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SECOND-ORDER NECESSARY CONDITIONS FOR 

  AN OPTIMAL CONTROL PROBLEM WITH 

          STATE CONSTRAINTS

        By 

Yukihiro MARUYAMA*

                    Abstract 

   We study second-order necessary conditions for an optimal control 

problem with state constraints. The necessary conditions involve an extra 
term besides the second derivative of the Lagrange function in the sense of 
mathematical programming. The extra term is expressed as the Lebesgue 
integral of some upper-semi continuous function.

1. Introduction 

   In this paper we are concerned with the following optimal control problem with 
state constraints which will be referred to as problem (OCP): find the pair of a 
trajectory function x e Wi 1([0, T]) and a control function u e Lo ([0, T]) which minim
izes the integral functional 

T (t, x(t), u(t)) dt (1.1) 

0 subject to the constraints 

.(t) = (p(t, x(t), u(t)) a.e. t e [0, T] ,(1.2) 

x(0)=x°, x(T) = x1 ,(1.3) 

              u(t) a.e. t E [0, T] ,(1.4) 

                   S(t, x(t)) 0 for all t e [0, T] .(1.5) 

Here the functions 0: l x IR" x R' [~ rp: l x l x IIB' R" and S: fR x —> [FR are 
assumed to be twice continuously differentiable. The admissible control set C c I' 
is a closed convex set with int C 0. The end-time T > 0 is fixed. The symbol 
W; 1([0, T]) denotes the space of Drvalued, absolutely continuous functions on [0, T] 
and /1130([0, T]) denotes the space of Wvalued, measurable, essentially bounded func
tions on [0, T]. 

   Many authors have adopted the approach of converting the control problem (OCP) 
into a nonlinear programming problem in Banach spaces. For example, first-order

* Department of Mathematics
, Kyushu University, Fukuoka, Japan 

                               53



54Y. MARUYAMA

necessary conditions for a (weak) local minimum solution (Definition 4.1) of the problem 

(OCP) have been studied by Jacobson, Lele and Speyer [7], Norris [14], Girsanov [5] 
and Maurer [13]. Second-order necessary conditions have been studied by Warga 

[15], Girbert and Bernstein [4] and Maruyama [11]. In [11] and [15], the state 
constraints (1.5) do not appear. In [4], infinitely many inequality constraints (1.5) are 
replaced by finitely many inequality constraints. In [4], the authors showed that the 
second derivative of the Lagrange function in the sense of mathematical programming is 
nonnegative on the set of critical directions. Their results are satisfactory for the 

problem with finitely many inequality constraints but unsatisfactory for the case of 
infinitely many inequality constraints because of a phenomenon which is called the 
envelope-like effect. Kawasaki, in [8], first became aware of this phenomenon for 
a nonlinear programming problem in Banach spaces and derived new second-order 
necessary conditions accompanied by their applications to minimizing suptype functions. 
It should be noted that in [8] set constraints such as (1.4) are not included. In [12], 
the author obtained new necessary conditions for a nonlinear programming problem 
which includes a set constraint in addition to infinitely many inequality constraints and 
equality constraints in a different way from [8]. 

   Our main purpose in the present paper is to investigate the envelope-like effect for 
the optimal control problem (OCP). We begin in section 2 with reviewing second
order necessary conditions given in [12]. In section 3, we will give a characterization 
of a variational set which is involved in the necessary conditions. In section 4, we will 
apply the necessary conditions stated in section 2 to the optimal control problem (OCP) 
and derive an important theorem (Theorem 4.1). The second-order necessary condition 
in Theorem 4.1 involves an extra term besides the second derivative of the Lagrange 
function. Moreover, we will calculate the extra term in Example 4.1.

2. Second-Order Necessary Conditions for a Nonlinear Programming Problem in 
  Banach Spaces 

   The following nonlinear problem will be referred to as problem (P): find x which 
minimizes  f(x) subject to the constraints g(x) e K, h(x) = 0 and x E Q, where X, Y and 
Z are Banach spaces, f: X -+ IR, g: X -+ Y and h: X —> Z are twice Frechet differentiable, 
K is a closed convex cone of Y with nonempty interior and Q is a closed convex set of 
X with nonempty interior. 

   Kawasaki, in [8], has derived new second-order necessary conditions for the 

problem (P) without the set constraint (x e Q). The necessary conditions are of the 
KuhnTucker type and involve an extra term besides the second derivative of the 
Lagrange function. The extra term is expressed as a support function of a set K(u, v) 

(Definition 3.3). The author, in [12], has obtained new second-order necessary condi
tions for the problem (P) with set constraint (x e Q). The conditions are of the 
Fritz-John type and involve an extra term which is expressed as a support function of a 
set F(K; u, v) (Definition 2.1). 

   In this section, we derive a necessary condition of the KuhnTucker type from the 
condition given in [12] by assuming the Slatercondition (Definition 2.2).
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   Let h: X  —* Z be a mapping. Then Dh(x0) and D2h(x0) denote the first and second 
Frechet derivative of h at xo, respectively. 

   Let Y* and Z* be topological dual spaces of Y and Z, respectively. For any 
subset S of Y, the support function 6*: Y* U { +oo} is defined by 

b*(Y*IS) = SUP {<y*, Y>IY e S} , 

where y* E Y*. The polar cone of K is defined by 

KP = {y*E Y*1<y*,y> <0 for all yeK}. 

DEFINITION 2.1([3], [6] ). For u e bd K and v e Y, the variational set of K at u 
(with respect to the point v) is defined by the following: 
F(K; u, v) = {x e X13 n.b.d. U of x, 2to > 0 such that 

u+tv+t2UcK for all te(0, to] }. 

   The following theorem was proved in [12]. 
   THEOREM 2.1 ([ 12, corollary 3.2] ). Let xo be a local minimum solution of (F) 

and suppose that Dh(x0) is surjective. Then, corresponding to every x1 satisfying the 
conditions 

D.f (xo)xl <_ 0 ,(2.1) 

Dg(xo)xl E cicone(K — g(x0)) ,(2.2) 

Dh(xo)xl = 0 ,(2.3) 

xl e cone(Q — xo) ,(2.4) 

there exist multipliers A.o >_ 0, y* e KP, z* e Z*, not all zero, such that 

AoD.f (xo)xi = 0 , <y*, g(x0)> = 0, <y*, Dg(xo)xi) = 0 , (2.5) 

AoDf(xo)x + <y*, Dg(x0)x> + <z*, Dh(xo)x> >_ 0(2.6) 

for all x e cicone(Q — xo) and 

20D2.f(x0)(xi, x1) + <y*, D2g(xo)(x1, x1)> + <z*, D2h(xo)(xi, x1)) 

> 26*(Y*I clF(K; g(x0), Dg(xo)xi)) .(2.7) 

In particular, for every xt satisfying the conditions Df(xo)xl < 0, (2.2), (2.3) and (2.4), the 
necessary conditions (2.5)—(2.7) hold with A° = 0. 

   REMARK 2.1. In general, the value of the extra term b*(y* I clF(K; g(x0), Dg(xo)x„)) 
is nonpositive, see Remark 3.3 in [12]. However, if we restrict Theorem 2.1 to the 
direction xl satisfying Dg(xo)x E cone(K — g(x0)), (2.1), (2.3) and (2.4), then the value of 
the extra term is zero, see Remark 3.5 in [12]. When Y = Um and K = l+, the set 
cone(K — g(x0)) is closed. Hence in this case, from Theorem 2.1 and the above ex
planation, we obtain a well-known second-order necessary condition: the second deriva
tive of the Lagrange function is nonnegative. 

   REMARK 2.2. Theorem 2.1 requires the assumption that the mappings f, g and h 
are twice Frechet differentiable. This assumption can be weakened. The author, in
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 [ 12], has derived a second-order necessary condition by using second-order Neustadt 
derivative defined by the following; see theorem 3.2 in [12]: Let 1, f be real Banach 
spaces. Let f: X —+ f, and let xo e 1. If for every point x 1 of I there exists a point 
f m(xo; x1) of (such that 

f (1)(xo; x1) = lim (1/%L) [f(xo + Ay) — f(x0)] , 
                        yz1o, 

then we call the mapping f "1)(xo; • ) the first-order Neustadt derivative of f at xo. Let 
x1 be a point of II. If f has the first-order Neustadt derivative f(1)(xo; •), and if for 
every point x2 of I there exists a point f (2)(x0, x1; x2) of f such that 

f (2'(xo, x1; x2) = lim (1/).2)[f(x0 + , x1 + 22y) — f(xo) — )f(1'(xo; x1)] , 
y-,x2 d10 

then we call the mapping f (2)(xo, x1; •) the second-order Neustadt derivative of f at xo 

(with respect to x1). 
   The necessary conditions in Theorem 2.1 are of the Fritz-John type. We shall 

derive second-order necessary conditions of the KuhnTucker type under the following 
constraint qualification 

   DEFINITION 2.2. (Maurer [13]).  The system 

               g(x) e K, h(x) = 0, x e Q(2.8) 

is said to satisfy the Slater condition at xo if 

   (i) Dh(x0) is surjective, 
   (ii) there exists x e int Q — xo with 

Dh(x0) = 0(2.9) 

       and 

g(x0) + Dg(xo)x e int K .(2.10) 

This condition is found in e.g. [8], [13]. 
   COROLLARY 2.1.In addition to the assumption of Theorem 2.1, we suppose that the 

system (2.8) satisfies the Slater condition at xo which is a local minimum solution of 

(P). Then, corresponding to every x1 satisfying the conditions 

Df(xo)x1 = 0 ,(2.11) 

(2.2), (2.3) and (2.4), there exist multipliers y* e K", z* e Z*, not both zero, such that the 
necessary conditions (2.5)—(2.7) hold with Ao = 1. 

   PROOF. It follows from (2.6) that 

),oDf(xo)x + <y*, Dg(xo)x) + <z*, Dh(x0)x> > 0 

for all x e Q — xo, where Ao >— 0. Suppose that 20 = 0. Then it holds that 

                  <y*, Dg(xo)x) + <z*, Dh(xo)x> >— 0(2.12) 

for all x E Q — xo. It follows from (2.10) in the Slater condition that there exist a point
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 x e int Q — xo and a neighbourhood B(0) c Y of the origin such that 

g(xo) + Dg(x0)5c + B(0) c K . 

Hence for all d e B(0) 

                   <y*, g(x0) + Dg(x0)5c ± d> < 0 .(2.13) 

From (2.5) and (2.13), we have 

                   <y*, Dg(xo)x> < <ye, ±d> .(2.14) 

It follows from (2.9) in the Slater condition and (2.12) that 

                  <y*, Dg(x0)50 >_ 0 .(2.15) 

From (2.14) and (2.15), it holds that y* = 0. Hence it follows from (2.12) that 

<z*, Dh(xo)x> ? 0(2.16) 

for all x E Q — xo. Moreover, since x e int Q — xo, there exists a neighbourhood P(0) 
such that x + 13(0) c Q — xo. Hence from (2.15), we have that 

<z*, Dh(x0)(5c + (1)> >— 0 for all a e B(0).(2.17) 

Since Dh(xo)x = 0, it follows from (2.17) that for all d E.8(0) 

                        <z*, Dh(xo)a> = 0 . 

Since Dh(x0) is an onto mapping, z* = 0. Consequently, we have that (;to, y*, z*) _ 

(0, 0, 0), which is contradiction. Hence we can take /10 = 1. ^ 
   REMARK 2.3. One may think that Theorem 2.1 is stronger than Corollary 2.1 

because the latter states nothing about the directions satisfying Df(xo)xl < 0, (2.2), (2.3) 
and (2.4). But it is similarly proved as the above proof that such a direction does not 
exist under the Slater condition. Hence Corollary 2.1 is not weaker than Theorem 2.1 
with the added restriction of the Slater condition.

3. Characterization of Variational Sets 

   Let I be a compact set in a metric space. Then the set of all real valued 
continuous functions on I is denoted by C(I). 

   In this section, we study the relation between some variational sets and characterize 
the variational set clF(K; u, v) when K = C+(I), where 

C+(I)={yeC(I)Iy(t)>0 for all teI}. 

DEFINITION 3.1. For any u, v e C(I), the set T(u, v) is defined by 

T(u, v) = {x E C(I)13s0 > 0 s.t. u + sv + s2x e C+(I) for all s e (0, so]} . (3.1) 

   The set T(u, v) was examined in [1] and [2]. The set clT(u, v) is called the set of 
admissible second-order directions. We derive the relation between the set T(u, v) and 
the variational set F(C+(I); u, v).
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   LEMMA 3.1. For any u, v  e C(I), the following relation holds. 

                     clF(C+(I); u, v) =  clT(u, v) . (3.2) 

   PROOF. Clearly clF(C+(I); u, v) c clT(u, v). Hence in order to obtain (3.2), it 
suffices to show that 

T(u, v) c clF(C+(I); u, v) .(3.3) 

Let x E T(u, v). Then there exists so > 0 such that 

u+sv+s2xEC+ for all se(0, so] . 

Hence there exists {k(s)}SE(o.so] c C+(I) such that 

x = k(s) — u/s2 — v/s for all se(0, so] . 

Let {k„} be a sequence of int C+(I) such that k„ J, 0. Then for each k„, there exists a 
neighbourhood U„(0) such that k„ + U„(0) c int C+(I). Hence we have that 

x+k„+d=k(s)—u/s2—v/s+k„+dEC+(I)—u/s2—v/s, 

for all d E U„(0). Put x + k„ = y„. Then y„ E F(C+(I); u, v) for each n and y„ x as 
n —> + oo. Consequently the relation (3.3) follows. ^ 

   The following lemma was proved by Kawasaki. 
   LEMMA 3.2 ([8]). Let u E C+(I). Then v e cl(cone(C+(I) — u)) if and only if 

v(t)>_ 0 for all t satisfying u(t) = 0 . (3.4) 

   The functional E(t) and the set K(u, v) were also defined by Kawasaki. 
DEFINITION 3.2 ([9] ). Let To denote the set of all t e I for which there exists a 

sequence {t„} c I satisfying (3.5) below 

u(t„) > 0, t„ —+ t and —v(t„)/u(t„) —> +co as n —> +co . (3.5) 

Then the functional E(t) is defined by 

rsup{limsup v(t„)2/4u(t„)1{t„} satisfies (3.5)}, if t e To , 
        E(t) = 0, if u(t) = v(t) = 0 and t E To ,(3.6) 

—co, otherwise . 

   DEFINITION 3.3 ([8]). For any u, v e C(I), the set K(u, v) is defined by 

K(u, v) = {xeC(I)I1d(9)s.t.02u+9v+x+ 4(0)EC+(I) for all 0>0}. (3.7) 

where A(0) is an arbitrary element of C(I) satisfying d (0) —> 0 as 0 —> +co. 
   Kawasaki has given the characterization of K(u, v) as follows: Let u e C+(I) and v 

satisfy (3.4). Then it holds that 

               K(u, v) = {x e C(I)Ix(t) >— E(t) for all t e I} , (3.8) 

see theorem 3.2 in [9].
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 DEFINITIoN 3.4. For any u, v E C(I), the set K°(u, v) is defined by 

              K°(u, v) = {x e C(I)lx(t) > E(t) for all t E I} .(3.9) 

   The relation between K°(u, v) and T(u, v) is as follows. 
   LEMMA 3.3. Let u E C+(I) and v satisfy (3.4). Then it holds that 

                  K°(u, v) c T(u, v) .(3.10) 

   PROOF. Deny (3.10), then there exists x E C(I) satisfying that 

x E K°(u, v) ,(3.11) 

x T (u, v) .(3.12) 

By (3.12), there exists {s„} J, 0 such that u + s„v + s„ x C+(I). Hence, for each n, there 
exists t„ E I such that 

u(t„) + s„v(t„) + sn x(t„) < 0 .(3.13) 

Since I is compact, there exists a subsequence {t„} satisfying that t„--+ t e I. Put 
1/s„ = O. Then it follows from (3.13) that 

0„ u(t„) + 6„v(t„) + x(t„) < 0(3.14) 

for all n and On —^ +co. Suppose that infinitely many t„ would satisfy u(t„) = 0. Then, 
from (3.4) and (3.14), we have x(t) < E(t) = 0, this contradicts (3.11). So we may 
assume that u(t„) > 0 for sufficiently large n. Then from (3.14), the discriminant D„ = 
v(t„)2 — 4u(t„)x(t„) is positive, that is, 

x(t„) < v(t„)2/4u(t„) for all n. 

Taking n +oo, we get 

                     x(t) <_ lim sup v(t„)2/4u(t„) 
                                                   n~+ao 

If we show that —v(t„)/u(t„) —^ +oo as n +oo, then x(t) < E(t) contradicting (3.11), 
thus, the proof of (3.10) is completed. Solving (3.14), we have that 

B„ < (—v(t„) + \/D„)/2u(t„) . (3.15) 

Since On -4 +oo, we have u(t„) —> 0. Hence u(t) = 0, so that v(t)0. It is clear that 

(— v(tn) + \/D„)/2u(t„) = (— 2x(tn))/(v(tn) + \/'D„) . (3.16) 
The denominator of the right side of (3.16) converges to v(t) + I v(t)I, which is equal to 
2v(t) because v(t) >_ 0. Since the left side of (3.16) tends to +co, it holds that v(t) = 0. 
So, from (3.11), we have x(t) > 0. Thus, there exists no such that 

x(t„) �. 0(3.17) 

for all n > no. It follows from (3.15) and (3.17) that 

6„ < (—v(tn) + /Dn)/2u(tn) < (— v(t.)+ I v(4)I)/2u(tn)
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for all n  _> n°. Since On tends to +oo, we have that v(tn) < 0 and ( — v(tn))/u(tn) —> +oc 
as n -4 + oo . This completes the proof of lemma. ^ 

   We now give a characterization of the variational set clF(C+(I); u, v). 
   THEOREM 3.1. Let u, v satisfy the assumption of Lemma 3.3. Then 

clF(C+(I); u, v) = {x e C(1)1x(t) >— E(t) for all t e I} . (3.18) 

   PROOF. We first show that 

clF(u, v) c K(u, v) .(3.19) 

Since K(u, v) is closed, it suffices to show that 

T'(u, v) c K(u, v) . 

Let x e T'(u, v). Then there exists s° > 0 such that 

u + sv + s2x c C+(I) for all s E (0, s°] . 

Since C+(I) is cone, it holds that 

(1/s2)u + (1/s)v + x E C+(I) for all s e (0, s0] .(3.20) 

Put 0 = 1/s and define A (0) as follows: 

A (0) =0if 0>_1/s° , 
1—if0<1/s°, 

Then it follows from (3.20) that 

02u+0v+x+A(0)EC+(I) forall0>0 

and d (0) -+ 0 as 0 —+ +oo. So, by definition, x E K(u, v), proving (3.19). Moreover it is 
easy to show that 

int K(u, v) c K°(u, v) .(3.21) 

It follows from (3.10) in Lemma 3.3, (3.19) and (3.21) that 

                K(u, v) c clK°(u, v) c cl[(u, v) c K(u, v) . 

So 

                     K(u, v) = c1T'(u, v) = clK°(u, v) . 

Hence it follows from (3.2) in Lemma 3.1 that 

clF(C+(I); u, v) = K(u, v) . 

So (3.18) follows from (3.8). ^

4. Second-Order Necessary Conditions for the Optimal Control Problem with 
   State Constraints 

   In this section we apply the necessary conditions stated in section 2 to the optimal 
control problem (OCP). We derive new necessary conditions for the problem (OCP)
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with state constraints by using the characterization theorem of the variational set 
 clF(C+([0, T] ); u, v). We start with converting the control problem (OCP) into the 

nonlinear problem (P). 
Let 

            X = Wi,t([0, T]) x L„([0, T]), Y = C([0, T]) ,                                                       (4
.1) 
            K = C±([0, T]), Z = L i ([0, T]) x R” x R" . 

The space X is endowed with the following norm 

II(x, u)II = max{Ilxli1, il.11 i, flull.} •(4.2) 

Here II x II 1 and II .z (I t are L 1-norms defined in the usual way using the euclidean norm in 
D--2" and Hull II 00 is Loo-norm defined using the euclidean norm in W. The space X 
endowed with the norm (4.2) is a Banach space. Since C is closed and convex with 
int C � 0, the set 

                 Q = { (x, u) E XI u(t) e C a.e. t E [0, T]) (4.3) 

is closed and convex with int Q � 0 (See [13]).  Define the functions f: X --+[R, 
g:X — Yandh:X — Z by 

                                        T f(x, u) = i 0(t, x(t), u(t)) dt , (4.4) 

                                      0 

                     [g(x, u)] (t) = — S(t, x(t)) ,(4.5) 

          [h(x, u)](t) = (z(t) — gp(t, x(t), u(t)), x(0) — x°, x(T) — xl) . (4.6) 

By means of (4.1), (4.3)—(4.6) the control problem (OCP) can be cast into the nonlinear 

programming problem (P) with which we have been concerned in section 2. 
   In what follows all vectors are column vectors. The transpose of vectors or 

matrices is denoted by an asterisk. The Jacobian matrices of partial derivatives with 
respect to x and u are denoted by subscripts. Let (xo, u0) be a point of the feasible set 
M determined by the constraints (1.2)—(1.5). For simplicity arguments of functions 
involving xo(t), uo(t) will be abbreviated by [t]; for instance O[t] = 0(t, xo(t), uo(t)). 

   In the following, we are concerned with a weak local minimum solution. 
   DEFINITION 4.1. Let (x0, uo) E M. We shall say that (xo, u0) is a local minimum 

solution of the optimal control problem (OCP) if there exists a number e > 0 such that 
the inequality f(xo, uo) <— f(x, u) holds for all (x, u) e M satisfying 11(x, u) — (xo, u0)11 <£o. 

   For brevity, we denote the pair (x, u) in X by z and denote the space C+([0, T]) by 
C+. 
   We now review the polar cone of C. Any element y* of (C+)" is represented as 

                                            T 

                 <y*,Y> _ —iY(t)4(0,(4.7) 
                                           0 where tli is a certain nondecreasing function. Let V' denote the measure induced from 

t/i. For the problem (OCP), the complementary condition (2.10) becomes as follows; see 
Lemma 4.2 in [9]:
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   LEMMA 4.1. Let  g(zo)  e C+, Dg(zo)z1 E cicone(C+ — g(zo)) . Then it holds that 
   (i) <y*, g(zo)> = 0 if and only if YP({tj [g(zo)] (t) > 0}) = 0 , (4.8) 

  (ii) <y*, Dg(z0)z1> = 0 if and only if 
P([0, T]\{tj[g(zo)](t) = [Dg(zo)z1](t) = 0}) = 0(4.9) 

   We denote the functional E(t) and To defined for u = g(zo) and v = Dg(zo)z1 by 
E(t; zo, z1) and To(zo, z1), respectively. 

   Combining lemma 4.4 in [9] and Theorem 3.1, we obtain the following lemma. 
   LEMMA 4.2. Let g(zo) and Dg(zo)z1 satisfy the assumption of Lemma 4.1. Then it 

holds that for y* e (C+)" 

T 8*(y*1clF(C+; g(zo), Dg(zo)z1)) = — E(t; zo, z1) dP*(t) , (4.10) 

0 where !P* is the completion of the measure W. 
   PROOF. It follows from (3.18) in Theorem 3.1 that 

  clF(C+; g(zo), Dg(z0)z1) = { y E C([0, TRY(t)>— E(t; zo, z1) for all t e [0, T] } . (4.11) 

From (4.7) and (4.11), it holds that 

b*(y*I clF(C+; g(zo), D9(zo)z1)) 

          = sup{<y*, y>)y e clF(C+; g(zo), Dg(zo)z1)} 

T 

          = —inf y(t) di/i(t)I y(t) ? E(t; zo, z1) for all t e [0, T] . 

0 T 

— — E(t; zo, z1)d`P*(t). 

0 Consequently, the relation (4.10) follows. ^ 
   We are now in a position to state our second-order necessary condition for the 

optimal control problem (OCP). 
   THEOREM 4.1. Let zo = (x0, uo) be a local minimum solution of the optimal control 

problem (OCP). Moreover we assume that the linearized system .z = cpx[t]x + 9„[t]u is 
completely controllable (see [5]). 

   Then, corresponding to every z 1 = (x 1, u„) satisfying the conditions 

                            T 

                   {~x[t]x1(t)+„[t]u1(t)} dt<0, (4.12) 

                          0 

                     max Sx(t, xo(t))x1(t) <_ 0 , (4.13) 
t e 7(xp) 

x (t) = px[t]x1(t) + (p„[t]ul(t), (4.14a) 

x1(0) = x1(T) = 0 ,(4.14b) 

u1e{l(u—uo)1 > 0, u e ,T]),u(t)ECa.e.te[0,T]}, (4.15) 

there exist >— 0, a nondecreasing function e BV[0, T] and ,t e L1([0, T]), not all
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zero, such that 

 WO, T]\I(zo)) = 0, !'([0, T]\I(zo, z1)) = 0 ,(4.16) 

[local minimal principle] 
T T 

(i) —)4t)* = —c + Hx[s] ds + Sx[s] dti(s) ,(4.17) 
r r 

(1i) Hu[t] (u — uo(t)) > 0(4.18) 
       for all u e C and a.e. t E [0, T], 

[second-order necessary condition] 

('TH[t]Hxu[t]xl (t)dt 
o(x1(t), ui(t))*Hux[t], Huu[t] ul(t) 

  TT 

           +x1(t)*Sxx[t]xi(t) d~(t) + 2E(t; zo, z1) d`I'*(t) > 0 , (4.19) 
00 

where 

I(z0) = It e [0, T]IS(t, x0(t)) = 0} , 

I(zo, z1) = It e co, T]lS(t, x0(t)) = Sx(t, x0(t))xl(t) = 0} 

and H is the Hamiltonian function, that is, 

H(t,x,y,/1.o,))=A.o0(t,x,y)—)L(t)*gq(t,x,y). 

   PROOF. The mappings f, g and h defined by (4.4)—(4.6) are twice Frechet differen
tiable at z0 (z0 = (x0, u0)). First and second-order Frechet derivatives of f are as 
follows: 

T Df(z0)z = {Ox[t]x(t) + 1u[t]u(t)} dt , (4.20) 

                                  0 

      {Et],oxuCtJx1(t)           DJ2(zo)(z1, z1) = (xl(t), ul(t))*xxdt .(4.21) 
                     o'ux[t], (Puu[t]ul(t) 

First and second-order Frechet derivatives of g are as follows: 

[Dg(zo)z] (t) = — Sx(t, xo(t))x(t) ,(4.22) 

CD2g(z0)(z1, zl)J(t) = —xi(t)*Sxx(t, x0(t))x1(t) •(4.23) 

First and second-order Frechet derivatives of h are as follows: 

[Dh(z0)z] (t) = (z(t) — ((px[t]x(t) + cpu[t]u(t)), x(0), x(T)) ,(4.24) 

[D2h(zo)(zl, zl)](t) = —(xl(t), ul(t))*wxx[tJ,~xu[tJXi (t)(4.25)                                 (PuxCta, cp [t] ui(t)) 

By Theorem 2.1 we have that corresponding to every zl satisfying the conditions 

Df(zo)zl < 0 ,(4.26)
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 Dg(zo)z1 e cicone(C+ — g(zo)) ,(4.27) 

Dh(zo)z1 = 0 , (4.28) 

z1 E cone(Q — zo) , (4.29) 

there exist multipliers 20 >— 0, y* e (C+)", z* e Z*, not all zero, such that 

                 <y*, 9(z0)> = 0, <y*, Dg(zo)z,> = 0 ,(4.30) 

2oDf (zo)z + <y*, Dg(zo)z> + <z*, Dh(zo)z > >_ 0(4.31) 

for all z e cone(Q — zo) and 

20D2f(zo)(z1, z1) + <y*, D2g(z0)(z1, z1)) + <z*, D2h(zo)(z1, z1)) 

> 28*(y*) clF(C+; g(zo), Dg(zo)z1)) •(4.32) 

   It is clear from (4.20) and (4.24) that (4.26) and (4.28) are equivalent to (4.12) and 

(4.14), respectively. Moreover, by Lemma 3.2, the condition (4.27) holds if and only if 

—Sx(t, x0(t))x1(t) >— 0 for all t E 100 , 

which is equivalent to (4.13). 
   The complementary condition (4.30) is reduced to (4.16), see Lemma 4.1. 

   According to the definition of the space Z, a Lagrange multiplier y* e Z* splits into 

y* = (A*, c1, c2) e (L1([0, T]))* x E x R" . (4.33) 

Moreover the linear functional A* has the following representation: 

                                 T <2*, z> = 1 2(t)*z(t) dt for z E LI([0, T]) , (4.34) 
                               0 where 2 e LI ([0, T] ). Hence it follows from (4.20), (4.22), (4.24) (4.33) and (4.34) that 

the first-order necessary condition (4.31) is equivalent to 

 TT 

      20 {Ox[t]x(t) + 0,4(t)u(t)} dt +Sx[t]x(t) dt/i(t) 
 0o 

+ fT            A(t)*{z(t) — ((px[t]x(t) + you[t]u(t))} dt + cix(0) + c2x(T) >— 0 (4.35) 

o for all x e W1([0, T]) and all u E {l(u — u0)11 > 0, u(t) e C a.e. t}. From this the local 
minimum principle (4.17) and (4.18) are derived, see [11]. 

   Finally, by (4.10) in lemma 4.2, (4.21), (4.23), (4.25) and (4.32), we obtain the 
second-order necessary condition (4.19). This completes the proof of the theorem. El 

   First-order necessary conditions (4.17) and (4.18) are called the local minimum 
principle in [5] and [13]. Second-order necessary conditions involving the extra term 
appeared in the other literature [8], [9] and [12], but are new in the theory of optimal 

                     1.T control. In general, the value of the extra term 2E(t; zo, z1) d!P*(t) is nonnegative, 

                                                0



Second-order necessary conditions for an optimal control problem with state constraints 65

see Remark 2.1. This term is considered as the result of the envelope-like effect in the 
optimal control problem (OCP) with state constraints. The envelope-like effect does 
not appear if, in the problem (OCP), the state constraints are replaced by finitely many 
inequality constraints. We shall pursue this issue in detail in the following remark. 

   REMARK 4.1. Let the state constraints in (OCP) be replaced by the following: 

 St(x(0), x(T)) <— 0, i e {1, ..., m} , (4.36) 

where Si: E" x 11" --* R, for i e { 1, ... , m}, and delete the condition (1.3). Put g(x) = 
(—S1(x(0), x(T)), ..., —Sm(x(0), x(T))). Then inequality constraints (4.36) are reduced to 
the relation such that g(x) e l+ . Hence, from Theorem 4.1 and the same discussion as 
Remark 2.1, we obtain a second-order necessary condition such that the second deriva
tive of the Lagrange function is nonnegative; this necessary condition involves no extra 
term. Consequently, the envelope-like effect disappear in the control problem with 
finitely many inequality constraints (4.36). 

   The Slater condition for the problem (OCP) is the following. 
CONDITION 4.1 (Maurer [13]). 

   (i) The linearized system z = cpx [t] x + cp„ [t] u is completely controllable, 
   (ii) there exists a control u and s > 0 such that 

      (a) BE(u(t)) c C — uo(t) a.e. t E [0, T] , 
      (b) S[t] + S[t]x(t) < 0 for all t E [0, T], where x satisfies .z = Ox [t] x + 

Ou[t]u, x(0) = x(T) = 0. 
This condition is found in [13]. From Corollary 2.1, we obtain the following. 

   COROLLARY 4.1. In addition to the assumptions of Theorem 4.1, suppose that the 
Condition 4.1 is satisfied. Then the multiplier A.o is not zero. 

   REMARK 4.3. For an optimal control problem with a free right end point and a 
fixed time, the necessary condition (4.17) holds with c = 0, that is 

      TT 

                — i1(t)* =H x [s] ds +Sx [s] digs) . (4.37) 
      tt 

   We now compute the extra term in the following problem which is regarded as a 

productionplanning problem with no inventory costs but with known demand, see 
example 4 in [10, p. 234]. 

   EXAMPLE 4.1. We consider the following problem: 

t 

                    minimize (1/2) u2(t) dt 

0 subject to 

.(t) = u(t) , given x(0) > 0 , 

                   x(t) >_ r(t) for all t E [0, 1] , 

                       u(t)>-0 a.e.tE[0,1], 

where x e W111([0, 1]),  u E L1([0, 1]) and r is a given continuous function on [0, 1].
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   We deal with this problem for the specific case; compare also [10, p. 234]: 

 x(0) = 1/2 , 

                    r(t)——2t2+3t if0<t<1/2, 1 ifl/2
<t<_1. 

   We apply Corollary 4.1 to this problem. Put 

0(t,x,u)=(1/2)u2, 0(t,x,u)=u, S(t, x) = r(t) — x . 

The Hamiltonian for this problem is 

                    H(t, x, u, A(t)) = (1/2)u2 — A(t)u . 

By the local minimum principle, we obtain 

1 a(t)=dili(t)=0(1)—~G(t), 

                                               r (uo(t) — A(t))(u — uo(t)) >_ 0 for all u >_ 0, a.e. t . 

Hence we have that 

uo(t) — t/i(1) + 11i(t) > 0 a.e. t , (4.38) 

(uo(t) — ti/(1) + /J(t))uo(t) = 0 a.e. t . (4.39) 

The complementary condition (4.16) becomes as follows: 

!P({tlr(t) < xo(t)}) = 0 .(4.40) 

This means that O(t) varies only for those t with r(t) = xo(t). It is easily seen that the 
following (xo, uo, i/i) satisfies (4.38)—(4.40): 

xo(t)— t+1/2 if0<t<1/2, 1 if1/2<_t<_1, 

                       1 if0<t<1/2, 
uo(t) = arbitrary if t = 1/2 , 

                        0ifl/2<t<1. 

                         _0 if0<_t<1/2,                   O(t)
1 if1/2<t<1. 

Define (x1, u1) by 

                      _4t(t — 1/2) if 0<—t <1/2 ,                  x l(t) 0 ifl/2<t51
, 

8t-2 if0<t<1/2, 
u1(t) = ^ arbitrary if t = 1/2 , 

                        0ifl/2<t<-1. 

Then (x1, u1) satisfies the conditions (4.12)—(4.15). Indeed, the conditions (4.12) and
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(4.14) are easily verified. Since the parameter set  I(z0) of active constraints is equal to 
the closed interval [1/2, 1], we get that 

                 max S[t]x1(t) = max ( x l (t)) = 0 . 
                     te[1/2,1]te[1/2,1] 

So the condition (4.13) is satisfied. Setting 

                        4t if0<t<1/2, 
                  u(t) = arbitrary if t = 1/2 , 

                      0if1/2<t<1, 

we get that ul(t) = 2(6(t)  uo(t)) and u(t) >_ 0 for all t e [0, 1], which implies the 
condition (4.15). We now calculate the functional E(t; zo, z1). A necessary and suffi
cient condition for t E [0, 1] and {tn} c [0, 1] to satisfy (3.5) is that 

r(t„) < x0(4,), t„-+ t and xl(tn)/(r(tn)  xo(tn)) +oo (4.41) 

as n -4 +co. Since 

r(tn)  x0(tn) = -2(tn  1/2)2 

and 

xl(tn)/(r(tn)  xo(tn)) = 4tn(tn  1/2)/(-2(tn  1/2)2) 

_ 2tn/(tn  1/2)  +oo as n -^ +co , 

the condition (4.41) is equivalent to that t = 1/2 and to T 1/2. Hence To(zo, z1) = {1/2}. 
Moreover, for these {tn}, it holds that 

  limsup xi (tn)/4(xo(tn)  r(tn)) = lim 16tn (tn  1/2)2/8(tn  1/2)2 = urn 2tn = 1/2 
n—*-1-con—++con-.+co 

Consequently, we have 

—ao if0<t<1/2 , 
                  E(t; zo, z1) = 1/2 if t = 1/2 , 

0 if1/2<t<1. 

Let I'* be the completion of the measure I/ induced from t/i. Then we obtain that 

                              1 

                      E(t; zo, z1) A" (t) = 1/2 > 0 . 

                             0 Moreover, 

               J.1 (*Oxx [t],Oxu [t]x 1(t)                  0(x llt), u l (t))°ux [t], 0..[t]u1(t)dt 

1 =(xl(t),ul(t))*O ?)(:) dt 
0(t) 

          11/2 uRt) dt = 1 (8t  2)2 dt = 2/3 
      00
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and 

 II xi(t)*Sxx[t]xI(t) d/.i(t) = f 0 thi(t) = 0 . 
0o 

Hence we have 

         T * Hxx [t], H[t]xi(0)  
o(xI(t), uI(t))H[t],HuU [t] u I (t)dt 

  TT 

+ x1(t)*Sxx[t]x1(t) dtli(t) + 2 E(t; zo, zI) dW*(t) 
  0o 

=2/3+0+1=5/3>0, 

which shows the second-order necessary condition (4.19) is satisfied at (xo, uo) for the 

particular direction (xi, u I ).

5. Conclusion 

   In Theorem 4.1, we have derived a new second-order necessary condition , as well as 
the usual local minimum principle, for the optimal control problem with state con

straints. It should be noted that the necessary condition involves the extra term 

TT 2 . E(t; zip, z1) dW*(t) besides the second derivative of the Lagrange function . The 

   0 extra term is regarded as the result of the envelope-like effect of the infinitely many state 
constraints in the control problem. As noted in Remark 4.1, the extra term disappear 
when we are concerned with the finitely many state constraints.
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