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STABLE CONFIGURATIONS IN CELL SPACE UNDER 

   THE THRESHOLD TYPE TRANSITION RULE

        By 

Fumiyoshi SASAGAWA*

                     Abstract 

   This paper is one of a series of the papers treating stable configurations 
in cell space. The strong-week relations between states are introduced in the 
local transition rule of the cell space. The local transition rule is systemat
ically represented by the threshold type function. The pattern of stable 
configuration is remarkably changed when the thresholds of the local transi
tion rule exceeds some critical values. It is shown that the stable configura
tions in the m x n cell space are dependent on both the size of the basic cell 
space and the type of local transition rule. Hierarchy of types of local 
transition rules and cluster property of stable configurations are obtained. 
In addition the singular stable subconfiguration is defined and it is found that 
a stable configuration becomes another stable configuration if a state of the 
singular stable subconfiguration is changed.

1. Introduction 

   Life has various characteristics and has been analyzed mathematically, for example. 
von Neumann [1] has proposed self-reproduced automata. Recently, pattern forma
tions of cellular automata has been investigated by many authors [2]. Such approaches 
may be included in biomathematics. Kitagawa proposed that biomathematics consists 
of five elements: discrete mathematics, combinatorial mathematics, dynamical mathe
matics, evolutionary mathematics and design mathematics [3], which are necessary to 
understand biological phenomena. In the beginning, he started the study of cell space. 
T. Kitagawa and M. Yamaguchi [4, 5] studied the m x n cell space. In their m x n cell 
space, the transition of a configuration is caused by a change of configuration of a 2 x 2 
cell subspace named basic cell space, which is subject to the local majority transforma
tion. By them, it was obtained that any initial configuration becomes some stable 
configuration which is a checked pattern after the long time [5]. With respect to 
transition of configuration, important mathematical notions, for example, stable con
figuration, garden of Eden configuration, determinative cell subspace and elementary 
stable configuration were introduced in cell space by them [5-8]. Recently, we ex
tended their results to a cell space with three or four states and investigated oscillation 

phenomena of the configuration in a cell space under a fixed boundary condition [9].
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40F. SASAGAWA

   In this paper, we investigate the interrelation between the size of basic cell space 

and stable configuration. We propose a threshold type transition rule, which is defined 

by the threshold function and the weights of states. In general, our local transition rule 

is not symmetric in respect to states. From this property, this rule represents a 

strong-weak relation between states. The cell space with this rule is regarded as a 

mathematical model of ecosystem with strong and weak species. Types of local transi
tion rules are derived from this local transition rule.

2. The Local Transition Rule and Strong-Weak Relation of States 

   The interrelations between the size of basic cell space and stable configuration are 
investigated in this paper. For this purpose, it is enough that each cell  cid (1 i m; 
1 j < n) takes one of two states {a, b}. A basic cell space is a cell subspace in which 
a local transition rule described below is applied [4, 5]. In our m x n cell space, a 
basic cell space is a k x 1 cell subspace (2 < k < m; 2 < 1 n). The set of all basic cell 
spaces is denoted by .4. Hereafter, we use a notation T[X] of a restricted configuration 
over the cell subspace T where X is a whole configuration of the m x n cell space. In 
order to define the local transition rule, we introduce the following counting function. 

                    =WaNa—-----------wbNb          f(Na,Nb)b(2-1) 
wa + wb 

where wa > 0, wb > 0. Here, we introduce weights wa and wb corresponding to states 
"a" and "b" and Na (Nb) is the number of state "a" ("b") in a basic cell space 
B e M. Then, the local transition rule LT is defined by the following manner: 

Transition LTa. If f(Na, Nb) > fa, 

                                  a a ••  a 

                     B [X] —.>a aa  .(2-2) 

                                   a a ••  a 

Transition LTb. If f(Na, Nb) < rlb, 
^

b b ••• b 

B [X] —b bb  .(2-3) 

                                 b b ••• b 

Transition LT„. Otherwise, 

              B[X] —* B[X] .(2-4) 

   In the above local transition rule, //a and rib are thresholds and lb < la. The values 
of two weights are considered as a representation of relative strongness between states. 
For example, if the value of wa is much larger than wb, the transition LTa occurs and the
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basic cell space is overwhelmed by states "a". Thus, the local transition rule is not 
symmetric in respect to two states. The disjoint basic cell spaces  B1, B2, ..., B,. are 
randomly selected and the above local transition rule is applied to these basic cell 
spaces [4, 5]. If definite values of weights and thresholds are given, we have a table of 
transitions for all possible pairs (Na, Nb). Let's call this table a type of local transition 
rule or simply a rule.

3. Types of Local Transition Rules for k x 1 Basic Cell Space 

   In the cell space with k x 1 basic cell spaces, the order of values of the counting 
function can be derived as 

                fo <fl <f2 <<fkl-1 <fkl •(3-1) 

Here, we use the abbreviation that f = f(i, kl — i). From the above order and the 
definition of local transition rule (2-2), (2-3) and (2-4), we can obtain all types of local 
transition rules. In order to present all types of local transition rules, we define two 
nonnegative integers rl and r2 such that rl = max { j I f < rib, 0 < j < kl} and r2 = 
min{ j I pia <f', 0 < j < kl }. Furthermore, if rib < fo, then we define that r1 = 1 and 
similarly, if fkl < pia, then r2 = 1. By these rl and r2, types of local transition rules are 
completely determined. The corresponding rule is called [r1, r2]-rule. We present the 
following types of local transition rules. 

   1. [1, 0]-rule (All-a rule). For any pair (Na, Nb), the transition LTa takes place. 
   2. [kl, 1]-rule (All-b rule). For any pair (Na, Nb), the transition LTb takes place. 
   3. [q — 1, q]-rule (1 < q < kl — 1). If Na > q, then the transition LTa takes place. 

      If Na < q, then the transition LTb takes place. 
   4. [ p — 1, p + d]-rule (1 < p < kl — 1, 1 < d < kl — p). Two natural numbers are 

      defined by the following way. 

N1=p, N2=d+N1-1.(3-2) 

      If Na> N2, then the transition LTa takes place. If Na < N1, then the transition 
      LTb takes place. If Nl < Na < N2, then the transition LT„ take place. 

   Here, d of [p — 1, p + d]-rule denotes the number of transition LT„ in this rule. It 
should be noted that the number of transition LT„ in [q — 1, q]-rule is zero.

4. Stable Configurations for k x 1 Basic Cell Spaces under [1, 0], [kl, 1], [q — 1, q], 
  and [p — 1, p + 1]-rule 

   In an m x n cell space with k x 1 basic cell spaces, the stable configuration Xs is 
defined by the same way as T. Kitagawa and M. Yamaguchi. If and only if LT(B[XS]) 
= B[Xs] for any B e <4, Xs is said to be stable [4, 5]. Under [1, 0] ([kl, 1])-rule, we 

find that XA(XB) configuration is only one stable configuration where a configuration is 
said to be an XA(XB) configuration if and only if all states are "a"("b"). Furthermore, 
under [q — 1, q]-rule, all stable configurations are XA and XB configurations. These 
rules don't contain a transition LT„ and any B[X] for B e A changes into a uniform
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configuration of B by an application of any of these rules. Thus, stable configurations 
are simple  XA and XB. 

   The set of all stable configurations .•S consists of isolated and nonisolated stable 
configurations [8]. Here, the isolated stable configuration is a stable configuration 
without direct ancestor [8]. The nonisolated stable configuration has a direct ancestor 

[8]. Next, we consider nonisolated stable configurations under [p — 1, p + 1]-rule. 
Then, we get regular patterns of nonisolated stable configurations. These patterns 
depends on the size of basic cell space and rule. For giving a description of these 
stable configurations, we define a set of cell subspaces M,") and Xp(v) (u, v e N). We 
define a cell subspace Ra, j as 

             Ra,j = {Ca1 j, Caz j, • • • , Cap,j, Ca1+k j, Caz+k j, • • • , Cap+k,j' Ca1+2k, j. • • • } ,(4-1) 

where a = {at; i = 1, 2, ..., p}, and 1 a1 < a2 < • • • < ap < k. M,") consists of the 
above cell subspaces Ra, j under the condition that if and only if Rf, jl, Ri,j2 e,"), then 
111 -121 % 1. Here, the index u of dip") corresponds to a different combination of 
Ra, j. Similarly, a cell subpsace CPfl is defined by 

C! = {Ci,~l' Ci,Rz' ..., Ci,Qp' Ci,,l+k' Ci,Bz+k, ..., Ci,Bp+k~Ci,p1+2k, ...}(4-2) 

where /i = { f3 ; i = 1, 2, ... , p}, and 1 f31 < 132 < • • < J3, < 1. Then, all elements of 
p(v) are the above cell subspace Cpfl and all of these elements satisfy the condition that 
if and only if Cp , R, CP , I E ̂ Vp(v), then I i 1 — i2 I k. Of course, the index v of these sets 
shows that p(v) and .,yr) are different sets if v v'. 

   Furthermore, as a matter of convenience, for p") and p(v), we define three kinds 
of cell subspaces TI", Tv-A7.                       and T -A . 

T = U RP,•(4-3) 
                         p(                                                            Ra

.)E~u)p 

TAl = U Cpp(4-4) 
CfpE~(pv) 

                   = T U Tv. _ T (1 T./v (4-5) 

A complement of T( (7 , 1'.) must include at least one basic cell space and in the 
definition of T °2y, n,u) and .A/$ must satisfy the following conditions. 

R«,.; (1 Cpfl 0 0 (4-6) 
for VR f, j E M,"), VCpfl E p(v). By using the above cell subspaces, we define the follow
ing configurations. 

   1. The configuration X"" is defined by the condition: 

      i. If ci, j e T, then ci, j [XS "] = a. 
      ii. Otherwise, ci, j [XS "] = b. 

   2. The configuration X('' is defined by the condition: 
      i. If ci, j e Tf, then ci, j[XS v] = a. 

      ii. Otherwise, ci, j [XS v] = b. 
   3. The configuration XS ""Av; v) is defined by the condition: 

       i. If Ci, j e T'', then ci, j [XS u), "7; v) ] = a. 
      ii. Otherwise, ci, j[Xs ")•ci'v)] = b



Stable configurations in cell space under the threshold type transition rule 43

4.1.  max(k,1)<p<klmax(k,1) 

   In this case, the nonisolated stable configurations are very simple but the isolated 
stable configurations become more irregular. Here, we present only the pattern of the 
nonisolated stable configurations. 

   THEOREM 1. In the m x n cell space with k x 1 basic cell space, if max(k, 1) < p < 
kl  max(k, 1), then under [p  1, p + 1]-rule the nonisolated stable configurations are 
only XA and XB configurations.t 

   PROOF. If Xs is a nonisolated stable configuration, there exists one basic cell 
space B such that B[Xs] consists of only the same state. Firstly, we consider the case 
that all states of B[Xs] are "b". We assume that B has the following cells: 

Ci , j Ci, j+1 • • • Ci, j+1-1 

             B =Ci+1,j Ci+1,j+1Ci+1,j+1-1(4-7) 

ci+k-1, j Ci+k-1, j+1 • • • Ci+k-1, j+l-1 

The set of upper cells of B is 

S1 = {Ci-1, j, Ci-1, j+1, • • • , C1-1,j+1-11 •(4-8) 

The sets of lower, left and right cells of B e .4 are respectively 

                      S2 = {Ci+k, j, Ci+k, j+1 Ci+k, j+l-1 } ,(4-9) 

                           S3 = {ci,j-1 , Ci+1,j-1 , ... , Ci+k-1,j-1 } ,(4-10) 

                           S4 = {ci, j+1, Ci+1,j+1. • • •. Ci+k1,j+/} •(4-11) 

For example, let's take the basic cell space B1 that consists of a sum of S1 and a subset 

{cx,ylixi+k2,jyj+1-1} of B. That is, B1={c,,s;i1<r<i+k-2, 
j < s < j + 1  1}. Then, by the condition that max(k, 1) < p < kl  max(k, 1), we can 
not allocate the state "a" to these upper cells because we can not get a stable configura

tion of B1 even if "a" state is allocated to all cells of B1. Thus, all states of S, [X,] 
should be "b". For S2, S3, and 54, the similar arguments holds. Furthermore, it is 
easily found that states of ci_1,j_1, Ci1,j+15 Ci+k,j-1, Ci+k,j+1 are "b". By continuing 
above arguments step by step, we obtain XB configuration. Secondly, in the case that 
all states of B[Xs] are "a", by using the similar arguments, we obtain XA configuration. 

                                                                                  Q.E.D.

4.2. min(k,1)<p<max(k,1) 

   In this case, there are patterns of nonisolated stable configurations other than XA 
and XB configurations. By using the definitions of the above sets, we can give a pattern 
of nonisolated stable configuration in the case that k 2, 1 ? 3 (k ? 3, 1 a 2).

 It should be noted that this theorem holds for [r1, r2]-rule under the condition that max(k, 1) r, < 
 r2 S kl  max(k, 1). This is due to the referee's comment.



44F. SASAGAWA

   THEOREM 2. If k > 1, in the m x n cell space with k x  1 basic cell spaces (k 3, 
1  ? 2 or k 2, 1 3), nonisolated stable configurations are XA, XB and X?" E If                                                 If 
k < 1, nonisolated stable configurations are XA, XB and X.0 s. 
   PROOF. In this proof, the notation of proof of Theorem 1 is used . We assume 
that k > 1 and prove that X?", XA and XB are nonisolated stable configurations. If a 
configuration X of an m x n cell space is a nonisolated stable configuration , then at 
least there exists one basic cell space B such that all cells of B have the same 
state. Firstly, let this state be "b" state. Then, all states of S1 [X] and S2 [X] must be 
"b" state because S

1 [X] I (I S2 [X] J) = 1 and p > 1. States of any p cells of S3 [X] or 
SAX] can be allocated "a" states because p k and other cells' states are "b". Of 
course, we can allocate "b" state to all cells of these cell subspaces . By considering the 
basic cell space B1,3 = {cr,s; i — 1 r < i + k — 2, j — 1 < s j + 1— 2}, it is known 
that a state of cell ci_1,.i_1 depends on a state of ci+k_1,;_1. If ci+k_1,;_1 [X] = a(b), then 
ci_1.;_1 [X] = a(b). By the similar considerations, we know that ci+k,;_1 [X] = ci,;_1 [X], 
ci1 ,;+i[X] = ci+k1,;+i[X] and ci+k,;+i[X] = ci,;+i[X]. The similar determination pro
cesses of states of cells can be continued step by step. Then, we get X?" e Is or XB 
as a whole. Secondly, we assume that all states in B e a are "a" . Then, by the similar 
arguments, we find that this configuration is XA. In the case that k < 1, we can prove 
this theorem by the similar method. Q.E.D. 

   Two examples for these nonisolated stable configurations under [4, 6]-rule are 
shown in Fig. 1. Hereafter, in figures, a black cell in the cell space has "a" state and a 
white cell has "b" state. From these examples, it is clearly known that a direction of 
"a-state string" depends on the form of basic cell space because a basic cell space is 

6 x 5 cell subspace in Fig. 1(a) and it is 5 x 6 cell subspace in Fig. 1(b).

Fig. 1. Two examples of nonisolated stable configurations under [4, 6]-rule. Hereafter , in all figures, a 
black cell has "a" state and a white cell has "b" state. 

(a) A basic cell space is a 6 x 5 cell subspace. 
(b) A basic cell space is a 5 x 6 cell subspace.
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4.3. 1  p min(k,  1) 

   Two cases that k = 1 = 2 and k > 2, 1> 2 should be separately considered because 
if k = 1 = 2, a stable configuration is a checked pattern and if k > 2, 1> 2, then other 
patterns are nonisolated stable configurations. First of all, we consider the latter. In 
order to present stable configurations for p = 1, we need a definition of a neighborhood 
of any cell. A cell subspace U(cu) is said to be a neighborhood of cu if and only if 

U(ci;) = U B — {ci;}(4-12) 
gi(Cu) 

where 1(cu) is a set of all basic cell spaces that includes cu. 
   THEOREM 3. Under [0, 2]-rule, stable configurations are XA, XB and an a-state 

sporadic configuration which satisfies the condition thatifcu[Xs] = a, then for any 
Ckl E U(Cij), Ckl[XS] = b. 

   PROOF. By using definition of [0, 2]-rule, it is easily proved that XA, XB and 
a-state sporadic configuration are stable configurations. The detail of proof is omitted. 

                                                                                 Q.E.D. 
   An example for a-state sporadic configurations is shown in Fig. 2. When a rule is 

[1, 3]-rule, a pattern of nonisolated stable configuration is significantly different from 
other one. In this pattern, it is possible that two "a-state strings" cross in "b-state sea". 

   THEOREM 4. If a rule is [1, 3]-rule, then nonisolated stable configurations are XA, 
X,,~"X.Yand X(*u)(x, v). B'S'Ss 

   PROOF. The method of proof is similar to the proofs of previous theorems. The 
detail of proof is omitted. Q.E.D. 

   An example of the above nonisolated stable configuration X'1" ")(A" ° °) is shown in 
Fig. 3. Under the condition 3 < p < min(k, 1), vertical or horizontal "a-state strings" 
exists in nonisolated stable configurations, but both kinds of these strings can not 
coexist in one nonisolated stable configuration, which is different from the case p = 2. 
The vertical (horizontal) "a-state strings" exist whether k <1 or not. This is different 
from the case that min(k, 1) < p max(k, 1).

Fig. 2. An example of a-state sporadic stable configurations under [0, 2]-rule in a cell space with 2 x 3 basic 
cell spaces.
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Fig. 3. An example of nonisolated stable configurations under [1, 3]-rule in a cell space with 3 x 3 basic cell 
spaces.

  (a)(b) 

Fig. 4. Two examples of nonisolated stable configurations under [2, 4]-rule in a cell space with 4 x 5 basic 
cell spaces. 

   THEOREM 5. If 3 p  < min(k, 1), then nonisolated stable configurations are XA, XB, 
Xslf, u and Xsv'v 

   PROOF. By the similar method, we can prove the above theorem. The detail of 

proof is omitted. Q.E.D. 
   Two examples for nonisolated stable configurations under [2, 4]-rule are shown in 

Fig. 4. Lastly, we consider the case that k = 1 = 2. If p = 1, then stable configurations
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are XA, XB and a-state sporadic stable configuration. If p = 2, then stable configura
tions are well-known checked patterns which were obtained by T. Kitagawa and 
M. Yamaguchi [4, 5]. 

   It is easily found that any stable configuration under [p  1, p + 1]-rule is comple
mentary to a stable configuration under [kl  p  1, kl  p + 1]-rule. Here, a con
figuration X is said to be complementary to X E .?C if and only if c13[X] = cu[X] for any 
cell where a = b and b = a [5]. By using this fact, we can get a pattern of a non
isolated stable configuration under other [p  1, p + 1]-rule which are not presented in 
this section.

5. Hierarchy of the Types of Local Transition Rules 

   We introduce an order relation into a set of all types of local transition 
rules. For two rules a and /3, the order relation a /3 exists if and only if any stable 
configuration under a rule a is also stable under a rule /3. Furthermore, in the subset 

{ [ri, r2]  rulel rl, r2 # 1, r2  rl � 1} of the set of all rules, we can introduce the join 
a Q+ /3 which is defined by a p+ /3 = sup {a, /3}. This join is used in the next section. 

   THEOREM 6. The following order relations exist. 

[1, 0] [q  1, q](5-1) 

                [kl, 1] [q  1, q](5-2) 

[q  1, q] [p  1, p + d](5-3) 

where 1 < q < kl  1, 1 < p < kl  l and 1 < d < kl  p. 
   PROOF. Under [1, 0] ([kl, 1])-rule, XA (XB) is only one stable configuration and 

under [q  1, q]-rule, all stable configurations are XA and XB. Furthermore, XA and 
XB are stable under [p  1, p + d]-rule. From these facts, we obtain Theorem 6. 

                                                                                 Q.E.D. 
   THEOREM 7. An order relation [p  1, p + d] -< [p'  1, p' + d'] exists if and only 

if d < d', p' < p, p + d < p' + d'. 
   PROOF. From transition tables of [p  1, p + d]rules, we can easily prove this 

theorem. The detail of proof is omitted. Q.E.D.

6. Cluster Property of Stable Configurations 

   From Theorem 7, we obtain that [q  1, q + 1] [p  1, p + d] (p < q < d + p  1). 
Thus, any stable configuration Xs under [p  1, p + d]-rule (d 2) consists of the union 
of local stable configurations B[Xs] (B e . ), which are stable under [q  1, q + 1]-rule 

(p < q < d + p  1). Simply, we can represent this fact as 

[p1,p+d]=[p1,p+1]Q+[p,p+2]Q+[p+1,p+3]Q+•••Q+[p+d2,p+d]. 
                                                      (6-1) 

In an m x n cell space with [p  1, p + d]-rule, a cell subspace whose configuration can 

not be changed by [i  1, i + 1]-rule (p < i < d + p  1) is called [i  1, i + 1] domain 
which is denoted by D.. Our interest is possible distribution of these domains.
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 [i — 1, i + 1] and [ j — 1, j + 1] domains are said to be able to overlap with an overlap 
index icj if and only if there exist basic cell spaces B and B' such that B and B' belong 
to [i — 1, i + 1] and [ j — 1, j + 1] domains respectively, 1B (1 B' 1 = Ku � 0 and con
figurations of B and B' are not uniform. 

   THEOREM 8. In an m x n cell space with k x 1 basic cell space, [p — 1, p + 1] 
domain and [kl — r — 1, kl — r + 1] (p < kl — r) domain can not overlap with an overlap 
index Kp kl-r = w if and only if w > p and r < w — p. [p — 1, p + 1] domain and 

[kl — r — 1, kl — r + 1] domain can overlap with an overlap index w if and only if w < p. 
   PROOF. We assume that w > p and B (1 B' 0 ¢ where B c DI, and B' Dkl-r• We 

can allocate "a" state to p — x cells and "b" state to other w — p + x cells in B fl B'

Fig. 5. Three examples of cluster property of stable configurations under [p — 1, p + 2]-rule (p = 1, 2, 3). 

(a) A stable configuration under [0, 3]-rule. 
(b) A stable configuration under [1, 4]-rule. 
(c) A stable configuration under [2, 5]-rule.
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where 0 x  <  p. If "a" state is allocated to x cells and "b" state is allocated to other 
cells in B — B fl B', a configuration of B is stable. However, if r < w — p + x, a con
figuration of B' is not stable. Thus, if r < w — p, then two domains Dp and Dkl_, can 
not overlap with an overlap index w. Secondly, we assume that w < p. The "a" state 
is allocated to w — x cells and the "b" state is allocated to other x cells in B 11 B' where 
0 x w. Then, there exist two stable configurations of B and B' if and only if 
kl p + x and kl — w > r — x. There exists the number x which satisfies these condi
tions. From these calculations, Theorem 8 is proved. Q.E.D. 

   Examples of cluster property of stable configurations are shown in Fig. 5. In Fig. 
5, under three rule [ p — 1, p + 2] (p = 1, 2, 3) and 3 x 3 basic cell space, stable con
figurations are shown.

7. Singular Stable Subconfiguration 

   In an m x n cell space, by a change of state of only one specific cell, a stable 
configuration may not be changed into another stable configuration. For investigating 
these facts, we define the singular stable subconfiguration. 

DEFINITION 1. In an m x n cell space C, for Xs e Xs and V _ C, V [Xs] is said to 
be the singular stable subconfiguration iff V [Xs] satisfies the following conditions: 

   1. If for any cell cx,, e V, X' = {cu[X']I cu[X'] = cu[Xs](i 0 x,j 0 y), cx,,[X'] = 
cx,, [Xs] }, then 

                    Prob(X' --> Y) � 0(7-1) 

      where Y 0 Xs, X' and Y E X. 
   2. If for any cell cZw E C — V, X" = {c0 [X"] I c1 [X"] = c1 [Xs] (i 0 z,j 0 w), 

cZw [X "] = cZw [Xs] }, then 

                     Prob(X" --4 Xs) = 1 .(7-2) 

   We can easily obtain the singular stable subconfiguration of each stable configura
tion under any type of local transition rule, but we omit the long list of singular stable 
subconfigurations. However, here, we will discuss biomathematical implication of the 
above singular stable subconfiguration in short. Any small change of the singular stable 
subconfiguration induces a large alternation of stable configuration because the interac
tion between cells maintains this singular stable subconfiguration. In biological 
phenomena, similarly, a small change of gene or DNA of eucaryote induces an altera
tion of phenotypic expression or function of organism. We think that a gene is the 
subsystem of whole system of organism, which is similar to the singular stable sub
configuration. We insist that a gene can be interpreted as "singular subsystem" rather 
than organism's blueprint where "singular subsystem" is an extension of the singular 
stable subconfiguration. An example of the singular stable subconfiguration is shown 
in Fig. 6 where a set of dotted and black cells' states is a singular stable subconfigura
tion. The transition from the configuration which is obtained from a small change of 
the singular stable subconfiguration is shown in Fig. 7.
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Fig. 6. An example of singular stable subconfigurations under [1, 3]-rule in a cell space with 3 x 3 basic cell 
spaces. A set of dotted and black cells' states is a singular stable subconfiguration where a black cell's state is 
"a" and other cells' states are "b".

 a change of  state of 
singular stable subconfiguration

Fig. 7. A lineage of transition from a configuration with damaged singular stable subconfiguration . The 
original configuration is stable under [2, 4]-rule in a 4 x 4 cell space with 3 x 3 basic cell spaces .



Stable configurations in cell space under the threshold type transition rule 51

8. Patterns of Isolated Stable Configurations 

   Finally, we investigate an isolated stable configuration which does not have any 
direct ancestor. It is easily found that under [1, 0] and  [kl, 1]-rule, there does not 
exist an isolated stable configuration and under [0, 1] ([kl — 2, kl — 1])-rule, an isolated 
stable configuration is only XB (XA). However, under [ p — 1, p + d]-rule, patterns of 
isolated stable configurations are more complex than patterns of nonisolated stable 

configurations. Here, we show some examples of these isolated stable configurations 
under [1, 3]-rule in Fig. 8.

(a)(b) 

Fig. 8. Two examples of isolated stable configurations under [1, 3]-rule in a cell space with 3 x 3 basic cell 
spaces. 

(a) In the row direction, this isolated stable configuration is periodic. 
(b) In any direction, this isolated stable configuration is not periodic.

9. Summary and Discussion 

   In this paper, we have proposed the threshold type transition rule. Then, we have 
obtained all types of local transition rule, which is called a rule for short. We have 
found all patterns of nonisolated stable configurations in the cell space with k x 1 basic 
cell space under these rules. We have defined the singular stable subconfiguration and 
discussed its biomathematical meaning. 

   In the cell space, the interaction between cells or the transition rule is not sym
metric in respect to each cell. Thus, our cell space is different from usual cellular 
automata, for example, as famous von Neumann's cellular automata and Wolfram's 
twodimensional cellular automata [10]. 

   Each rule or type of local transition rule has robustness against small perturbations 
of parameters in a rule LT This means that even if parameters of the transition rule 
LT suffer small perturbations, the type of local transition rule remains unchanged. 
This statement is equivalent to another statement that broad spectra of parameters of
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the transition rule give us the same type of local transition rule. We think that this 

concept of robustness of a rule is also important when we understand biological 

phenomena. By thermodynamic fluctuation and external disturbance, organized struc
tures of life are usually at a crisis. We assume that the interaction between elements of 

organized structure depends on some parameters and these parameters are perturbed by 

foregoing fluctuations. However, in order to maintain organized structures, the result 

of interactions must not change even if the parameter of interaction is disturbed by 

these fluctuations. Thus, we believe that robustness of rule is one of important concepts 

in biomathematics.
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