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     By 
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                    Abstract 

   An optimal combination method is proposed to unify similarity matrices 

generated from relational graphs having various relations among scientific 
articles. Three relations are considered, that is, the citation relation, the 
key word (or title) relation and the author relation. Canonical correlation 
analysis and alpha factor analysis are applied to determine the optimal 
combination coefficient. Maximal consistency and maximal generalizability 
are adopted as the criteria of optimization. The unified similarity matrix 
is analyzed by combinatorial cluster analysis. The optimal consistency 
model and its exploratory result are described.

1. Introduction 

   The information obtained from scientific articles often gives a researcher new 
motivation. He retrieves articles relevant to his theme of study and can thus obtain 
valuable ideas. Considering scientific articles as a source of intellectual production, it is 
necessary to take note of various relations among articles and to investigate their 

properties. 
   A fundamental methodology is proposed for modeling a scientific articleinformation 

system. Methods of canonical correlation analysis and alphafactor analysis are 
applied, in order to optimally model a relational structure among articles. The 
bibliographical items include the primary and epitomized information. That is, article 
title, author name, affiliation, journal name, volume, number, pages, published time, 

publisher and key words are fundamental to identify a scientific article. It is obvious 
that these items are important for clarifying the relations among articles. The in
formation about references is also important [1, 2]. Bibliographical items are usual 
in the conventional retrieval system [3-6]. However, it should be recognized that 
the simple retrieval of bibliographical items alone is not enough to model the structure 
of the scientific article-space with various relations and analyze these properties. 
Consequently, a modeling technique is required, and for this graph theory is applicable 

[7-10]. Usually, the graph used for modeling is nondirected, because of its ease of 
processing [11-14]. There exists a directionality in the relations between a citing article 
and a cited article. In this paper, a directed-value graph with the strength of relation
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and asymmetrical similarity matrices generated from various relations among articles 

are used for the construction of a precise model. Though a similarity matrix can be 

analyzed by focusing on a particular relation, more significant results can be obtained 

by using the total relation among articles. Seven combinatorial cluster analyses are 

applied to such similarity matrices for numerical classification .

2. Modeling by Using a Relational Graph 

2.1. Relational graph 

   The graph with p points and q lines is called a (p, q) graph, where p points belong 
to a non-empty finite set P and unordered q pairs belong to specified set L. Pair 
1 = (u, v) of points u and v belongs to set L, where u and v are arbitrary elements of set 
P, and is called a line of the graph. The graph is called also a graph G = (P; L). 
There are two types of graphs, directed and nondirected . In a directed graph, the 
non-empty finite point-set P and the specified set L with the ordered pairs of two 
different points are dealt with simultaneously. Set S of line (u, v) and set T of line (v, u) 
are equivalent to a nondirected graph when line (u, v) equals line (v, u). Scientific 
articles written by the same author are connected by lines. The author relation has no 
direction, but the citation relation has direction. Thus the citation relation is repre
sented by a directed graph. 

   While a directed graph can express the presence or absence of a relation between 
individuals, it cannot express the strength of the relation . In consequence, a valued 
graph is introduced to make the expression of the strength of the relation possible. A 
valued graph (P; L; Y) is a graph in which a line of set L of lines is accompanied by the 
value r, where r is mapped onto the real number set Y. Expressing the value r(u, v) 
accompanied by line (u, v), it is called the value of a line. In the graph of keyword 
relations, if a line between articles has a large value, it means that they have many 
common key words that they discuss similar themes.

2.2. Representation of a relational graph using similarity matrix 

   The procedure of practical modeling is described hereafter . The important rela
tions among scientific articles are the citation relation , the keyword relation and the 
author relation. These relations are useful to analyze the structure of scientific article

space. However, they are not pertinent to analysis and thus, it is necessary to model the 

relation. 

   The fundamental procedure for modeling is as follows. 

   1. Consider the binary relation between article i and article j. 

   2. Represent the binary relation as a relational graph that is expressed by point i 

and point j. 

   3. Generate a directedvalued relation graph that corresponds to various relations 

among articles. 

   4. Represent this graph as a similarity matrix.
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  Directcitation relation matrix 
   The citation relation is particularly important because the references cited by an 

author give a good indication study. Accordingly, to begin with, we consider the 
modeling of the citation relation. The directcitation relation matrix is defied as A  = 

 [ai1]. This is a socalled adjacency matrix, where 

a1 = 1; when article i cites article j , 

                        0; otherwise .

   Totalcitation relation matrix 
   Considering the totalcitation relation that involves indirect citation, the total

citation relation matrix is defined as ,S = [ 1 so], 1su _ Wk • kalj, where k is the length 
                                                                      k=1 

of a directed walk, wk is a weight such as 1/k or 1/k2 and kaiJ stands for the number 
of a directed-walk whose the length between article i and article j is k. The upper 
boundary n does not exceed max(k) (the maximum length of the directedwalk). The 

kal; can be obtained by the kth power of matrix A by resetting the diagonal elements 
to 0. It should be noted that while the value of a line is 0 or 1 in a direct
citation relation graph, it becomes various values in a totalcitation relation graph. 
An efficient algorithm that calculates only the nonzero elements of matrix A was 
developed. 
   Key word relation matrix 

   Considering that the existence of many common key words in two articles indicates 
similar content, the key word relation matrix is defined as 2S =[2s~;],where2st;is set 
to m that means the number of common key words in the key word lists of article i 
and article j. (If a key word is not described explicitly in the articles, then m is defined 
as the number of common key words in the titles of article i and article j.) 

   Author relation matrix 
   Considering that scientific articles written by the same author discuss similar 

themes or the same theme, the authorrelation matrix is defined as 3S = [ 3 sii], where 

3 su = 1; when article i and article j are written by the same author , 

            0; otherwise . 

   Thus, various relation matrices were defined according to various relations among 
articles, and the citation, key word and author relations were used for combination and 
analysis in this paper.

3. Optimal Combination of Relations 

3.1. Optimal linear combination of relations 

   Several kinds of relation matrices are generated as similarity matrices described 

in Section 2. Each similarity matrix can be analyzed individually. That is, when 

focusing on a specific relation it can be analyzed by using only one kind of similarity 

matrix. However, when the overall relational structure is considered, it is desirable that
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these similarity matrices are connected optimally according to the purpose of analysis . 
Hereafter, it is the problem of making an optimal model to connect these relational 
matrices. 
   The total relation matrix is defined as 

                  R =  [r1 i]  , ri; = cI ' „S ̀ (3.1) 
                                                              1=> 

where m means the number of relations to be coupled and cI is a couplingcoefficient 

and pt stands for a compressing exponent. If pI is equal to 1, then (3.1) becomes a linear 

combination. Various methods can be utilized to determine c1, heuristic and empirical 

or based on mathematical criteria. Methods to decide couplingcoefficient cl are dis

cussed next.

3.2. Considerations on factor analysis method for the optimal combination 

   The model generated by the combination with the optimal couplingcoefficient cl 
and can be called the optimal relation model. Considering how to decide coupling
coefficient c1, it is noted that method of factor analysis is applicable. The processing of 
the analysis begins after creating a variance covariance matrix or a correlation matrix 
from the observed data as described by Ch. Asano [15]. R. B. Cattell reported six 
techniques utilizing a covariation chart that could be used to create those matrices 

[16]. Q technique and R technique fix or ignore information about time or occasion at 
the part of analysis. Paying attention only to the relation between an individual and 
an item, those techniques process test data. That is, the former analyzes the correlation 
or the covariance between individuals, and the latter analyzes the items in detail. The 

Q technique is described as follows because the purpose of this study is to discuss the 
relation among individuals, i.e., articles. 

   Let xpq designate an original test value, where p means the test item (p = 1, 2, ... , m), 
and q stands for the number of individuals (q = 1, 2, ... , n). Each q is a sampling unit , 
and n is a sampling number. If the correlation between columns that is generated from 
xpq is ri; (i, j = 1, 2, ... , n), the Q technique handles matrix R = [nil That is, the 
technique analyzes the matrix so that a correlation coefficient between individuals is an 
element.

3.3. Optimal consistency combination 

   The main theme of the present paper is the generation of a totalizedrelation matrix 
introducing a combination method to optimize several relations among articles . Con
sidering the methodology we become aware of the applicability of canonical correlation 
analysis. In consequence, we consider joint distribution to deal with a multivariate test 
item in two different groups at the same time. Thus, a new canonical variable is 
introduced to combine items linearly in groups for each test item. The new variable of 
each group is decided to maximize the correlation between each pair of groups. Both 
new variates are fixed. Since the methodology of the canonical correlation analysis is
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applicable, this method of analysis is discussed to decide the optimal linearcombination 
coefficient  ci when pi is equal to 1 in (3.1). 

   In this paragraph, the optimal consistency combination is described. It is assumed 
that test vector xi (i = 1, 2, ... , n) is obtained for p kinds of characteristics to k num
bers of populations or categories, where the variance covariance matrix 4) in each 
individual population is assumed to have the same E. So population variance covariance 
matrix EW in the ith population is given in (3.2) in the form of an unbiased 
estimator: 

n; 

                 EtW = (x)  X(i))(xy)  x(1))/(ni — 1) (3.2), 
                                   j=1 

where x(i) = 

   From the assumption that each EV is equal to a common E, the next equation is 
derived: 

k Ew= Y' (ni— 1)t(4)/(n—k) (3.3). 
j=1 

   Eq. (3.3) is the merged equations of k numbers EtW as the maximum likelihood 
estimator of E and it is called the sample withinvariancecovariance matrix. 

   On the other hand, total variancecovariance matrix Eo of the sample derived with 
regard to the above k numbers of populations is given as 

 k nJk 
to = (xy)  z)(xy)  z)'/(n — 1) , where n =>n, x = > > x;i~/n . 

i=1 j=1i i j 

   Accordingly, from the dispersion matrix based on EW + EB = Eo of the independent 
variance covariance matrix, sample betweenvariancecovariance matrix EB relevant to k 
numbers populations is represented as 

                EB = ((n — 1)E0 — (n — k)Ew)/(k — 1) . 

   Hereafter, we consider a new axis y = Cx that maximally expresses the sample 
variance of k numbers of groups at the test point in p dimensional space subject to 

p ? q, where C is a q x p matrix and the axis has a vector of order q. This q is 
thought to be the number of canonical axis or common factor. When a new sample is 
obtained, by the measure of Cx, it is possible to consider that the its character is similar 
to that of any population or category. However, because this q is unknown a priori, 
maintaining analysis of C as the maximum size matrix p x p, from the result, the 
eigenvalues of the solution are investigated in order of magnitude just as in principal 

component analysis. That is, it is considered that eigenvalue well expresses the varia
tion of test data. Considering C as the transform matrix that changes x into y, to 

produce betweenvariancecovariance matrix EB that is maximized by this y, 

CEBC'(3.4) 

is obtained.
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   Because of instability the elements of C grow without limit thus, the following 

constraint is set. 

CEWC' = 1(3.5). 

   In consequence, C is resolved such that it maximizes (3.4) subject to (3.5). Thus, 
basing this consideration and treatment on canonical analysis, this method of solving 
becomes similar to canonical correlation analysis. 

   Practically, the following three relations were examined where the m meant 
the number of relations among articles in (3.1). That is, the citation relation, key 
word relation and author relation. Let a similarity matrix be given initially as lxij = 

3 
cl lsij, rij = lxij, where if l = 1 then it means the citation relation, if 1 = 2 then it 

I=1 
means the key word relation and if 1 = 3 then it means the author relation. Gathering 
the matrix made from the reversal relations, let the entire relation matrix R = [rij] 
be 

0 r12 ... r1n 

R =r21 0 ... r2n 

rn l rn 2 ... 0 

   Hereafter, considering the variation of the upper triangular matrix in R because it 
makes it possible to obtain the variance of the lower triangular matrix, using the same 

procedure as the following, betweenvariation (BV) is X n(ri• — r..)2 , or 
i=2 

3n n 

E, E (cl • Isij — cl • 1s..)2 , and withinvariation (WV) is E E (rij — ri.)2 or 
1=1 iji=2 j=2 

(i�j) 
3 

g E (cl • is.. — cl • .5..)2, where is.. _ E E lsij, .s.. _ E is.., = .s../3, g = n(n — 1) and 
l=1i j 

n is the number of articles. 

   Let TV denote total variation, and there exists the relation of TV = BV + WV. In 

order to realize maximum consistency, it is necessary to maximize betweenvariation or 
                                                   3 

to minimize withinvariation under the condition of X c? = 1. 
!=1 

   Let A denote the Lagrange's multiplier and let 0 be characterized by 0 = 

3 WV +   c? —1 . 
!=1 

   From the minimization condition with respect to 0, 

a0/ac,. = 0 , to = 1, 2, 3(3.6), 

is set. Consequently, Eq. (3.7) is obvious, 

3 32 3           0(c1, /1) = g E(c, Is.. — E ci.ls 3 + /l E c? — 1 (3.7). 
I=1 !=1I=1
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   From (3.6) and (3.7), the following equations are deduced as  e0/ecio = 

                  3 2g cio (los..) — c/o • is.3 •1os. + 22 cio = 0, l0 = 1, 2, 3, and, 
                       1=1 

                              3 

[c10.(10..) —  cio • i ..3 ' ios.. = 0 , l0 = 1, 2, 3 (3.8).                                        1=1 

   From (3.8), the next equations are deduced successively as 

3 . Cio • iS2 — cl • 1 S + C2 • 2S + • • • + cio . 1S + ... + Cy • gs..) • ios.. — 0 , 

(31)ci0'l0S2..—(C1•1S..+C2'2S +•••+C10•i0S +...+.Cg•g ..)•los..+ 3'C10=Oand 

—{cl•i0s..•i0S„+c2'2S •10S +•••+(31).c10.10 2. +•••+cg.9S •i0S {2•3•cio=0 
                                                       (3.9) 

   After dividing both sides of (3.9) by 3, finally letting it express matrix form, 

(D— ;SC =0(3.10) 

is obtained, where 

(3 — 1)• 1s21/315.1 • 2s.2/3ls.l 3s 3/3 
  D =(3 — 1).2,s2/3293.2' 3s.3/3 , C = [CO , l0 = 1, 2, 3 . 

(3 — 1) • 3.23/3 

   Quantity c10 is given by the eigenvalue of (3.10).

3.4 Optimal generalizability combination 

   Another approach is attempted in the this section.That is, optimal generalizabil
ity for combination is discussed. This method is used to maximize the coefficient of 
reliability. The fundamental concept of optimal generalizability is based on the optimiza
tion of the infinite numbers of coefficients. Alphafactor analysis was proposed by L. J. 
Cronbach and H. F. Kaiser [17, 18, 19] as a method of factor analysis containing 

psychological considerations. The notation alpha in this section represents the coeffi
cient of reliability. 

   The following quantities are defined: 

                  x.=Af.+e;,j=1,2,...,n(3.11), 

where xx is a p dimensional test vector, A is the p x q factor loading matrix, ff is the 
common factor of order q and ee is the stochastic error vector or specific factor vector of 
order p. Assuming the normalization of xi and fi, population variance covariance 
matrix E is equal to population correlation matrix P, and from the assumption of 
E=P= AA' +'P, 

AA' =P—'P(3.12) 

holds, where 'P is a diagonal matrix of error variance. Letting H2 be the communality
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diagonal matrix, the following equation holds as  'P + H2 = I . Accordingly (3.12) can 
also be rewritten as AA' = P — I + H2. Let the part of the common factor in Eq. 
(3.11) be Eq. (3.13): 

                  C = Af , f = (A'A)-1 A'C(3.13), 

where A is the p x q factor loading matrix and f is the common factor score vector of 
order q. 

    Let the sth element of common factor score vector f of order q be 

fs= E ws;cj, s=1,2,...,q (3.14), 
                                     j=1 

where wsj is (s, j) element of p x q matrix W = (A'A)-1A' and cj expresses the common 

part of x in the set of test properties and ws j expresses its coefficient. However, Eq. 
(3.14) hold true only for p kinds of test properties. So that, considering the entire 
property of universe, let the sth element of the common factor score vector be 

Cs= E ws;c;, s=1,2,...,q(3.15). 
                                       j=1 

   Taking this under consideration, alphafactor analysis is used to obtain the factor 
loading matrix in order to maximize the correlation between common factor score 

fs and common factor score Cs. Consequently, the concept of canonical correlation 
analysis is applicable. The psychological considerations that analysts consider to study 
exact representations such as (3.15) to obtain a highly reliable estimation is similar to 
the concept of generalizability announced in 1937 and in the same year the formula of 
KuderRichardson was also proposed [20]. These concepts were further developed by 
L. J. Cronbach et al. and the square of the correlation between fs and Cs is called 
coefficient of generalizability. As the coefficient of reliability, there are several varia
tions of this coefficient of generalizability. Using similar traditional formulae , one 
criterion called KuderRichardson's coefficient of reliability or the alpha coefficient of 
Cronbach is introduced as 

a = {p/(p — 1)} {1 — w'H2w/w'(P —'P)w} . 

   In consequence, letting P — 'P be the total variance E of the common part of test v, 
substituting 112 by withinvariance EW and P — I by betweenvariance EB, in order to 
maximize a, the F. M. Load proposed to maximize µ2 as defined by 

µ2 = w'(P —'P)w/w'H2w(3.16). 

   To maximize i 2, partially differentiating Eq. (3.16) by w, the next equation is 
obtained as 

aµ2/27w = ((r, — µ2H2w)/w'H2w = 0(3 .17). 

   Consequently, the numerator of (3.17) is required to be zero as 

(P—'P)w—µ2H2w=0.
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   As a result, the following equation becomes 

[(P—'I')—µ2H2]w=0(3.18). 

Letting d = Hw be, Eq. (3.18) is transformed as 

[H-t(P — ,11)11-1 — R212] d = 0 

   Accordingly, let A, be the maximum eigenvalue and let its eigenvector be 1, the next 
equation for the alpha factor is obtained as a = /Hl.

4. Cluster Analysis of The Similarity Matrix 

4.1. Characteristics of the citation relation matrix 

   The matrix to be analyzed is given by R = [rt;], rt; = (si;)", where p is an enhancing 
exponent. This matrix has the following characteristics. First, each element of the 
matrix has a positive real quantity. Element si; is similarity as a correlation-like 
measure and element ri; has a positive real quantity. Second, the matrix is asymmetric. 
The similarity matrix of the citation relation is asymmetric because there is a time 
sequence in the citation relation between a citing article and a cited article. In con
sequence, matrix R becomes asymmetric. When the methods of the combinatorial 
cluster analyses are applied, it is necessary to transform the matrix to a symmetric 
matrix.

4.2. Application of combinatorial clustering methods 

   All computer programs using the following combinatorial methods have been 
implemented and applied to the analysis of the relational graph model. Seven hierar
chical clustering methods were examined. The nearest neighbour method is known as 
single linkage because clusters are joined at each stage by the single shortest or 
strongest link between individuals. The furthest neighbour method is also called the 
completelinkage method because all individuals in a cluster are linked to each other by 
some minimum similarity. The median method adopts the middle value of the nearest 
neighbour value and the furthest neighbour value. The method of average linkage 
within the new group is not influenced by extreme values for defining clusters so it 
cannot make any statements about the minimum or maximum similarity within a 
cluster. Average linkage between a merged group, also called the groupaverage 
method, evaluates the potential merger of clusters i and j in terms of the average 
similarity between the two clusters. The difference between the latter and the former is 
whether the sums of within-group pairwise similarities are ignored or not. The cen
troid method uses both the mean value of similarities and the number of individuals for 
the merger. The minimum variance method (the Ward method), used to find at each 
stage those two clusters whose merger gives the minimum increase in the total within

group error-sum of squares, is generally reasonable even if it is not optimum.
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   When these combinatorial methods were applied, asymmetric similarity matrix R 
was changed to a symmetric matrix by 

 ri; = (max(si;, s~))", (i > J)(3.19).

5. Exploratory Result 

   To examine the present method, 231 scientific articles concerning CAD/CAM were 

investigated by using four models, that is, the directcitation relation model, the total
citation relation model, the optimal consistency relation model and the interpretive 
structural method (ISM). They mainly contained articles about computational geome
try and several articles relating to artificial intelligence (AI). In the following com

parison with manual classification by experts, the conformance percentage is the separa
tion ratio between the AIcluster and the proper CAD/CAM cluster. It was expected 
that this method would suppress the occurrence of inaccuracy due to the analyst's 
subjectivity since the research filed of AI is obviously different from CAD/CAM. The 
seven combinatorial cluster analyses programmed by M. R. Anderberg were applied 

[21]. The average linkage within the new group method was the best. Other com
binatorial methods are not useful because these clusters never or rarely agglomerate 
until the last stage. Accordingly, these methods are not adequate for analyzing the 
relation structure of scientific articles. In order to compare the present method with 
the interpretive structural model (ISM) [22], enhancing factor p in Eq. (3.19) was set to 
0 to examine these models by combinatorial analyses. The present model is construed 
to correspond to ISM since totalcitation relation matrix S1 is equal to the reachability 
matrix when c2 = c3 = pt = 0 and weight wk of matrix S1 is not equal to 0. While ISM 
used the reachability matrix derived from the totalcitation relation, the present method 
was better than ISM in contrast; i.e., the model using the directcitation relation was 
71.1% and the model using the totalcitation relation was 72.2% and ISM was 71.1% as 
shown in Table 1. Using the optimal consistency combination with the relations of 
total citation, key word and author, the conformance percentage attained by the present 
modeling was 86.8%.

Table 1. Conformance with human classification for 231 articles in the field of CAD 

        RelationConformance with human classification 

Direct citation71.1% 
Total citation72.2% 
Optimal consistency combination86.8% 

(ISM)71.1%

6. Conclusion 

   The methods examined are modeling with the directcitation relation, model

ing with the totalcitation relation and modeling by the optimal consistency corn
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bination of the citation relation, the key word (title) relation and the author relation, 

and the ISM method. Since the model using the optimal consistency combination was 

the best, it was concluded that some relations among scientific articles should be 

considered totally and this method can express the original space of articles more 

accurately than ISM or models using one kind of relation. Though the final result 

does not necessarily conform with manual classification completely, it can be expected 

that the present method gives us significant information that can only be extracted with 

 difficulty by human classification. This method of modeling will be applicable not only 

to classification of scientific articles but also to analysis of relational structures in the 

engineering field.
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