). We take the
following xrirp(x) as f satisfying above equation.

 1. xxk = k ItA, B : A x B — C for constant polynomial k : B — C.
 2. xxx = ,1rA,B : A x 1 —> A for indeterminate x : 1 — A.

 3. xx < 0(x), p(x) > = < Kir(p(x), Kx (x) > : A x B —> C x D
 for cp(x) : B — C and v(x) : B ---> D .

 4. xx((x)q(x)) = Ri ip(x) < 7rA B,Kxq(x) > : A x B — A x C — D
 for 4(x) : B — C and 'p(x) : C — D.

 5. xxA(x(x)) = A((xrx(x))(x) : A x B —* C° for x(x) : B x D — C.
The next proposition is taken another look at the Proposition 2.2 ([5], [6]).

 PROPOSITION 2.3. For an indeterminate x: 1 — A over 2t,

'Mx] = 21,A.

The isofunctor 21[x] —> VlsA is defined through the algorithm in the proof of Proposition
2.2. The isomorphic situation is made mention by the functional completeness .

Comparison of two categorical models of typed },calculus151

 Although we concern only one indeterminate above, the following situation holds
in general:

ti)([xo, ..., xn-1] = (... 0,)i[x0])...)[xn-11

(-• • (1)tsAO) . .)SA„-1
where x,: 1 A,(0 <_ i n 1).

3. Typed Acalculus

 We abbreviate typed A/3icalculus with product types (another term is surjective
pairing) to typed Acalculus. In this section, we present the system of typed Acalculus
and two translations of it into CCC. The formal system of typed Acalculus consists of
types, A-terms of each type and certain rules between A-terms of the same type ([1], [2],
[6]).
 DEFINITION 3.1. Types have the same structure as objects of CCC. Let C be a set
of basic types. Types are defined as follows.

 1. Elements of C are types.
 2. The special object 1 C is a type.

 3. If A and B are types so are A x B and AB.
AA (VA) denotes the set of typed A-terms (variables resp) of type A. For each type A,
there are countably many variables of type A. A-terms are inductively defined by

 1. vAEAA,
 2. ME ABA, NEAA (MN)EAB,

 3. ME AB, XE VA~(/~.Y.M) EABA,
 4. M E AA, N E AB (M, N) E AA X B,

 5. M E AAXB (fst(M)) E AA, (snd(M)) E AB,
 6. * E Al

Free and bound variables are defined as usual. We use FV(M) to denote the set of free
variables of A-term M. A term of the form (MN) is an application (of M to N). A term
(Ax. M) is a Aabstraction, x is called binder and M is body. A term (M, N) is a pairing, a
term (fst(M)) is a 1st projection and (snd(M)) is a 2nd projection. We adopt usual
brackets convention if confusion may not occur and use `=' to indicate syntactical
equality.
 Substitution is the replacement of all the free occurrence of a variable in a A

term by another A-term. The result of substituting N for the variable x in M is denoted
by M[x : = N]. In general, it is assumed that substitution does not influence the binding
structure.
 DEFINITION 3.2. Substitution is defined as follows.

x[x: = N] nN.

y[x: =N]Ey if y.

(PQ)[x : = N] = (P[x : = N])(Q[x : = N]).

 (P,Q)[x: = N] = (P[x: = N], Q[x: = N]).

152H . OHTSUKA

(Ax. P)[x : = N] = Ax. P.

(Ay.P)[x : = N] = Ay.(P[x: = N]), if x y and y FV(M).

(Ay.P)[x: = N] = Az.((P[y: = z])[x : = N]),

 if x y and y E FV(M), choose z FV(P) U FV(N).

fst(P)[x: = N] fst(P[x : = N]).

snd(P)[x: = N] = snd(P[x: = N]).

[x:=N] .

 AXIOM 3.1. A-terms of the same type are to satisfy the following rules.
 1.)x.M = Ay. M[x: = y], if y FV(M).(caconversion)

 2. (Ax.M)N = M[x: = N].(/.conversion)
 3. Lx. Mx = M, if x FV(M) .(77conversion)

 4. M = * for M E Al.(srconversion)

fst(P, Q) = P, snd(P, Q) = Q.
 (fst(M), snd(M)) = M.

 5. Standard compatible rules (see Barendregt [1], Lambek and Scott [6]) .
We denote induced equation M = N by above axioms in typed Acalculus for A I M =
N.
 Next, we present two translations of typed Acalculus into the CCC 2l which has
the same objects as types. Because we concern categorical properties of them, we
restrict free variables in typed Acalculus to finite. They are gathered up and make right
associative ordered list,

 FV = (x0, (x1, (... , (x_1 ,*)...))) = (x0, x1, ... , xn_1,*)

Remark that numbering is started with 0. If we assume a finite list of variables as
several pairings, it can have the same type of the pairing. Particularly , FV has the type
Ao x (Al x (... x (An_1 x 1) ...)), where each variable x, has type A1. We denote
typed Acalculus whose free variables are included in FV for A(FV)

 The first translation translates k-terms into polynomial CCC, that is, indeterminates
are assigned to variables. This is due to Lambek and Scott [5] and introduced by Curien

[2]. In Poigne [9], free variables are handled as being bound in the sense that his
method assigns idA to all free variables with same type A. Thus, A-terms have been
translated not into polynomial CCC but into CCC. We extend his method to be able to
treat free variables themselves and adopt polynomial CCC. Moreover, this is a simple
version of Curien's one which translates A-terms into polynomials via socalled Categ
orical Combinatory Logic. First of all, we add the indeterminates , having the same
name as variables in FV,

x0:1->AO,x1:1--->A1, ...,xn_1 : 1--->An-1

to CCC % and make 21[x0, ... , xn_1]. We denote the set of indeterminates which have
the same name as variables in FV for { FV}.

Comparison of two categorical models of typed Xcalculus153

 DEFINITION 3.3. We identify the basis of objects in CCC t to that of types in
typed Acalculus, and define polynomial

 L(M, ENV) : 1 — A

for A-term M of type A in A(ENV) as follows.

 L(x, ENV) =xi: 1–>A,

 where x, in ENV has the same name as x.

 L(MN, ENV) = E < L(M, ENV), L(N, ENV) >.

 L((M, N), ENV) = < L(M, ENV), L(N, ENV) >.

L(Ax.M, ENV) = A(x,L(M, (x, ENV)) < ni,A, .n1,A >),

 where x has type A.

 L(fst(M), ENV) = .n L(M, ENV).

L(snd(M), ENV) _ .n'L(M, ENV).

 L(*, ENV) = id1.

A list ENV is equal with FV at the top level.
Obviously, if FV(Ax.M) is included in ENV then so is FV(M) in (x, ENV) and L does
not depend on the order of variables in ENV. It is easy to show that if FV' is another
list of variables and let M be the A-term whose free variables are included in both FV
and FV', then

 L(M, FV) = {FV}n{ FV'} L(M, FV')

It is essential that FV(M) is included in FV. We denote above translation for LFV
A(FV) —> 9Jlx,_1].-1]

 The second translation translates A-terms not into polynomial CCC but into CCC.
This method is given by Curien [2] and typed version of Koymans's one [4]. Although it
does not use indeterminates, it treats free variables as themselves using so-caled indexes
of them instead of their names. Therefore, it may be based on the variable concept of
de Bruijn's name-free expression.

 DEFINITION 3.4. We identify the basis of objects in CCC 21 to that of types in
typed Acalculus, and define morphism,

G(M, ENV) : X —3 A

for A-term M of type A in A(ENV), where ENV has type X, as follows.

G(x, ENV) = irir't : X — A,

 where i is the minimum such that x = x, in ENV.

L(MN, ENV) = E < G(M, ENV), G(N, ENV) >.

154H. OHTSUKA

C((M, N), ENV) = < (s_"(M, ENV), C(N, ENV) >.

C(ax.M, ENV) = A(C(M, (x, ENV)) < x,A, 71-X,A >),

 where x has type A and ENV has X.

C(fst(M), ENV) = n((M, ENV).

 C(snd(M), ENV) = .r'C(M, ENV).

C(*, ENV) = !X.

Jrir'i means A,, Yir'A,_,,A x Y • • • IT'Ao Al x Z, where Y = Ai+1 x (... x 1) and Z = A2 x
(... x 1). And if i = 0 then sr" becomes id. A list ENV is equal with FV at the top
level.
Remark that C does depend on the order of variables in FV contrary to L. We denote
above translation for CFV: A(FV) -> %. We give some properties of C relating the
manipulation of list. First, we provide the following notations of list.

 1. ENV(i, m, +) denotes the list which is made by adding m variables in the

 preceding position of the ith variable in ENV. We restrict the added variables to
 ones which can not appear in ENV or ones which appear in the left positions of the

 ith variable in ENV.
 2. ENV(i, m, -) denotes the list which is made by removing m variables starting

 with the order i in ENV.
Of course, we assume that there are enough variables in ENV to be able to define
above definitions. Next, we define the morphisms corresponding with above notations
of list. Let X be the type of FV (or FV(i, m, +)) and Xl m be FV(i, m, -) (or FV resp).
We define y~,m : X * Xi m as follows.

Yi,m = < •n, Yi_1,m•n' > : Xo X Y --> Xo x Z

 where yi_1,m : Y -> Z

 and X0 is the type of the first variable in FV.

Yo,m Tr'm : Xo X (... (Xm-1 X Y) ...) -> Y,

 where yo,o = id : Y Y.

Finally, we get the following property of manipulation of list.
PxoPosruoN 3.1. Let M E A(FV) be the A-term of type A. If FV has type Y and

FV(i, m, +) has X, then,

C(M, FV(i, m, +)) = C(M, FV)yi m : X -~ A,

where yi,m : X Y.
We prove only two cases, variable and Aabstraction. If M = x and x is the jth variable
in ENV, then the first case 0 <_ j < i,

C(x, ENV(i, m, +)) = rrjr'3.

Comparison of two categorical models of typed kcalculus155

((x, ENV)yi ,m = TLTG'' < 7L, Yi-1,mJT' >

 =

•

 Yi—l,m't

= 1L 'j

 = The second case i j, we can assume that x can not appear the added variables in
ENV(i, m, +).

G(x, ENV(i, m, +)) =

G(x, ENV)Yi,m=7r1LrjYi,m

 =~~Yi -1,mr

= z7r1j-iY0 m7rri

= mei+m.

If M = Ay.P, then

(((Ay.P), ENV(i, m, +))

 = A(Cs(P, (y, ENV(i, m, +)) < sr', n >))

 = A(Cs(P, (y, ENV)(i + 1, m, +)) < ,n', n >).

CT((A,y.P), ENV)Yi,m

 = A(((P, (y, ENV)) < n', n >)y, ,m

 = A(G(P, (y, ENV)) < n', y,,m yt >)

 = A(G(P , (y, ENV)) < ir, Yi,mJU' >< a', 7L >)

 = A(Cc(P, (y, ENV)) yi±i,m < iv', n >).

By inductive assumption, G(P, (y, ENV)(i + 1, m, +)) = fS(P, (y, ENV))yi+i ,m hence
above two formulas are identical. ^

 Next, we consider the order of variables in the list of them. ENVi denotes the list
which is made by exchanging ith variable with (i + 1)th one in the list ENV. Of course,
we assume there are enough variables in X to be able to define ENVi. On the other
hand, we define the morphisms corresponding with above notation. Let X be the type

of FV and Xi be FVi. We define 6i: X — Xi as follows.

bi_<7L,bi_1TL'> : X0 Y —>XaxZ

156H . OHTSUKA

 where 8i_1 : Y —> Z

 and X0 is the type of the first variable in FV.

60 = < 7LTr ,< Jl, Tr' 2 » : X0 X (X1 X Y) —* X 1 x (X0 x Y) .

Then, we get the following property.

PxoPosruoN 3.2. Let M E A(FV) be the A-term of type A. If FV has type X and
FVi has Xi. Moreover, ith and (i + 1)th variables do not appear in the left position of ith
one in FV. Then,

G(M, FT/i) = L(M, FV)bi : Xi —* A,

where bi : Xi — X.
We prove only two cases, variable and /1abstraction. If M = x and x is the ith variable
in ENV, then,

G(x, ENV) = yur,i±1

G(x, ENV)bi = mr'i < n bi-1jr' >

= Tr1Lri-1

= 7r6OTr , i

= ~~,i+1

If M = y and y is the (i + 1)th variable in ENV, then,

G(y, ENV) = Jrn'`.

G(y, ENV)bi = ,nn,i+1< Jr, bi-1n' >

= ?L?r'i1bi-1r,

 = nn' b07r,

= If M = z and z is the jth variable in ENV and j < i, then,

G(z, ENVi) = Jut'3.

Cs(z, ENV)bi = mr'3 < ,Tr, bi-g' >

= TLTC'~-1 b JL' i-1

 = 7rbi_~TL'1

= iur'j .

Comparison of two categorical models of typed ?,.calculus157

If i + 1 < j, then,

 L(z, ENV) =

L (z, ENV) of = < 7r, 8i i it' >

 •

 TCTG'~ 1~i—l~r

7uri j—i27Ei27Tri

 = JL,TI'j.

We must only consider M =)1z. P, where z x and z y, then,

(((az. P), ENV)

= A(G(P, (z, ENV)) < it', it >)

= A(C(P , (z, ENV)i+1) < n', it >).

(((A,z.P), ENV)bi

= A(C(P , (z, ENV)) < ,n', .n >)bi

 = A(C (P, (z, ENV)) < ,t, bin' >< n', n >)

= A(((P, (z, ENV))bi+i < it', it >).

By inductive assumption, C(P, (z, ENV)1+1) = ((P, (z, ENV))81+1 hence above two
formulas are identical. ^

4. Some Properties of Two Categorical Models

 Before we compare LFV with CCFV in the categorical situation, in this section, we
investigate some properties of them respectively. First, we extend the algorithm K
introduced in Section 2 to be able to treat several indeterminates. We get the following
commutativity for the order of several applications of algorithm K.

PxoPOSmoN 4.1. Let p(x, y) be a polynomial C — D in indeterminates x : 1 --> A
and y : 1 --> B over CCC 2t. Then,

Kx(Ky(p(x, y)) = Ky(KxO(x, y))(50.

60 is isomorphism which replaces the order of products. That is, the essential part of
above equation is that the order of several applications of algorithm K only effects the
order of products of the domain of the resulting morphism. For (i(xo, ... , xn_1) in

polynomial CCC cMxo, ... , xn_1], we abbreviate several applications of K, Kr (.. .
(Kx(4(x0, ... , xn_)) ...), to Kx„_1, .. , x0 4)(x0, ... , xn-1).

 The first translation LFV gives the following identities.

158H. OHTSUKA

 PROPOSITION 4.2. Let M, N be A-terms in A(FV) and x be a variable in FV. Then
 1. For substitution, we have

L(M[x: = N], FV) = {FV} (xxL(M,(x, FV))) < L(N, FV), id >.

 2. For f3conversion, we have

L((Ax.M)N, FV) _ {FV} L(M[x: = N], FV).

 3. For riconversion, if x Et FV(M), we have

L(Ax.(Mx), FV) = {FV} L(M, FV).

We prove only two cases, variable and Aabstraction, of 1 in Proposition 4.2. If M = x,
then

L(x[x: = N], FV) = {FV} L(N, FV).

(xrt(x, (x, FV))) < L(N, FV), id > = {FV} yr < L(N, FV), id >
 = {FV} L(N, FV).

If M = y x, then

L(y[x: = N], FV) = {FV} L(y, FV)

_ {FV} Y•

(xxL(y, (x, FV))) < L(N, FV), id > = {FV} YJ' < L(N, FV), id >

{FV} Y•

If M Ax. P, then

L((Ax. P)[x : = N], FV)

_ {FV} L(Xx.P, FV)

= {FV} A(KKL(P,(x, FV)) < ,n', 7r >).

On the other hand,

(xKL(()i.x.P),(x, FV))) < L(N, FV), id >

_ {FV} xx(A(KXL(P, (x, x, FV)) < z', n >)) < L(N, FV) , id >

 = {FV} A(xxL(P, (x, x, FV)) < ir', sr >) ir' < L(N, FV), id >

_ {FV} A(KKL(P, (x, x, FV)) < sr', Tr >).

Because {(x, FV)} = {(x, x, FV)}, above two formulas are identical.
If M = Ay.P and y Et FV(N), then

 L((Ay.P)[x: = N], FV)

_ {FV} L(Ay. P[x : = N], FV)

Comparison of two categorical models of typed k.calculus159

= {FV} A(K),(L(P[x : = N], (y, FV))) < it', n >)

= {FV} A(K
y(K,(L(P, (x, y, FV))) < L(N, (y, FV)), id >) < .Tt', n >)

= {FV}A(Kyx(L(P,(x,y, FV)))<n,Ky<L(N,(y,FV)),id>><it',it>)

= {FV} A(Ky,x(L(P, (x, y, FV))) < it, < L(N, (y, FV)), id > it' >< ,Tt', ,~t >)

= {FV} A(Ky,x(L(P, (x, y, FV))) < ,Tt', < L(N, (y, FV)), id > n >)

= {FV} A(Kx,y(L(P, (x, y, FV))) < L(N, (y, FV)) Tt, < ,rr', ,rc >>) (By Proposition 4.1).

On the other hand,

(rcyL((Ay.P), (x, FV))) < L(N, FV), id >

_ {FV} Kx(A(KyL(P, (y, x, FV)) < rt', rc >)) < L(N, FV), id >

 {FV} A(Kx(KyL(P, (y, x, FV)) < it', it >)a) < L(N, FV), id >

 {FV} A(Kx,yL(P, (y, x, FV)) < L(N, FV) it, < ,7t', ,rt >>).

Because y Et FV(N), L(N, (y, FV)) = {FV} L(N, FV), hence above two formulas are
identical. If M = Ay.P and y E FV(N), then z FV(N) U FV(P),

L((Ay. P)[x : =N], FV)

= {FV} L(Az. P[y: = z][x : =N], FV)

= {FV} A(KK(Kx(Ky(L(P, (y, x, z, FV))) < z, id >) < L(N, (z, FV)), id >) < it', n >)

= {FV} A(Kz,x yL(P, (y, x, z, FV))) < Jt', < L(N, (z, FV)) ,7t, < ?t', ,rt >>>)

= {FV} A(Kx,),(L(P, (y, x, z, FV))) < (L(N, (z, FV)) < it' 7t > >).

On the other hand,

(KxL((Ay.P), (x, FV))) < L(N, FV), id >

{FV} A(KK,yL(P, (y, x, FV)) < L(N, FV)i, < rt', ,Tt >>).

Because z FV(N) U FV(P), we get L(P, (y, x, FV)) _ {(y, x, FV)} L(P, (y, x, z, FV))
and L(N, FV) = {Fv} L(P, (z, FV)), hence above two formulas are identical.

 Similarly, the second translation LFV gives the following identities.
 PROPOSITION 4.3. Let M, N, be A-terms in A(FV) and x be a variable in FV. Then

 1. For substitution, we have

L(M[x : = N], FV) = L(M, (x, FV)) < L(N, FV), id >.

 2. For f3conversion, we have

L((Lx.M)N, FV) = L(M[x : =N], FV).

 3. For n-conversion, if x FV(M), we have

L(ax. (Mx), FV) = Ls-(M, FV).

160H . OHTSUKA

Remark that above equation holds not in polynomial CCC but in CCC . We prove only
two cases, variable and) -abstraction, of 1 in Proposition 4.3. If M x, then

L(x[x : = N], FV) = G(N, FV).

((x,(x,FV))<((N,FV),id>= r<((N,FV),id>

 = L(N , FV) .

If M y x and y is the ith element in FV, then

L(y[x : = N], FV) = L(y, FV)

 = jrjr" .

((y,(x,FV))<L(N,FV),id>=.7rar"+i<((N,FV) ,id>
 = 7r t" .

If M = Ax. P, then

L((Ax.P)[x : = N], FV)

 = L(Ax. P, FV)

 = A(L (P , (x, FV)) < ,Tr' , ,7r >) .

On the other hand,

L(Ax.P, (x, FV)) < L(N, FV), id >

 = A(L(P , (x, x, FV)) < ,rt', it >)) < Cs(N, FV), id >

 = A(L(P , (x, FV)) yi,l < 7r', it >) < L(N, FV), id > (By Proposition 3.1)

 = A(L(P , (x, FV)) < it', it >).

If M Ay.P and y 4 FV(N), then

L((Ay. P)[x : = N], FV)

 = A(L(P[x : = N] , (y, FV)) < it', it >)

 = A(L(P , (x, y, FV)) < L(N, (y, FV)), id >< it', it >)

 = A(L(P , (x, y, FV)) < L(N, FV) ~t, < ir', n >>) (By Proposition 3.1).

On the other hand,

L(Ay.P, (x, FV)) < L(N, FV), id >

 = A(L(P , (y, x, FV)) < n', it >) < L(N, FV), id >

 = A(L(P , (x, y, FV))60 < ,Tt', ,n >) < L(N, FV), id > (By Proposition 3.2)

 = A(L(P , (x, y, FV)) < L(N, FV) n, < n', n >>).

Comparison of two categorical models of typed ycalculus161

If M = Ay.P and y E FV(N), then z FV(N) U FV(P),

C((5ty. P)[x : = N], FV)

= C(Az• P[y : = z][x : = N], FV)

 = A(C(P, (y, x, z, FV)) < CC(z, (x, z, FV)), id >< L(N, (z, FV)), id >< n', sr >)

 = A(C(P, (y, x, FV))Y2,1 < 7r, < C(N, FV)Yo,l, id >>< ir', it >)

 = A(C(P, (y, x, FV)) < it', < C(N, FV), id > it >). (By Proposition 3.1)

On the other hand,

C((Ay. P), (x, FV)) < C(N, FV), id >

= A(C(P, (y, x, FV)) < ,rt', < C(N, FV), id > Jt >). ^

 Finally, we easily arrive at the next theorem by using above propositions.
 THEOREM 4.1. Let M, N be A-terms having same type in A(FV). Then

A. M = N L(M, FV) = {FV} L(N, FV),

C(M, FV) = C(N, FV).

5. Comparison of Two Categorical Models

 In this section, we compare LFV with CFV in the categorical situation. LFV gives the

polynomial from 1 to 21 (as an object) in %[xo, ..., xn_1] to A-term M of type A in
A(FV). On the other hand, CFV does the morphism in c2C,

C(M, FV) : Ao X (A1 X (...(An_1 x 1)...)) — A,

to it, where FV = (xo, x1, ... , xn_ 1,*) and each x, has type A1. But we can show CFV
gives not simply the morphism in but one in (... (tsq _i ...)sqo to M of type A in
A(FV).
 For the purpose of it, we sequentially apply several algorithms x to L(M, FV) and
compare the resulting morphism with C(M, FV). The order of applications of x is
descendant, that is, first apply x„_1, second Kn_2, ... , and finally xo. Then, we get the
morphism,

 'cox,L(M, FV) : Ao x (A1 x (... (An_1 x 1) ...)) —> A, '' x
„-i

which does not include indeterminates. We arrive at the following main result of this

paper.
 THEOREM 5.1. Let M be X-term of type A in A(FV) and FV = (xo, xl, ... ,
xn_1, Then,

xn_,L(M, FV) =1(M,FV).

162H . OHTSUKA

We prove only two cases, variable and Aabstraction. Let FV be (xo, x1, ... , xn_1,*)
and each x, has type A,. If M xi in FV(0 i < n), then,

Kx) x„ 1 L(xi, FV)

 = K
xo, x.,_1 X,

K 0, x„-? Xi z' A 1.1

 rn 1-i = K
xo, .. x x~JL

 n-1-i r = K
x . -x,-1 ,1 < ?r, r7 Tr >

= K
x0, A„ A,+1 x (...(A „_, x 1) ...)

 = If M Xy. P, y may occur in FV, then we a'-convert X y. P into Xz. P[y : = z] where z is
not included in FV, which is assured by Theorem 4.1.

Kx(„ L(Ay.P, FV)

 = Kx., ..., x„ 1A(ic. L(P, (y, FV)) < Tr', 7r >)

= Kx., . , .x„_,A(K ,_1 icy L(P, (y, FV)) < it, < it', Jr > it' > cr)

= Kxo, .. , -x„-, A(Kx„-1, L(P, (y, FV)) < nn, < n', ir'Jr >>)

= Kxox„ zA (Ky,.x„1L(P, (y, FV))o0 <,nt,<a',Ain>>) (By Proposition 4.1)•

= Kx, ..., A(Ky,x„ L(P, (y, FV)) < n', it >)

 • = A(Kxo, ..., -x„ , L(P, (y, FV)) < Tr', ,Tr >)

= A(((P , (y, FV)) < it', it >) (By inductive assumption)

= T(Ay.P, FV). ^

 According to Theorem 2.2 (functional completeness) in Section 2, S.(M, FV) may
be considered as Kleisli morphism i.e. morphism in Kleisli category in the following
sense.

Mxo, ... , Xn-1] — (... (T [xn-1]) ...)[X0]

(• • . (GLSA„-1) • • .)SA.

where FV = (xo, ... , xn_1,*) and xi : 1 — A,(0 < i < n). Additionally, we get the
following corollary.

 COROLLARY 5.1. Let M be A-term of type A in A(FV) and FV = (xo, x1, ... ,
xn_1,•Then,

Comparison of two categorical models of typed),calculus163

 L(M, FV) = ((M, FV) < x0, < ... < x„_t, idt > ... >>.

Moreover, it is important that above Kleisli category is an extended CCC and has the
cartesian closed structure. This theorem asserts that LFV translates A-terms into not
only morphisms in the CCC but also ones in Kleisli category of it. It means that from
the categorical point of view, LFV essentially adopt Kleisli category, while LFV does

polynomial CCC.
 However polynomial CCC does have indeterminates, Kleisli category does not

have them. This difference corresponds with that between Acalculus and de Bruijn's
name-free expression. Moreover socalled indexes of variables in FV, which characterize
the composition of several projections, correspond with the minimal components in de
Bruijn's name-free expression. That is, it gives rise to not only de Bruijn's name-free
expression in Acalculus but also Kleisli category (or it's construction) in the categorical
model.

6. Conclusion

 We have compared two categorical models of typed Xcalculus which are both
CCC. It is clear that the first model (polynomial CCC) is not merely CCC but
extended one and has certain universal property. We show that the second one is also
does. Consequently, two categorical models are both extended CCC having certain
universality and equivalent from the categorical point of view. Of course, categorical
models presented in this paper are quite simpler than others in Curien [2], Koymans

[4]. But essential parts of them are same those of others. For example, it is indeterminate
corresponding with variable for the first model. On the other hand, it is socalled index
of variable based on de Bruijn's name-free expression for the second model.

 For the purpose that we will investigate the categorical properties and relation of
models, we adopt simple models instead of original but complicated ones in Curien [2],
Koymans [4] .

 The studies of categorical investigation of Acalculus are actively accomplished by
Curien [3] et al. They would treat CCC or Cmonoid (type free version of CCC) as
syntactic systems, e.g., categorical combinatory logic, while we do as description of
semantics of Acalculus. They extend classical combinatory logic to categorical one and
try to reconstruct several properties, e.g., syntactic equivalence theorem, confluency
under some systems of several axioms. Because our investigation mainly consider CCC
as a (categorical) semantics of typed Acalculus, it would not be immediately concat
enated with their studies.

 By the way, because Kleisli category of some comonad over CCC becomes categ

orical model of typed Acalculus and it is based on de Bruijn's name-free expression, we
can consider Cmonoid (not polynomial Cmonoid) as a categorical model of not A
calculus but de Bruijn's name-free expression in the type free situation. Moreover,
diverting Kleisli's method to certain construction of Cmonoid, we will deal with
extended Cmonoid (of course, this is not polynomial Cmonoid) as a categorical model
of it.

164H. OHTSUKA

 Acknowledgment

I am grateful thanks to Yasuo Kawahara for some useful discussions and comments.

 References

[1] BARENDREGT, H.: The lambda calculus : syntax and semantics, rev. ed, North Holland, Amsterdam,
 (1984).

[2] CURIEN, P.-L.: Categorical combinators. Inform. Control, 69 (1985), 188-254.
[3] CURIEN, P.-L.: Categorical combinators, sequential algorithms and functional programming, Pitman,

 London, (1985).

[4] KOYMANS, C. P. J.: Models of the lambda calculus. Inform. Control, 52 (1982), 306-332.
[5] LAMBEK, J. and SCOTT, P. J.: Higher order categorical logic, part i : cartesian closed categories and

 lambda calculus, (1986).

[6] LAMBEK, J. and Scorr, P. J.: Introduction to higher order categorical logic, Cambridge University
 Press, (1985).

[7] MACLANE, S.: Categories for the working mathematician, SpringerVerlag, New York/Berlin, (1972).
[8] PAREIGIS, B.: Categories and Functors, (1970).
[9] PotGNE, A.: On specifications, theories, and models with higher types, Inform. Control, 68 (1986),

 1-46.

Received September 7, 1990

Communicated by Y. Kawahara

